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John Harding, Carol Walker and Elbert Walker

Abstract This paper is a continuation of the study of the variety generated by the
truth value algebra of type-2 fuzzy sets. That variety and some of its reducts were
shown to be generated by finite algebras, and in particular to be locally finite. A
basic question remaining is whether or not these algebras have finite equational
bases, and that is our principal concern in this paper. The variety generated by the
truth value algebra of type-2 fuzzy sets with only its two semilattice operations in
its type is generated by a four element algebra that is a bichain. Our initial goal is
to understand the equational properties of this particular bichain, and in particular
whether or not the variety generated by it has a finite equational basis.

1 Introduction

The underlying set of the algebra of truth values of type-2 fuzzy sets is the set
M = Map([0,1], [0,1]) of all functions from the unit interval into itself. This set is
equipped with the binary operations + and ·, the unary operation ∗, and the nullary
operations 1̄ and 0̄ as spelled out below, where ∨ and ∧ denote maximum and min-
imum, respectively.

( f +g)(x) = sup{ f (y)∧g(z) : y∨ z = x}
( f ·g)(x) = sup{ f (y)∧g(z) : y∧ z = x}

f ∗(x) = sup{ f (y) : 1− y = x} = f (1− x)
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1̄(x) =
�

0 if x �= 1
1 if x = 1 and 0̄(x) =

�
1 if x = 0
0 if x �= 0

The algebra of truth values of type-2 fuzzy sets was introduced by Zadeh in 1975,
generalizing the truth value algebras of ordinary fuzzy sets, and of interval-valued
fuzzy sets. (Sometimes in the fuzzy literature, the operations + and · are denoted �
and �, respectively, but we choose to use the less cumbersome notations + and ·.
We also frequently write f g instead of f ·g.) The definitions of the convolutions +,
·, and ∗ are sometimes referred to as Zadeh’s extension principle.

Definition 1. The algebra M = (M,+, ·,∗ , 1̄, 0̄) is the algebra of truth values for
fuzzy sets of type-2.

Type-2 fuzzy sets, that is, fuzzy sets with this algebra M of truth values, play an
increasingly important role in applications, making M of some theoretical interest.
See, for example, [3, 9, 13, 14, 15, 20].

We are concerned here with the equational properties of this algebra, much as one
is concerned with the equational properties of the Boolean algebras used in classical
logic. The main question we are interested in is whether there is a finite equational
basis for the variety V (M) generated by M. We have made some progress toward
this, and other questions, but it remains open.

An important step in understanding the equational theory of M was taken in
[4, 19] where the operations + and · were written in a tractable way using the aux-
iliary operations L and R, where f L and f R are the least increasing and decreasing
functions, respectively, above f . Using this, it was shown that M satisfies the fol-
lowing equations.

Proposition 1. Let f ,g,h ∈M.

1. f + f = f ; f · f = f
2. f +g = g+ f ; f ·g = g · f
3. f +(g+h) = ( f +g)+h; f · (g ·h) = ( f ·g) ·h
4. f +( f ·g) = f · ( f +g)
5. 1̄ · f = f ; 0̄+ f = f
6. f ∗∗ = f
7. ( f +g)∗ = f ∗ ·g∗; ( f ·g)∗ = f ∗+g∗

Algebras, such as M, that satisfy the above equations have been studied in the
literature under the name De Morgan bisemilattices [1, 10, 11].

Definition 2. A variety of algebras is the class of all algebras of a given type sat-
isfying a given set of identities (a basis for the variety). Equivalently (by a famous
theorem of Birkhoff), a variety is a class of algebras of the same type which is closed
under the taking of homomorphic images, subalgebras and (direct) products.

Definition 3. For an algebra A, the variety V (A) generated by A is the class of
all algebras with the same type as A that satisfy all the equations satisfied by A. An
algebra A is locally finite if each finite subset of A generates a finite subalgebra of
A, and a variety is locally finite if each algebra in the variety is locally finite.
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An advance in understanding M and its equational properties came in [7], where
it was shown that the variety V (M) is finitely generated, meaning it is generated
by a single finite algebra. In fact, it is generated by the complex algebra (algebra of
subsets) of a 5-element bounded chain with involution. In this same paper, it was
shown V (M) is generated by a smaller 12-element De Morgan bisemilattice, but
this algebra is not so easily described. An important consequence of this result is an
algorithm to determine whether an equation holds in M. One simply checks to see
if the equation holds in the finite algebra generating V (M). In this same paper, a
normal form for terms in V (M) was given, and used to develop a syntactic algorithm
to determine when an equation holds in V (M).

