
DOI: 10.1515/ms-2015-0153

Math. Slovaca 66 (2016), No. 2, 493–526

AUTOMORPHISMS OF DECOMPOSITIONS
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ABSTRACT. In [HARDING, J.: Decompositions in quantum logic, Trans. Amer. Math. Soc. 348
(1996), 1839–1862] the author showed that the direct product decompositions of many different types
of structures, such as sets, groups, vector spaces, topological spaces, and relational structures, naturally
form orthomodular posets. When applied to the direct product decompositions of a Hilbert space, this
construction yields the familiar orthomodular lattice of closed subspaces of the Hilbert space.

In this note we consider orthomodular posets Fact X of decompositions of a finite set X. We
consider the structure of these orthomodular posets, such as their size, shape, connectedness, states,
and begin a study of their automorphism groups in the context of the natural map Γ from the group
of permutations of X to the automorphism group of Fact X.

We show Γ is an embedding except when |X| is prime or 4, and completely describe the situation
when |X| has two or fewer prime factors, when |X| = 23 and when |X| = 33. The bulk of our effort
lies in a series of combinatorial arguments to show Γ is an isomorphism when |X| = 27. We conjecture
that this is the case whenever |X| has sufficiently many prime factors of sufficient size, and hope that
our arguments here might be adapted to the general case.

c⃝2016
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

A binary decomposition of a structure A consists of structures B,C and an isomorphism f : A →
B ×C. Another binary decomposition f ′ : A → B′ ×C′ is equivalent to the given one if there are
isomorphisms u : B → B′ and v : C → C′ with f ′ = (u× v) ◦ f as shown below.

A

B × C

B′ × C′

f

f ′

u v

This equivalence of decompositions is different (finer) than that encountered in the Krüll-
Schmidt theorem, where only the isomorphism classes of the factors are important. In the above
definition of equivalence, the order of the factors and the way the isomorphism f decomposes the
structure matter. This is analogous to the situation for onto homomorphisms f : A → B, where
equivalence could mean isomorphism of the images, or the existence of an isomorphism between

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 81P10, 06C15, 08A35, 05E99, 51D20.
Keyword s: orthomodular poset, automorphism, direct product decomposition, Wigner’s Theorem.

493

 
 AUTHOR C

OPY 



TIM HANNAN — JOHN HARDING

the images compatible with the homomorphisms. While the second approach is more frequent
when dealing with onto homomorphisms, it is the first usually encountered when dealing with
decompositions. Our focus is the more refined equivalence for decompositions.

A small example may help. A 4-element set X = {a, b, c, d} has 8 equivalence classes of decom-
positions. One has as its representatives decompositions of X as a product of a 4-element set and
a 1-element set. There are a proper class of such decompositions, but all are equivalent. Another
has as its representatives decompositions of X as a product of a 1-element set and a 4-element set.
There are 6 equivalence classes whose representatives decompose A as a product of two 2-element
sets. To see these can be different, consider one bijection f from X to a product of two 2-element
sets where f(a) and f(b) have the same first component, and another bijection g from X to a prod-
uct of two 2-element sets where g(a) and g(b) have different first components. The decompositions
given by f and g will be inequivalent.

1.1 For a structure A, let Fact A be the set of all equivalence classes of binary
decompositions of A.

When dealing with a setX , each equivalence class of decompositions has a unique representative
f : X → X/θ1×X/θ2 where θ1 and θ2 are equivalence relations on X and the natural map f given
by these relations is a bijection. Such pairs of equivalence relations are called factor pairs [5].

1.2 For a set X, Fact X = {(θ1, θ2) : (θ1, θ2) is a factor pair }.

We next consider the matter of defining structure on the set Fact A. We require the following
well-known notion from the study of quantum logic [22, 28].

1.3 An orthomodular poset (abbreviated: omp) is a bounded poset P with bounds
0, 1 and a unary operation ′ that is order inverting and period two, such that the following conditions
hold with regard to the existence and behavior of certain joins and meets. Here, x ⊥ y means
x ≤ y′ and is read “x is orthogonal to y.”

(1) For each x ∈ P , x ∧ x′ exists and is 0, and x ∨ x′ exists and is 1.

(2) If x ⊥ y, then the join x ∨ y exists.

(3) If x ⊥ y′, then x ∨ (x ∨ y)′ = y′.

We next put structure on Fact A. For a binary decomposition f : A → B×C, there is a related
decomposition f ′ : A → C × B, and this naturally defines a unary operation ′ on Fact A. For a
ternary decomposition h : A → B×C ×D, there are binary decompositions h1 : A → B× (C ×D)
and h2 : A → (B ×C)×D given in an obvious way. We define a relation ≤ on Fact A by setting
one equivalence class of binary decompositions to be ≤ another if there is a ternary decomposition
h : A → B×C×D with the first equivalence class containing h1 : A → B× (C×D) and the second
h2 : A → (B × C)×D. The following was established in [12].

1.4 For A a set, group, ring, vector space, topological space, or relational structure,
Fact A is an omp.

The structure on Fact X for a set X can be described using factor pairs [12]. We choose to use
the orthogonality relation ⊥ as primitive rather than ≤ as it appears frequently in the sequel. Of
course, these are inter-definable using the orthocomplementation ′. We also make use of the fact
that an omp is isomorphic to its order dual to express the partial ordering and orthogonality in
what seems a more natural way. We note that equivalence relations θ,ψ permute, or commute, if
θ ◦ ψ = ψ ◦ θ.