It is natural to consider whether the equations in Proposition 1 could be a basis
for the variety V (M); that is, whether or not every equation satisfied by the algebras
in V (M) is a consequence of those equations in Proposition 1. This is not the case
as V (M) is locally finite, and there are De Morgan bisemilattices that are not locally
finite, such as certain ortholattices. So to find a basis for the variety V (M) one must
add equations to this list. We will exhibit later some equations that hold in M that are
not consequences of the equations above. Whether there is a finite basis for V (M)
remains open.

The observant reader at this point will have considered Baker’s Theorem [2] that
says a finitely generated congruence distributive variety has a finite basis. Unfor-
tunately we cannot apply this result as V (M) is not congruence distributive, as is
noted in a later section.

We decided to simplify the problem, and restrict attention to equations involving
only the operations + and · and not using the negation ∗ or constants 1̄ and 0̄.

Definition 4. An algebra (A, ·,+) with two binary operations is called a bisemi-
lattice if it satisfies equations 1 – 3 of Proposition 1, and a Birkhoff system if it
satisfies equations 1 – 4 of Proposition 1.

Of course the reduct (M,+, ·) of M to this type satisfies equations 1 – 4 of Propo-
sition 1, so is a Birkhoff system.

In any bisemilattice (A, ·,+), the binary operations · and + induce partial orders
by x ≤· y if x = xy and x ≤+ y if x + y = y. It is not difficult to show that these two
partial orders are the same if and only if the bisemilattice is a lattice.

Definition 5. A bisemilattice (A, ·,+) is a bichain if the two partial orders ≤· and
≤+ are chains.

A bichain is thus given by a set and two linear orderings on it. This is the same as
giving an ordering on a set, and a permutation on that set. Of particular importance
here will be finite bichains. Here we often assume the underlying set is {1, . . . ,n},
that the ·-ordering is 1 <· 2 <· · · · <· n, and that the +-ordering is given by some
permutation ϕ of {1,2, . . . ,n}. The situation is shown below.
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Any permutation ϕ gives an ordering of 1,2, . . . ,n for the +-order, so up to iso-
morphism there are n! n-element bichains. We assume the ·-order is 1 < 2 < · · · < n
and then just give the +-order. So we may depict bichains in the following manner:

�
�
�

ϕ(1)

ϕ(2)

...

ϕ(n)

+

Our reduct (M, ·,+) is a Birkhoff system. Of course, the variety generated by
this algebra is generated by the reduct of the 12-element De Morgan system that
generates V (M), but one can do better. In [7] it was shown that the variety generated
by (M,+, ·) is generated by the 4-element bichain we call B, shown in Figure 1.
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Fig. 1 The 4-element bichain B

Of course, this bichain can be depicted simply by
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While there is considerable literature on bisemilattices (see, for example, [11,
17, 18]), there seems to be relatively little known about the quite natural case of
bichains. Our efforts here are largely devoted to studying bichains and the varieties
they generate. We believe this is of interest for its own sake, as well as for its appli-
cation to understanding equational properties of M. One thing it enables us to do is
to produce equations satisfied by M that are not a consequence of the equations 1 -
4 of Proposition 1. We list four such equations below. The names come from their
donations by Fred (L)inton, Peter (J)ipsen, Keith (K)earnes, and a key equation (S)
that is a splitting equation of a certain variety.

xz+ y(x+ z) = (x+ z)(y+ xz) (L)

y(x+ xz) = y(x+ y)(x+ z) (J)

x(y+ z)(xy+ xz) = x(y+ z)+(xy+ xz) (S)

x(xy+ xz) = xy+ xz (K)

These equations hold in B as is easily checked. However, they do not hold in the
variety of Birkhoff systems, so are not consequences of equations 1 - 4 of Proposi-
tion 1. The first three equations fail in the 3-element bichain denoted A5 in Figure 2
of the following section. The fourth is valid in all six 3-element bichains. Each sub-
set of a bichain is a subalgebra, and it follows that this fourth equation (K) is valid
in all bichains; however, it fails in the Birkhoff system depicted below.
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We further remark that using the third equation (S) and several equations valid in
all bichains, such as (K), we can prove the first two equations (L) and (J). Rather, a
software package called Prover9 [12] can prove them. We conjecture that any equa-
tion valid in B can be proved from (S) and equations valid in BiCh, or equivalently,
that V (B) is defined by the equations defining BiCh and the equation (S).

2 Subvarieties of V (B)

Let BiSemi be the variety of all bisemilattices, Birk be the variety of all Birkhoff
systems, BiCh be the variety generated by all bichains, DL be the variety of all
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distributive lattices, and SL be the variety of all bisemilattices satisfying x ·y = x+y,
which is called the variety of semilattices. For any bisemilattice S we let V (S) be
the variety generated by S.

Proposition 2. Every bichain is a Birkhoff system, so BiCh⊆Birk.

Proof. Suppose x,y are elements of a bichain. Then each of xy and x + y is either x
or y, and we check that in the four possible cases x(x+ y) = x+ xy. ��

The inclusion BiCh⊆Birk is proper, since (K) is valid in all bichains, but not in
all Birkhoff systems.

Below we describe and name all bichains with two or three elements.
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Fig. 2 The 2- and 3-element bichains

Note that D1 and A1 are distributive lattices so generate the variety DL, and D2
and A6 are semilattices so generate SL [2]. By [16] the join of DL and SL is the va-
riety of distributive bisemilattices; that is, bisemilattices satisfying both distributive
laws. As D1 and D2 are subalgebras of A4, and A4 is a quotient of their product,
A4 generates DL∨ SL. By [11] the variety of bisemilattices satisfying the meet-
distributive law x(y+ z) = xy+ xz covers the distributive bisemilattices, as does the
variety of bisemilattices satisfying the join-distributive law x + yz = (x + y)(x + z).
As A2 satisfies meet-distributivity but not join distributivity, and A3 satisfies join
distributivity but not meet distributivity, V (A2) and V (A3) cover V (A4). As A2
and A3 are subalgebras of B, we have V (A2)∨V (A3) is contained in V (B). Using
the Universal Algebra calculator [5] we can find an equation to show this contain-
ment is strict. The algebras A2 and A3 satisfy

(x+ z)(wx+w+ y) = (x+ z)(xy+w+ y)

and this equation fails in B. The program also provides equations to show neither
V (A2) nor V (A3) are contained in V (A5), and V (A5) is not contained in V (B).

z(x+ z)(y+ z) = z(z+ xy)
z+ xz+ yz = z+ z(x+ y)

x(y+ z)(xy+ xz) = x(y+ z)+(xy+ xz)

The first holds in A5 and fails in A2, the second holds in A5 and fails in A3, and
the third holds in B and fails in A5. A diagram of the containments between these
varieties follows.



Type-2 Fuzzy Sets and Bichains 7

�
� �

�
� �

�
�

�

Trivial

�
��

❅
❅❅

�
�

�
�

�

❅
❅

❅
❅

❅
�

��
❅

❅❅

✏✏✏✏✏✏✏✏

V (A1) V (A6)

V (A4)

V (A2) V (A3)

V (B)

V (A5)

Fig. 3 Containments among varieties

Our conjecture is that V (B) is the largest subvariety of BiCh not containing A5, a
situation known as a splitting. If this is indeed the case, V (B) is defined by a single
equation called a splitting equation, together with equations defining BiCh. In this
case, a splitting equation is

x(y+ z)(xy+ xz) = x(y+ z)+(xy+ xz) (S)

That (S) is the splitting equation of A5 in BiCh comes through the fact that A5 is
weakly projective in this variety, a topic we shall return to later. We remark that (S)
is a type of generalized distributive law, with the left side of (S) being the meet of
the two sides of the usual distributive law, and the right side of (S) being their join.
We have not yet determined an equational basis of BiCh, and indeed do not even
know if this variety is finitely based.