1.5 When Fact X is realized as factor pairs, we have (θ1, θ2)′ = (θ2, θ1) and (θ1, θ2) ⊥
(ψ1,ψ2) iff θ1 ⊆ ψ2, ψ1 ⊆ θ2, and θ1 permutes with ψ1.
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Fact A has been studied in a number of papers. In [12], the construction and its basic properties
were introduced; it was shown that several familiar methods for constructing omps were instances
of this construction; two related constructions of omps from relation algebras and symmetric
lattices were given and used to show every modular ortholattice arises this way; and an example
was given of a finite omp that cannot be embedded into any Fact A. In [13] the blocks (maximal
Boolean subalgebras) of Fact A were described via Boolean sheaves, and the regularity of Fact A
established. In [14] direct physical motivation for the use of Fact A in theoretical quantum
mechanics was given. In [15] an example of a Fact A with no states was given, and it was shown
there is a finite Omp that can be embedded into Fact A for an infinite set A but not for any finite
set A. In [16] Fact A was considered in a general categorical context. A survey of these results is
given in [17]. In [18,19] Fact A is related to various categorical treatments of quantum mechanics
and quantum logic [1, 21].

The purpose of this paper is to study finer properties of the omps Fact X for the case that X
is a finite set. We do this as a means of beginning a study of such properties for various kinds of
structures due to connections to quantum logic, and as we believe the decompositions of a finite
set form an object of basic interest, much as the partition lattice of a finite set. In particular, we
study properties of automorphisms.

To frame the discussion, we state the following easily proved result that relates the automor-
phism group Aut(A) of the structure A, to the automorphism group Aut(Fact A) of the omp
Fact A. We note that an automorphism of an omp is an order isomorphism that preserves the
orthocomplementation.

1.6 There is a group homomorphism Γ : Aut(A) → Aut(Fact A) where Γ(α) takes the
equivalence class of the decomposition f : A → B×C to the equivalence class of the decomposition
f ◦ α : A → B × C.

There are several results known regarding automorphisms of structures Fact A. For a Hilbert
space H, the structure Fact H is the orthomodular lattice of closed subspaces [12]. Ulhorn’s [30]
version of Wigner’s theorem shows that the automorphisms of Fact H are given by the unitary
and anti-unitary operators on H. In a series of papers by Chevalier and Ovchinnikov [7–9, 27]
this was generalized to show the automorphisms of Fact V for a vector space V are given by
isomorphisms and dual isomorphisms of the subspace lattice of V . In the finite-dimensional case,
the fundamental theorem of projective geometry then provides a description of the automorphism
group of Fact V in terms of the general linear group of V .

In this paper, the second section begins with some elementary combinatorial computations to
find the number of atoms, number of blocks, size of blocks, and so forth, for the structures Fact X
for a finite set X and Fact V for a finite-dimensional vector space V . For sets with pk elements
for some prime p, and for finite-dimensional vector spaces over finite fields, these are seen to give
interesting classes of (n,m)-homogeneous omps [29], that is, ones where each block has m atoms
and each atom is in n blocks. Several less basic combinatorial properties of these structures are
also considered, such as the relationship between Fact V when V is considered as a vector space
and Fact V when V is considered as a set. Many of the results of this section are used when we
consider automorphisms.

In the third section, we consider basic properties of automorphisms of Fact X for a X a finite
set. We show that if |X | is neither prime nor equal to 4, then the map Γ is an embedding. Calling
the kernel of Γ the phase group of the structure, this says that except in some trivial cases, finite
sets have trivial phase groups. We also show that the automorphism group of Fact X is transitive
on the atoms in a strong way, moving any block to any other. We then completely describe the
automorphism group of Fact X in the “small” cases where |X | has at most two prime factors,
and where |X | = 8.
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Automorphisms groups in these “small” cases are somewhat uninteresting as the structures
involved are too poor to allow control over automorphisms. This is particularly true when |X |
has just two prime factors as Fact X is the horizontal sum of 4-element Boolean algebras. In
the smallest case where |X | has three prime factors, when |X | = 8, Fact X is again a horizontal
sum, but of more complex pieces. This kind of pathology with small size is familiar in quantum
logic with most results about Hilbert spaces having exceptions in the case of dimension 2. We
conjecture below that these pathologies vanish as the size of the set becomes sufficiently large.

1.7 If X is a finite set with at least three prime factors greater than 2, then the
map Γ : Aut(X) → Aut(Fact X) is an isomorphism.

In the fourth and fifth sections, we verify this conjecture in the case that |X | = 33. This is not
an easy task. The structure Fact X has

5, 001, 134, 190, 558, 105, 600, 000

atoms, and we are considering automorphisms of this structure. The proof proceeds in two steps.
The first consists of showing each automorphism of Fact X induces an automorphism on the poset
of regular equivalence relations on X , and is the content of Section 4. The second step shows that
each automorphism of the poset of regular equivalence relations on X is given by a permutation of
X , and is the content of Section 5. Both halves of the proof rely on on a sequence of elementary
combinatorial computations. The method of proof may extend to the more general setting, but
will require further non-trivial effort.

In the sixth and final section, we make some remarks regarding group-valued states on the
structures Fact X and Fact V , and discuss directions for possible further research.

2. Counting with sets and vector spaces

Here we employ some basic combinatorial techniques to describe properties such as the number
of atoms in Fact X for a finite set X . We begin with a generalization of the notion of a factor
pair described in the introduction. We call a sequence of equivalence relations (θ1, . . . , θn) on a set
X a factor n-tuple if the natural map X ! X/θ1 × · · ·×X/θn is a bijection. Factor n-tuples can
be described concretely for arbitrary sets [24], but the finite sets there is a very simple alternative
description.

2.1 Suppose (θ1, . . . , θn) is an n-tuple of equivalence relations on a finite set X where θi
has mi blocks. Then this is a factor n-tuple iff

(1) θ1 ∩ · · · ∩ θn = ∆.

(2) |X | = m1m2 · · ·mn.

P r o o f. The first condition means the map X ! X/θ1 × · · · × X/θn is a one-one map, and θi
having mi blocks means X/θi has mi elements. "

An equivalence relation that occurs as part of a factor pair, or equivalently as part of a factor
n-tuple, is called a factor relation. We call one factor relation a companion of another if the pair
forms a factor pair. Each factor relation on a set is regular, meaning that all its equivalence classes
have the same cardinality, and each regular equivalence relation on a set is a factor relation. To
see this, note that for a factor pair (θ1, θ2), each equivalence class of θ1 has |X/θ2| elements, and
if θ1 is regular, then enumerating the ith equivalence class of θ1 by (xij) (j ∈ J), we may define θ2
to be all ordered pairs (xij , xkj) and so produce a factor pair (θ1, θ2).
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2.2 Suppose a finite set X has mn elements. Then there are

(mn)!

m!(n!)m

factor relations with m blocks of n elements each, and each has (n!)m−1 companions.

P r o o f. There are (mn)! listings of the elements of X . The factor relations with m blocks of n
elements each arise by taking the listings and inserting division lines after each batch of n elements,
separating the listing of X into m groups of n. The order of the groups does not matter, and the
order of the elements within the groupings does not matter, so we divide by m! and we divide by
(n!)m. This gives the formula for the number of factor relations with m blocks of n elements each.

−−−−−−︸ ︷︷ ︸
n

|−−−−−−︸ ︷︷ ︸
n

|−−−−−−︸ ︷︷ ︸
n

| · · · |−− −−−−︸ ︷︷ ︸
n

Suppose θ is a factor relation with m blocks of n elements each and φ is a companion of θ. Then
φ has n blocks of m elements each and each block of φ has exactly one element of each block of θ.
We show θ below with the blocks as rows.

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...
...

...
...

am1 am2 am3 · · · amn

One block of φ, we call it the first, will contain a11, one block, call it the second, will contain a12,
and so forth. To fill out the rest of the first block of φ we must choose one element from each row
of θ after the first row, so there are nm−1 ways to choose the first block of φ. Once the first block
of φ is chosen, we choose the second block by choosing one element from each of rows 2, . . . ,m of
θ not already chosen for the first block of φ. So there are (n − 1)m−1 ways to choose the second
block, and so forth. In total, we have (n)m−1(n−1)m−1(n−2)m−1 · · · (2)m−1(1)m−1 ways to select
φ. But this simplifies to (n!)m−1 ways to choose φ. "

2.3 If |X | = mn then the number of factor pairs (θ1, θ2) where θ1 has m blocks of n
elements each and θ2 has n blocks of m elements each is given by

(mn)!

m!n!
.

This lets us count the number of atoms in Fact X for any finite set. In general, the atoms will
be of the form (θ1, θ2) where the blocks of θ1 have a prime number of elements. Usually the atoms
of Fact X will come in different flavors depending on the different primes that divide |X |. We
can use the above to count the number of each flavor, but we keep it simple and limit ourselves to
the following.

2.4 If |X | = pk with p prime, then the number of atoms in Fact X is

pk!

p!(pk−1)!
.

We next turn to counting the blocks (maximal Boolean subalgebras) of Fact X . We again
restrict attention to the case where |X | = pk is a prime power, and call attention to the fact that
we use the term block both for an equivalence class of an equivalence relation, and for a maximal
Boolean subalgebra of an omp. The key is the following result that follows from [13: Prop. 3.8] by
noting that the directly indecomposable sets are those with a prime number of elements.
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2.5 If X is a finite set, then the blocks of Fact X correspond to unordered versions
of factor n-tuples (θ1, . . . , θn) where each θi has a prime number of blocks.

Note, factor n-tuples correspond to blocks with a specific order to their atoms. Permuting a
factor n-tuple gives a new factor n-tuple, but yields the same block.

2.6 If |X | = pk where p is prime, then the number of blocks in Fact X is

pk!

k!(p!)k
.

P r o o f. By Corollary 2.5 we want the number of factor k-tuples (θ1, . . . , θk) where each θi has p
blocks with pk−1 elements each, divided by k!. For such a factor k-tuple, θ1 ∩ θ2 has p2 blocks
of pk−2 elements each, θ1 ∩ θ2 ∩ θ3 has p3 blocks of pk−3 elements each, and so forth. We build
θ1, θ2, . . . , θk with this in mind. By Proposition 2.2, the number of ways to choose θ1 is given by

(pk)!

p!((pk−1)!)p−1
.

With θ1 chosen, we begin to construct θ2. To choose the first block of θ2 we choose pk−2 elements
from the pk−1 elements of the first block of θ1, pk−2 elements from the pk−1 elements of the second
block of θ1, and so forth. Using standard notation (mn ) for m choose n, we may choose the first
block of θ2 in the following number of ways.

(
pk−1

pk−2

)p

Building the second block of θ2 is similar, but from each of the p blocks of θ1 we choose pk−2 of the
pk−1−pk−2 = (p−1)pk−2 elements in that block not already chosen. Building the third block of θ2
is also similar, but from each of the p blocks of θ1 we choose pk−2 of the pk−1−2pk−2 = (p−2)pk−2

elements not already chosen. As the order of the p blocks of θ2 does not matter (dividing by p!)
we may choose θ2 in the following number of ways.