3 Bichains in the variety V (B)

To lend some credence to our conjecture that V (B) is the largest subvariety of BiCh
not containing A5, we use this section to show that a bichain belongs to V (B) if and
only if it does not contain A5 as a subalgebra. We remark that if the variety BiCh
were congruence distributive, our conjecture would follow from this using Jónsson’s
Lemma and Łoś’s Theorem.

Theorem 1. For a bichain C, the following are equivalent.

1. C ∈ V (B).
2. A5 is not a subalgebra of C.
3. C satisfies (S).



8 John Harding, Carol Walker and Elbert Walker

Proof. (1 ⇒ 3) This is of course simply a matter of checking that the equation (S)
holds in B, but the situation is a bit more interesting than this. Note there is a con-
gruence on B that collapses only the two middle elements {2,3}, and the resulting
quotient is a distributive lattice. Take any equation s = t that holds in all distributive
lattices. If this equation is to fail in B for some choice of elements, it must be that s
and t evaluate to 2 and 3. As {2,3} is a subalgebra of B isomorphic to the 2-element
semilattice, it then follows that st = s+ t holds in B. The equation (S) is an instance
of this, taking s = t to be the meet distributive law.

(3⇒ 2) Take x = 2, y = 1, and z = 3 to see that A5 does not satisfy (S).
(2⇒ 1) To show C ∈ V (B), it is sufficient to show every finite sub-bichain of C

belongs to V (B). Indeed, if C �∈ V (B), there is some equation valid in B that fails
in C. This equation involves only finitely many variables, so there is some finitely
generated subalgebra of C that does not belong to V (B). But as C is a bichain, every
subset of C is in fact a subalgebra of C. So to show 2⇒ 1, it is enough to show this
for C a finite bichain.

We show by induction on n = |C| that if A5 is not isomorphic to a subalgebra of
C, then C ∈ V (B). For n ≤ 3 all n-element bichains are given in the figure in the
previous section, and all but A5 are shown to belong to V (B). Suppose C has n≥ 4
elements. We first establish a lemma that handles several cases.

Lemma 1. For a finite bichain C, let C∪ {∞} be the bichain formed from C by
adding a new element to the bottom of the ·-order and the top of the +-order; let
C∪{b} be formed from C by adding a new element to the bottom of both orders;
and let C∪{t} be formed from C by adding a new element to the top of both orders.
Then if C ∈ V (B), so are C∪{∞}, C∪{b}, and C∪{t}.

Proof (Proof of Lemma). We first show B∪ {∞}, B∪ {b} and B∪ {t} belong to
V (B). Note B∪{∞} is the quotient of B×D2 by the congruence θ that has one non-
trivial block consisting of B×{1}; B∪{b} is the subalgebra of B×D1 consisting
of B×{2} and (1,1); and B∪{t} is the subalgebra of B×D2 consisting of B×{1}
and (4,2). As D1 and D2 belong to V (B), so do these algebras.

Assume C belongs to V (B). Then there is a set I, a subalgebra S ≤ BI , and an
onto homomorphism ϕ : S → C. Consider the constant function ∞ in (B∪{∞})I

whose constant value is the new element ∞ added to B. In B, x · ∞ = ∞ and x +
∞ = ∞. It follows that S∪ {∞}is a subalgebra of this power, and ϕ extends to a
homomorphism from S∪{∞} onto C∪{∞}. The arguments for C∪{b} and C∪{t}
are similar, using powers of B∪{b} and B∪{t}. ��

(Proof of Theorem continued) Assume the ·-order of C is 1 < 2 < · · · < n. If the
bottom element of the +-order of C is 1, then C is isomorphic to C� ∪{b} where C�
is the sub-bichain {2, . . . ,n} of C. Then by the inductive hypothesis and the above
lemma, C ∈ V (B). A similar argument handles the cases where either 1 or n is the
top element of the +-order of C. Set

U = {k : 2≤ k ≤ n and k precedes 1 in the + -order}
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V = {k : 2≤ k ≤ n and 1 precedes k in the+ -order}

As 1 is not the bottom or top of the +-order, U and V are non-empty. Also, as A5 is
not a subalgebra of C, if u∈U and v∈V , then u < v. Also, as n is not the top element
of the +-order, V must have at least two elements. So there is some 2 ≤ k ≤ n− 2
with U = {2, . . . ,k} and V = {k +1, . . . ,n}.