1

p!

[(
ppk−2

pk−2

)(
(p− 1)pk−2

pk−2

)(
(p− 2)pk−2

pk−2

)
· · · · · ·

(
pk−2

pk−2

)]p

Setting u = pk−2 to aid legibility, this expression is equal to

1

p!

[
pk−1!

((p− 1)u)!u!

((p− 1)u)!

((p− 2)u)!u!

((p− 2)u)!

((p− 3)u)!u!
· · · (3u)!

(2u)!u!

(2u)!

u!u!

u!

0!u!

]p

After simplification, given θ1, the number of ways to choose θ2 equals

1

p!

[
pk−1!

(pk−2!)p

]p

Suppose θ1 and θ2 are chosen. Then θ1∩θ2 has p2 blocks with pk−2 elements each. To construct
the first block of θ3 choose pk−3 elements from the pk−2 elements of each of these p2 blocks of

θ1 ∩ θ2. So there will be ( p
k−2

pk−3 )
p2

ways to select the first block. Setting v = pk−3 and proceeding

as above, the number of ways to construct θ3 is given by

1

p!

[
pk−2!

((p− 1)v)!v!

((p− 1)v)!

((p− 2)v)!v!

((p− 2)v)!

((p− 3)v)!v!
· · · (3v)!

(2v)!v!

(2v)!

v!v!

v!

0!v!

]p2

So given θ1, θ2, the number of ways to choose θ3 is

1

p!

[
pk−2!

(pk−3!)p

]p2
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Proceeding, the number of ways to choose θ1, θ2, . . . , θk is

1

p!

[
pk!

(pk−1!)p

]1
1

p!

[
pk−1!

(pk−2!)p

]p
1

p!

[
pk−2!

(pk−3!)p

]p2

· · · 1

p!

[
p2!

(p!)p

]pk−2

1

p!

[
p!

(1!)p

]pk−1

This simplifies to

1

(p!)k
pk!

(pk−1!)p
(pk−1!)p

(pk−2!)p2

(pk−2!)p
2

(pk−3!)p3 · · · (p3!)p
k−3

(p2!)pk−2

(p2!)p
k−2

(p!)pk−1

(p!)p
k−1

(1!)pk

This is the number of ways to choose θ1, · · · , θk where order matters. Dividing this by k! gives the
number of blocks, and the result after noticing that many terms above cancel, is the following.

pk!

k!(p!)k
.

This is the desired formula. "
2.7 Suppose |X | = pk with p prime. Then each block of Fact X has k atoms, and

each atom belongs to the following number of blocks.

pk−1!

(k − 1)!(p!)k−1

P r o o f. As blocks of Fact X are given by factor k-tuples (θ1, . . . , θk) where each θi has p blocks,
it follows from results from Corollary 2.5 that each block of Fact X has k atoms. Let A be the
number of atoms and B the number of blocks in Fact X . Above we have seen

A =
pk!

p!(pk−1)!
and B =

pk!

k!(p!)k
.

As each block has k atoms in it, the average number of blocks an atom belongs to is

kB

A
=

pk−1!

(k − 1)!(p!)k−1

Later, in Proposition 3.3, we will see that if |X | is a prime power, then there is an automorphism
of Fact X taking any given atom to any other. It follows that all atoms are in the same number
of blocks, so this average is realized by all atoms. "

Remark 2.8 An omp is called (n,m)-homogeneous [29] if all of its blocks have m atoms and each
atom is in n blocks. The above results show that if X is a set with pk elements for some prime
p, then Fact X is (n,m)-homogeneous where m = k and n is given in Proposition 2.7. In the
next section we will see that this homogeneity arises in a very strong way, from the fact that given
any two blocks with any sequencing of their atoms, there is an automorphism of Fact X taking
the atoms of one block to the atoms of the other that respects the sequencing of these atoms.
We call such an omp strongly transitive. Any strongly transitive omp is (n,m)-homogeneous, but
not conversely, as is seen by taking the horizontal sum of two non-isomorphic (n,m)-homogeneous
omps.

Factor pairs sharing a component, such as (α, γ) and (β, γ), play an important role in the
study of automorphisms, and also in the structure of Fact A. The following result clarifies their
situation.

2.9 If α,β are equivalence relations on a set X, with each having the same finite
number k of blocks all with the same cardinality, then there is an equivalence relation γ so that
both (α, γ) and (β, γ) are factor pairs.
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P r o o f. We first consider the case where X is finite. Then α partitions X into k pieces X1, . . . , Xk

with each piece having n elements, and β also partitions X into k pieces Y1, . . . , Yk, again with
each piece having n elements. We will show there is a partition of X into n pieces Z1, . . . , Zn with
each piece having k elements so that |Xi ∩ Zj| = |Yi ∩ Zj | = 1 for each i ≤ k and j ≤ n. This will
establish the result in the case that X is finite.

2.10 There is Z1 = {x1, . . . , xk} with |Xi ∩ Z1| = |Yi ∩ Z1| = 1 for each i ≤ k.

P r o o f. Let Sp = {i : Xp ∩ Yi ̸= ∅} for p = 1, . . . , k. Let S = {S1, . . . , Sk}. Take an arbitrary
number m of these sets Si, without loss of generality, S1, . . . , Sm. We claim their union has at
least m elements. As X is covered by the Yi’s, it follows that the mn-element set X1 ∪ · · · ∪Xm

is covered by the Yi’s and hence by the Yi’s where i ∈ S1 ∪ · · · ∪ Sm. As each Yi has n elements,
there must be at least m of the i’s belonging to S1 ∪ · · · ∪ Sm. So S satisfies the conditions for
Phillip Hall’s Marriage Theorem, so has a system of distinct representatives. This means we can
choose distinct j1, . . . , jk so that ji ∈ Si for each i ≤ k. This means Xi ∩ Yji ̸= ∅ for each i ≤ k.
So we can pick xi ∈ Xi ∩ Yji . Set Z1 = {x1, . . . , xk}. "

2.11 There is a partition Z1, . . . , Zn of X with each Zi having k elements, and such that
|Xi ∩ Zj | = |Yi ∩ Zj | = 1 for each i ≤ k and j ≤ n.

P r o o f. By induction on n for fixed k. Claim 1 shows we can find Z1 with k elements so that
Z1 hits each Xi exactly once and each Yi exactly once. Let X ′ = X − Z1, X ′

i = Xi − Z1 and
Y ′
i = Yi − Z1. Then X ′

1, . . . , X
′
k and Y ′

1 , . . . , Y
′
k are partitions of X ′ into (n − 1)-element pieces.

By the inductive hypothesis we can find Z2, . . . , Zn partitioning X ′ into k-element pieces so that
|X ′

i ∩ Zj| = |Y ′
i ∩ Zj | = 1 for each i ≤ k and 2 ≤ j ≤ n. Then Z1, . . . , Zn has the desired

properties. "
Having established the result for the finite case, the proof of the infinite case is identical using

the infinite version of Phillip Hall’s theorem (proved by the unrelated Marshall Hall). This result
requires that we have finitely many infinite sets, which is the case as we have required α,β to have
finitely many blocks. "

We next turn our attention to Fact V for a vector space V . Noting that the decompositions
of V are given by factor n-tuples (θ1, . . . , θn) where each θi is a vector space congruence, [13:
Thm. 5.10] shows that if V is of finite dimension k, then the blocks of Fact V each have k atoms.
If V is finite-dimensional and over a finite field, then V itself is finite, and we may employ counting
techniques similar to those used for sets with Fact V . This will be our primary interest here. We
begin with our basic representation for vector spaces, established in [12].

2.12 For V a vector space, Fact V may be realized as the set of all ordered pairs of
complementary subspaces (S, T ) of V , meaning pairs with S ∩ T = {0} and S + T = V , where
(S, T )′ = (T, S) and (S1, T1) ≤ (S2, T2) iff S1 ⊆ S2 and T2 ⊆ T1.

Fact V for a vector space V may be viewed as a special case of other more general methods to
construct omps, such as the omp of idempotents of a ring, or as the omp of certain complementary
pairs of elements of a symmetric lattice [12].

2.13 Let V be a k-dimensional vector space over an n-element field. Then

(1) Fact V has
nk − 1

n− 1
nk−1 atoms.

(2) Fact V has
(nk − 1)(nk − n)(nk − n2) · · · (nk − nk−1)

k! (n− 1)k
blocks.
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(3) Each atom is in
(nk − n)(nk − n2)(nk − n3) · · · (nk − nk−1)

(k − 1)!nk−1 (n− 1)k−1
blocks.

P r o o f. There are nk − 1 non-zero elements in V . Each non-zero vector has n− 1 non-zero scalar
multiples, so each one-dimensional subspace has n− 1 non-zero elements. Thus

The number of 1-dim subspaces is:
nk − 1

n− 1
(2.1)

By a general argument using annihilators, there are the same number of d-dimensional subspaces
as (k − d)-dimensional subspaces, and this gives the following.

The number of (k-1)-dim subspaces is:
nk − 1

n− 1
(2.2)

Now each (k− 1)-dimensional subspace has nk−1− 1 non-zero vectors in it. So there are (nk − 1)−
(nk−1 − 1) = nk − nk−1 non-zero vectors not in it. Each 1-dimensional subspace disjoint from a
(k− 1)-dimensional subspace has n− 1 non-zero vectors in it, so each (k− 1)-dimensional subspace
has (nk − nk−1)/(n− 1) = nk−1 1-dimensional subspaces disjoint from it. Thus

The number of atoms is:
nk − 1

n− 1
nk−1 (2.3)

Applying Corollary 2.5 and [13: Thm. 5.10] to vector spaces, blocks of Fact V correspond
to sets of k 1-dimensional subspaces whose collective span is all of V . This means unordered
bases, up to scalar multiples of the basis elements. There are (nk − 1)/(n − 1) ways to choose
the first basis element. Once chosen, we need a non-zero vector not in this space, so there are
[(nk−1)− (n−1)]/(n−1) = (nk−n)/(n−1) ways to do this up to equivalence by scalar multiples.
For the third, we need a non-zero vector not in the 2-dimensional span of what we have so far.
There are [(nk − 1)− (n2 − 1)]/(n− 1) = (nk − n2)/(n− 1) ways to do this up to scalar multiples.
In total there are the following number of ways to choose this ordered basis up to equivalence of
scalar multiples.

nk − 1

n− 1

nk − n

n− 1

nk − n2

n− 1

nk − n3

n− 1
· · · nk − nk−1

n− 1
(2.4)

So dividing out the order we then have

The number of blocks is:
(nk − 1)(nk − n)(nk − n2) · · · (nk − nk−1)

k! (n− 1)k
(2.5)

The average number of blocks each atom is in equals (the number of blocks) times (the number of
atoms per block) divided by (the number of atoms), and there are k atoms in each block. So

No. blocks each atom is in:
(nk − n)(nk − n2)(nk − n3) · · · (nk − nk−1)

(k − 1)!nk−1 (n− 1)k−1
(2.6)

Here we use a result from the following section that the automorphism group of Fact V is transitive
on atoms. So the average number of blocks each atom is in is attained by each atom. "

We give several computations in specific cases.