There are congruences θ and φ on C with θ collapsing {1, . . . ,k} and nothing
else, and φ collapsing V and nothing else. Note C/θ is isomorphic to the sub-bichain
{1,k +1, . . . ,n} of C, and C/φ is isomorphic to the sub-bichain {1, . . . ,k,k +1} of
C. It follows from the inductive hypothesis that C/θ and C/φ belong to V (B). As
θ and φ intersect to the diagonal, C is a subalgebra of their product, so belongs to
V (B). ��

At this point, if we had congruence distributivity, it would follow that every sub-
directly irreducible in the variety BiCh is a bichain, and then the above theorem
would imply V (B) is defined, relative to the equations defining BiCh, by the single
equation (S). However we do not have congruence distributivity [17].

4 Splitting

In this section we investigate projectivity and splitting for various bichains, and in
particular for A5. Our main result here shows there is a largest subvariety of BiCh
not containing A5, and the theorem of the previous section leads us to believe this
may be the variety V (B).

Definition 6. An algebra P is weakly projective in a variety V if for any two al-
gebras E and A in V , for every homomorphism f : P → E, and for every onto
homomorphism g : A � E, there is a homomorphism h : P→ A with gh = f .

The usual definition of projective uses the categorical notion of an epimorphism
in place of the onto homomorphism g. In a variety V , there may be more epimor-
phisms than onto homomorphisms, so an algebra that is weakly projective may not
be projective. However, we do not know whether epimorphisms must be onto in
either of the varieties Birk or BiCh.

The following well-known result [6] is a convenient reformulation.

Proposition 3. An algebra P is weakly projective in V if and only if for every onto
homomorphism u : A � P, there is an embedding r : P→ A with u◦ r = idP.

Weak projectives are of interest for several reasons, but our primary one lies in
Proposition 4 below. Before stating this, we define for an algebra P in a variety V ,

W (P) = {A ∈ V : P ��→ A}

Here P ��→ A means P is not isomorphic to a subalgebra of A.
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Proposition 4. If P is weakly projective in V and subdirectly irreducible, then
W (P) is a variety, and is the largest subvariety of V that does not contain P.

This is a well-known result [6] and not difficult to prove. The situation is some-
times referred to as a splitting, as it splits the lattice of subvarieties of V into two
parts, those that contain the variety V (P), and those that are contained in W (P).
Further, such a splitting yields an equation, called the splitting equation, defining
the variety W (P) relative to the equations defining V . We now apply these results
in our setting.

Proposition 5. The 2-element distributive lattice D1 is subdirectly irreducible and
weakly projective in BiCh. Its splitting variety W (D1) is the variety SL of semilat-
tices.

Proof. Clearly D1 is subdirectly irreducible (see Figure 2). Let A be a bichain and
f : A � D1 be an onto homomorphism. Then there are x and y in A with f (x) =
1 and f (y) = 2. Then f (xy) = 1 and f (x + y) = 2, so xy is different from x + y.
In any Birkhoff system we have xy(x + y) = xy and x + y + xy = x + y. So there
is a homomorphism r : D1 → A defined by r(1) = xy and r(2) = x + y, and this
homomorphism satisfies f ◦ r = idD1 . So D1 is weakly projective.

To see that W (D1) = SL, note that the two-element semilattice D2 belongs to
W (D1), so one containment is trivial. For the other, suppose A does not belong
to SL. Then there are x,y ∈ A with xy not equal to x + y, giving {xy,x + y} is a
subalgebra of A isomorphic to D1, so A �∈W (D1). ��

Note that for D1, these results hold also in the larger variety Birk.

Proposition 6. The 2-element semilattice D2 is subdirectly irreducible and weakly
projective in BiCh. Its splitting variety W (D2) in BiCh is the variety DL of distribu-
tive lattices.