Example 2.14 For V = Z3
2, Fact V has 28 atoms, 28 blocks, each block has 3 atoms, and each

atom is in 3 blocks. For V = Z3
3, Fact V has 117 atoms, 234 blocks, each block has 3 atoms,

and each atom is in 6 blocks. For X an 8-element set, Fact X has 840 atoms, 840 blocks, each
block has 3 atoms and each atom is in 3 blocks. For X a 27-element set, things become very large.
Fact X has 27!/3!9! = 5, 001, 134, 190, 558, 105, 600, 000 atoms, 27!/3!63 blocks, each block has 3
atoms, and each atom is in 10,080 blocks.
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These counting arguments provide key insight into Fact X for an 8-element set. We recall that
a horizontal sum of a family of omps is obtained by taking their disjoint union and identifying
their bottom and top elements 0 and 1.

2.15 For X an 8-element set, the omp Fact X is a horizontal sum of 30 copies
of the omp Fact Z3

2.

P r o o f. Suppose we define an addition + and zero 0 on X so that that the resulting structure
V = (X,+, 0) is a 3-dimensional vector space over Z2. Let Fact V be the set of all factor pairs
(θ1, θ2) where θ1 and θ2 are congruences with respect to this vector space structure. Then Fact V
is a sub-omp of Fact X and Fact V+ is isomorphic to the omp Fact Z3

2.
We claim that Fact X is the horizontal sum of its subalgebras that arise as Fact V for some

vector space structure V on X . To establish the claim, it is enough to show that each block of
Fact X is contained in some subalgebra Fact V , and that any block of Fact X that contains
an atom of some Fact V is contained in this subalgebra. Once this claim is established, it follows
from the above counting arguments that there are 30 such horizontal summands.

For any block of Fact X , there is a corresponding factor triple (θ1, θ2, θ3). Each X/θi is a
2-element set, and choosing some way to put Z2-vector space structure on each of these 2-element
sets and taking the product structure on X , we have (θ1, θ2, θ3) is a factor triple of V . Then the
given block is a block of the subalgebra Fact V . Suppose some block B of Fact X has an atom a
belonging to some Fact V . The above counting arguments show there are 3 blocks of Fact X that
contain a and 3 blocks of Fact V that contain a. So the block B must be a block of Fact V . "
Remark 2.16 For any set X whose cardinality is a prime power pk, we may consider subalgebras
of Fact X of the form Fact V where V is some k-dimensional Zp-vector space structure on X .
We call such subalgebras Zp-blocks. One can show

(1) Fact X has
(p3 − 1)!

(p3 − 1)(p3 − p)(p3 − p2)
Zp-blocks.

(2) Each atom of Fact X is in
(p2 − 1)!(p− 2)!

(p2 − 1)(p2 − p)
Zp-blocks.

(3) Each block of Fact X is in (p− 2)! Zp-blocks.

When |X | = 27, each block of Fact X is in just one Z3-block and each atom is in 840 Z3-blocks.
So Fact X is no longer a horizontal sum as in the case of |X | = 8.

3. Automorphisms

In this section, we make some general remarks about the group homomorphism Γ : Aut(A) →
Aut(Fact A) in the case that A is a finite set, or a finite-dimensional vector space. We begin
with a description of Γ when applied to Fact X for a set X .

3.1 For a set X , and permutation α of X , define for each relation θ on X the relation
αθ = {(αx,αy) : (x, y) ∈ θ}. Then define Γ : Aut(X) → Aut(FactX) by setting Γα to be the
map with (Γα)(θ, θ′) = (αθ,αθ′).

3.2 If X is a set whose cardinality is neither prime, nor equal to 4, then the map
Γ is an embedding. Consequently, the phase group of X is trivial.
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P r o o f. In these circumstances, there are m,n with m ≥ 2 and n ≥ 3 with |X | = mn. This
includes the infinite case if we allow n to be infinite, but our diagrams will indicate the finite case.
Suppose α is a permutation of X with Γα the identity on Fact X . Suppose also there is some
a ∈ X with αa ̸= a. Then we can enumerate the elements of X as aij where i ≤ m and j ≤ n so
that a = a11 and α(a) = a12.

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...
...

...
...

am1 am2 am3 · · · amn

There is a factor pair (θ1, θ2) with blocks of θ1 being rows in the above diagram and blocks of
θ2 being the columns. As Γα is the identity, αθ1 = θ1 and αθ2 = θ2. So α maps the elements
of one row to those of another, and the elements of one column to those of another. Thus there
are permutations µ of {1, . . . ,m} and ν of {1, . . . , n} with α(aij) = aµ(i)ν(j) for each i, j. As
α(a11) = a12 we have µ(1) = 1 and ν(1) = 2.

Swap places of a11 and a13 and consider next the factor pair (φ1,φ2) where the blocks of φ1 are
the rows of the diagram below, and the blocks of φ2 are the columns.

a13 a12 a11 · · · a1n
a21 a22 a23 · · · a2n
...

...
...