Proof. Clearly D2 is subdirectly irreducible (see Figure 2). Let A be a bichain and
f : A � D2 be an onto homomorphism. Then there are x and y in A with f (x) = 1
and f (y) = 2. While we could now just jump to the answer, we build it step at a time
to demonstrate an idea that will be used in a later proof. This same idea would have
worked above. We first patch up the meet operation and consider the following:

�� ��
· +

xy

y

y

xy

We have f (xy) = f (x) f (y) = (1)(2) = 1 and f (y) = 2. Also (xy)y = xy. So
{x,xy} is a 2-element subset of A that works well with respect to meet. But it doesn’t
work well with respect to join since we would like that y + xy = xy and there is no
reason for this to be true. We work with what we have now and get it to work with
respect to join.
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�� ��
· +

y+ xy

y

y

y+ xy

Now by construction, this works well with respect to join, as y+y+xy = y+xy.
It also works with respect to meet, as y + xy = y(x + y), so y(y + xy) = y + xy. So
{y + xy,y} is a subalgebra of A, f (y + xy) = 2 + 1 = 1 and f (y) = 2. So there is
r : D2 → A with r(1) = y+ xy and r(2) = y, so D2 is weakly projective.

We next show that W (D2) = DL. Surely W (D2)⊇ DL. To show W (D2)⊆ DL,
suppose A ∈ BiCh and A has no subalgebra isomorphic to D2. Note that for any
x,y ∈ A we have x[x(x + y)] = x(x + y), and Birkhoff’s equation a(a + b) = a + ab
gives x + x(x + y) = x(x + x + y) = x(x + y). As A has no subalgebra isomorphic to
D2, it follows that x(x + y) = x for each x,y ∈ A, and then by Birkhoff’s equation
that x+ xy = x for each x,y ∈ A. So A is a lattice.

Consider the equations

x(x+ y)(xz+ y) = x(x+ y)(xz+ y+ z)
z(x+ y)(y+ xz) = z(x+ y)(y+ z+ xz)

Both hold in every bichain. To see this, as these equations involve three variables it
is enough to check them in each 3-element bichain, and this is not difficult. So these
equations hold in the variety BiCh, hence also in A. The first does not hold in the
5-element modular, non-distributive lattice M3, and the second does not hold in the
5-element non-modular lattice N5. So A is a lattice containing neither M3 nor N5 as
a subalgebra, showing A is a distributive lattice [2]. ��

Note that our proof shows more. The algebra D2 is weakly projective in the larger
variety Birk. It therefore has a splitting variety in Birk, but this is not DL, but the
variety Lat of all lattices. This proof also shows Lat ∩BiCh = DL. In particular,

Corollary 1. Any lattice in V (B) = V (M) is distributive.

Now to the result most pertinent to our variety V (B). For convenience, we recall
what A5 looks like.

��
�
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1

2

3

3

1

2

Fig. 4 The bichain A5

Proposition 7. A5 is subdirectly irreducible and weakly projective in BiCh.
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Proof. The bichain A5 is subdirectly irreducible with its minimal congruence being
the one collapsing 1 and 2. To see that it is weakly projective, assume A ∈ BiCh and
f : A � A5. Then there are x,y, and z in A with f (x) = 1, f (y) = 2, and f (z) = 3.
We follow the process in the previous proof to try to build a subalgebra of A that is
isomorphic to A5. As our first step, we fix meets.

��
�

��
�

· +

xyz

yz

z

z

xyz

yz

So now meets are okay, but joins are a problem. We fix them, bearing in mind we
may wreck our meets when we do so.

��
�

��
�

· +

z+ xyz

z+ xyz+ yz

z

z

z+ xyz

z+ xyz+ yz

So now we have fixed joins, but have troubles with the meets again. Before we
continue further, note that Birkhoff’s identity a(a+b) = a+ab gives the following

z(z+ xyz+ yz) = z+ z(yz+ xyz)
= z+ zyz(yz+ x)
= z+ yz(yz+ x)
= z+ yz+ xyz

So in fixing meets again, we may leave intact the top two elements of the ·-order to
obtain the following.

��
�

��
�

· +

(z+ xyz)(z+ xyz+ yz)

z+ xyz+ yz

z

z

(z+ xyz)(z+ xyz+ yz)

z+ xyz+ yz

Birkhoff’s identity gives (z + xyz)(z + xyz + yz) = z + xyz + yz(z + xyz). So the
join of the bottom two elements of the +-order are correct since z will be absorbed
when added to this element. To see the join of the top two elements of the +-order
are correct, we again use Birkhoff’s identity.

z+ xyz+ yz+(z+ xyz+ yz)∗ z+ xyz) = (z+ xyz+ yz)(z+ xyz+ yz+ z+ xyz)
= (z+ xyz+ yz)(z+ xyz+ yz)
= z+ xyz+ yz
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So after the last round of fixing meets, joins also are fixed.
We then get that {z,z+xyz+yz,(z+xyz)(z+xyz+yz)} is a subalgebra of A. One

easily sees that f ((z+xyz)(z+xyz+yz)) = 1, f (z+xyz+yz) = 2, and f (z) = 3. So
A5 is weakly projective. ��

We have shown somewhat more, that A5 is weakly projective in the larger variety
Birk. In [8] we are able to extend this result significantly and show any finite bichain
not containing the algebra A4 of Figure 2 is weakly projective in the variety Birk.
However, it is the specific instance given above that is applicable to our study of
Type-2 fuzzy sets. The main points are summarized below.

Theorem 2. The algebra A5 is subdirectly irreducible and weakly projective in the
variety BiCh. Its splitting variety W (A5) in BiCh contains V (B) and these two
varieties contain exactly the same bichains. Equations defining W (A5) are given by
the equations defining the variety BiCh and the splitting equation below, which is a
generalized form of the distributive law.

x(y+ z)(xy+ xz) = x(y+ z)+(xy+ xz). (S)

Proof. That A5 is subdirectly irreducible and weakly projective in the variety BiCh
is the content of Proposition 7. By Proposition 4, W (A5) is a variety and is
the largest subvariety of BiCh not containing A5. From its definition, B belongs
to W (A5), so W (A5) contains V (B). That W (A5) and V (B) contain the same
bichains is provided by Theorem 1.

It remains to find the splitting equation for A5 in BiCh. Let F be the free Birkhoff
system on the generators x,y, and z and let ϕ : F → A5 be the homomorphism
mapping x,y and z to 1,2 and 3, respectively. In the proof of the previous result,
we found that {(z+yz+xyz)(z+xyz),z+yz+xyz,z} is a subalgebra of F mapping
isomorphically onto A5. Since {1,2} generates the smallest non-trivial congruence
on the subdirectly irreducible algebra A5, it follows from general considerations that
the elements of this subalgebra mapped to 1 and 2 give the splitting equation for A5
in the variety of Birkhoff systems:

(z+ yz+ xyz)(z+ xyz) = z+ yz+ xyz (T)

Using the software packages Prover9 and Mace4 [12], we can find an example
to show equation (T) is not equivalent to (S) in the variety of Birkhoff systems.
However, consider the equations

x(x+ y)(xz+ y) = x(x+ y)(xz+ y+ z) (1)
x(xy+ xz) = xy+ xz (2)

Considering cases, one checks that these equations are valid in every bichain, so
are valid in the variety BiCh. Prover9 shows that in the presence of the identities
for Birkhoff systems, equations (T), (1), and (2) together imply (S), and (S), (1),
and (2) together imply (T). So in the variety BiCh we have (T) and (S) are equivalent,
showing (S) is the splitting equation for S in the variety BiCh. ��
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We remark that as (S) is not equivalent to the splitting equation for A5 in the
variety Birk, the splitting variety for A5 in Birk is strictly larger than the splitting
variety for A5 in BiCh, and therefore strictly larger than V (B). So V (B) is not
simply defined by the equations for Birkhoff systems plus (S), thus we do need
some additional equations.

5 Conclusions and remarks

From a previous paper [7], we know that the variety generated by the truth value
algebra of type-2 fuzzy sets with only its two semilattice operations in its type is
generated by a 4-element algebra B that is a bichain and, in particular, a Birkhoff
system.