...
...

am1 am2 am3 · · · amn

Then α(a12) belongs to the second column and α(a13) does not. So αφ2 ̸= φ2, and this contradicts
Γα being the identity. "

Let A be a structure with all blocks of Fact A finite. We say the automorphism group of
FactA is transitive on atoms if for any two atoms of Fact A there is an automorphism of Fact A
mapping the first to the second. We say the automorphism group is transitive on blocks if for any
two blocks of Fact A there is an automorphism of Fact A mapping the first block to the second.
We say the automorphism group is strongly transitive on blocks if for any two blocks, and any
two sequencings of the atoms of these blocks, there is an automorphism taking the first block to
the second and compatible with the given sequencings. It is easily seen that strong transitivity on
blocks implies transitivity on blocks, and this implies transitivity on atoms.

3.3 For a finite set X, the automorphism group of Fact X is transitive on blocks.
If |X | is a prime power, then it is strongly transitive on blocks.

P r o o f. Here it is easiest to work with the definition of Γ from the introduction, where a permu-
tation α of X is taken to the automorphism Γα of Fact X that maps the equivalence class of the
decomposition f : X → Y × Z to the equivalence class of the decomposition f ◦ α : X → Y × Z.

Given two blocks of Fact X , there are decompositions f : X → Y1 × · · · × Ym and g : X →
Z1 × · · · × Zn, with each Yi and Zj directly irreducible, from which these blocks are built [13:
Prop. 3.8]. In particular, the atoms of these blocks are of the equivalence classes of the binary
decompositions

fi : X → Yi ×
(∏

j ̸=i

Yj

)
and gi : X → Zi ×

(∏

j ̸=i

Zj

)

As each Yi and Zj are directly irreducible, they have prime cardinality, and the cardinality of
X is the product of the cardinalities of the Yi’s and of the Zj ’s. So m = n, and there exists a
permutatation σ of n and bijections hi : Yi → Zσ(i).
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X

X

Zσ1 × · · · × Zσn

Y1 × · · · × Yn

α

f

gσ

α h1 hn

Denote g(x) by (g1(x), . . . , gn(x)) and define gσ(x) = (gσ1(x), . . . , gσn(x)). Define a map k from
Z1× · · ·×Zn → Y1× · · ·×Yn by setting k(z1, . . . , zn) = (h−1

1 (zσ1), . . . , h−1
n (zσn)), and then let α be

the permutation of X given by α = f−1 ◦ k ◦ g. Then for the usual product map h = h1 × · · ·×hn,
we have the following for each x ∈ X .

(h ◦ f ◦ α)(x) = (h ◦ f ◦ f−1 ◦ k ◦ g)(x)
= (h ◦ k)(g1(x), . . . , gn(x))
= h(h−1

1 (gσ1(x)), . . . , h
−1
n (gσn(x)))

= (h1h
−1
1 (gσ1(x)), . . . , hnh

−1
n (gσn(x)))

= gσ(x)

Extending the definition of Γα to n-ary decompositions in the obvious way, we have that Γα
takes the equivalence class of the decomposition f : X → Y1 × · · · × Yn to the equivalence class
of the decomposition f ◦ α : X → Y1 × · · · × Yn. Then h1, . . . , hn are bijections showing that
the n-ary decomposition f ◦ α : X → Y1 × · · · × Yn is equivalent to the n-ary decomposition
gσ : X → Zσ1 × · · ·× Zσn. So Γα takes the equivalence class of f : X → Y1 × · · ·× Yn to that of
gσ : X → Zσ1 × · · ·× Zσn.

Consider the following binary decompositions.

fi : X → Yi ×
(∏

j ̸=i

Yj

)
and (gσ)i : X → Zσ(i) ×

( ∏

j ̸=σ(i)

Zj

)

From the above remarks about Γα and its action with respect to f and gσ, it follows that Γα maps
the equivalence class of the first binary decomposition to the equivalence class of the second. Thus
Γα maps the atoms of the first block to those of the second. Thus Γ is transitive on the blocks.

However, the sequencing of the matching of the atoms is determined by the permutation σ. If
|X | is a prime power, then all irreducible factors have the same prime number of elements, and
the permutation σ can be chosen to be the identity. In this case, Γ is strongly transitive on the
blocks. "

The proof of the following result is nearly identical to the above.

3.4 If V is a finite-dimensional vector space, then the automorphism group of Fact V
is strongly transitive on blocks.

Remark 3.5 In the setting of a structure A where the blocks of Fact A are all finite, the above
proof shows that the automorphism group of Fact A is transitive on blocks iff a version of the
Krüll-Schmidt theorem holds for A, namely, that any two direct product decompositions of A
into irreducibles can be rearranged so that the factors are pairwise isomorphic. Likely there is a
similar connection in the general setting, involving refinements of decompositions, but we have not
pursued the matter.
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We now turn our attention to the computation of the automorphism group, and behavior of Γ
for some “small” sets X . We recall that the phase group of a structure is the kernel of the map Γ.

3.6 Suppose X is a set of prime cardinality p. Then Fact X has 2 elements, its
automorphism group is trivial, Γ is onto, and the phase group of X is the full symmetric group
on X.

P r o o f. This is obvious from the fact that a set with a prime number of elements can only be
decomposed as a direct product as a one-element set times a p-element set, or as a p-element set
times a one-element set, and any two decompositions of either type are equivalent. "

Recall that the orthomodular poset MOn is a horizontal sum of n copies of the 4-element
Boolean algebra. So it has a bottom, a top, and an antichain of 2n elements in the middle paired
as orthocomplements. We shall also use the following simple observation.