Our aim is to find an equational basis for the variety generated by B. This problem
is difficult, but we have some progress. Our technique is to consider a particular 3-
element bichain A5, show it is subdirectly irreducible and weakly projective, hence
splitting, and that its splitting variety W (A5) in BiCh contains V (B).

Birk
|

BiCh
|

W (A5)
|

V (B)

We conjecture that W (A5) = V (B). If so, this will show the splitting equation
(S) for A5 then defines V (B) within BiCh. The results of Section 3 lend credence
to this as we have shown a bichain belongs to W (A5) if and only if it belongs to
V (B).

There remain a number of open problems in connection with this work. These
include determining whether or not W (A5) = V (B), and finding an equational ba-
sis for BiCh. Together, these will provide an equational basis for V (B), and hence
for the ·,+ fragment of the truth value algebra M of type-2 fuzzy sets. One could
conjecture that an equational basis for M with all its operations is one for B plus the
equations for negation and the constants.

We have determined [8] that a bichain is weakly projective in the variety Birk if
and only if it does not contain a copy of the bichain A4. As each weakly projective
subdirectly irreducible algebra gives a splitting of the lattice of subvarieties, this
adds to our knowledge of the lattice of subvarieties of Birkhoff systems, and in
particular, of subvarieties of BiCh. We believe this variety BiCh is natural and of
interest independent of its connection to fuzzy logic.

Finally, we remark that in preparing this still incomplete work, we made use
of Universal Algebra Calculator [5], as well as the programs Prover9 and Mace4
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[12] to find and work with equations. After finding equations with these programs
we further verified all properties by hand. We are grateful to several people for
providing equations of help to us, including Peter Jipsen, Keith Kearnes, and Fred
Linton, and also to Anna Romanowska for several communications.
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6. Freese, R., Ježek, J., Nation, J.B.: Free Lattices, Mathematical Surveys and Monographs 42.

Amer. Math. Soc., Providence (1995)
7. Harding, J., Walker, C., Walker, E.: The variety generated by the truth value algebra of type-2

fuzzy sets. Fuzzy Sets and Systems 161(5), 735-749 (2010)
8. Harding, J., Walker, C., Walker, E.: Projective Bichains. Alg. Univ., accepted for publication.
9. John, R.: Type-2 fuzzy sets: an appraisal of theory and applications. Int. J. of Uncertainty,

Fuzziness and Knowledge-Based Systems 6(6), 563-576 (1998)
10. Kikuchi, H. Takagi, N.: De Morgan bisemilattice of fuzzy truth value. 32nd IEEE Int. Symp.

on Multiple-Valued Logic, ISMVL 2002, 180 (2002)
11. McKenzie, R., Romanowska, A.: Varieties of ◦-distributive bisemilattices. Contributions to

General Algebra, (Proc. Klagenfurt Conf., Klagenfurt, 1978), H. Kautschitsch, W. B. Muller,
and W. Nobauer eds., Klagenfurt, Austria, 213-218 (1979)

12. McCune, W.: Prover9 and Mace4. http://www.cs.unm.edu/∼mccune/Prover9, 2005-2010.
13. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems. Prentice Hall PTR, Upper Saddle

River, NJ, (2001)
14. Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type-2. Information and Control

31, 312-340 (1976)
15. Mukaidono, M.: Algebraic structures of truth values in fuzzy logic. Fuzzy Logic and Fuzzy

Control, Lecture Notes in Artificial Intelligence 833, Springer-Verlag, 15-21 (1994)
16. Padmanabhan, R.: Regular identities in lattices. Trans. Amer. Soc. 158, 179-188 (1981)
17. Romanowska, A.: On bisemilattices with one distributive law. Alg. Univ. 10, 36-47 (1980)
18. Romanowska, A.: On distributivity of bisemilattices with one distributive law. Proc. of the

Coll. on Univ. Alg., Esztergom (1977)
19. Walker, C., Walker, E.: The algebra of fuzzy truth values. Fuzzy Sets and Systems 149, 309-

347 (2005)
20. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning.

Inform Sci. 8, 199-249 (1975)