3.7 If L is the horizontal sum of k copies of the omp P , then Aut L is the semidirect
product (Aut P )k ! Sym(k) of the kth power of the automorphism group of P by the symmetric
group on k letters via the obvious action.

We consider next our first somewhat anomalous case, that where |X | = 4. We note that this is
a prime power of 2. The next prime power of 2, when |X | = 8, will also provide unusual behavior.
Somehow it seems there is just insufficient room in factors of 2 to behave properly. We do not
know what happens when |X | = 24.

3.8 If X has cardinality 4, then Fact X is MO3, its automorphism group is
(Z2)3 ! Sym(3), its phase groups is the Klein four group, and Γ is not onto.

P r o o f. As |X | has two prime factors, all blocks have two atoms, so it is an MOn for some n.
It follows from either Corollary 2.3 or 2.4 that Fact X has 6 atoms, hence is MO3. Lemma 3.7
then describes the automorphism group of Fact X since the automorphism group of a 4-element
Boolean algebra is Z2. That Γ is not onto follows as Aut(X) has 4! elements, so is smaller than
that of Fact X . It remains only to observe that the kernel of Γ is the Klein four group. For this,
one computes directly that if X = {a, b, c, d}, then the permutations α of X with Γα = id are id,
and the ones whose cycle representations are (ab)(cd), (ac)(bd), and (ad)(bc). "

3.9 If |X | = pq with p, q prime and p ≥ 3, then Fact X is MOn where

n =

⎧
⎪⎪⎨

⎪⎪⎩

(pq)!

p!q!
if p ̸= q

(pq)!

2p!q!
if p = q

The automorphism group of Fact X is (Z2)n ! Sym(n), the phase group is trivial, and Γ is not
onto.

P r o o f. As |X | has two prime factors, its blocks are 4-element Boolean algebras, so it is an MOn

where n is the number of blocks. When p ̸= q, the number of blocks equals the number of factor
pairs (θ1, θ2) where θ1 has p blocks of q elements each, as each block contains one such factor pair.
By Corollary 2.3 the number of blocks is as given above. When p = q each block contains two
factor pairs (θ1, θ2) where θ1 has p blocks of p elements each, and is half the number of atoms.
This is given by either of Corollary 2.3 or 2.4 to be as above. The description of the automorphism
group is given by Lemma 3.7 as the automorphism groups of the blocks are Z2. Proposition 3.2
shows the phase group is trivial, and as the automorphism group of Fact X has much larger
cardinality than that of X , Γ is not onto. "
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3.10 If |X | = 8, then Fact X is a horizontal sum of 30 copies of Fact Z3
2, its

automorphism group is (Aut(Fact Z3
2))

30 ! Sym(30). The phase group is trivial, and Γ is not
onto.

P r o o f. The description of Fact X in this case is given in Proposition 2.15, and the description
of its automorphism group then follows from Lemma 3.7. Proposition 3.2 shows the phase group
is trivial, and as the automorphism group of Fact X has much larger cardinality than that of X ,
Γ is not onto. "

The result above is incomplete since it describes matters in terms of the group Aut(FactZ3
2).

However, in a nice series of papers [7–9, 27], results are given that in conjunction with the fun-
damental theorem of projective geometry describe the automorphism group of Fact V for any
finite-dimensional vector space V . We briefly describe these results below. First, we note Sub V
is used to denote the subspace lattice of V , by a dual automorphism of Sub V we mean an
isomorphism from this lattice to its dual lattice.

3.11 ([9]) For a finite-dimensional vector space V , each automorphism σ and dual
automorphism µ of Sub V give automorphisms σ∗ and µ∗ of Fact V where

σ∗(S, T ) = (σS,σT ) and µ∗(S, T ) = (µT, µS).

Further, each automorphism of Fact V arises this way.

It is worthwhile to briefly describe the proof of this result as it illuminates the proof in the
following section. The key step is the following. Here, an element of Fact V is said to be of height
two if it covers an atom.

3.12 Two atoms of Fact V have at least two distinct upper bounds of height two iff they
have the same first components or the same second components.

The proof is not difficult, relying on a bit of elementary modular lattice theory. With this
result, there is a foothold on automorphisms of Fact V as two atoms satisfying this condition
must be mapped to two others satisfying it. Thus two atoms with the same first coordinate either
get mapped to two with the same first coordinate, or two with the same second coordinate. With
some work, one shows that an automorphism φ of Fact V either takes all pairs with the same
first coordinate to ones with the same first coordinate, or to ones with the same second coordinate.
From this, it is not difficult to show that φ equal to α∗ for some automorphism α of Sub V in the
first case, and equal to δ∗ for some anti-automorphism of Sub V in the second.

3.13 (The Fundamental Theorem of Projective Geometry I) ([3]) For a finite-
dimensional vector space V , the automorphisms of Sub V correspond to the collineations of the
projective geometry associated with V . Each semi-linear automorphism of V gives an automor-
phism of Sub V , all automorphisms of Sub V arise this way, and two semi-linear automorphisms
give the same automorphism of Sub V iff they are scalar multiples of one another.

We next introduce notation for various groups of automorphisms.

3.14 For a finite-dimensional vector space V over a field K, denote the groups of
linear automorphisms, semilinear automorphisms, and automorphisms that are scalar multiples by
GL(V ), SL(V ) and K∗ respectively. Then let PGL(V ) and PSL(V ) be the quotients of GL(V )
and SL(V ) by K∗.

Note GL(V ) is by definition the automorphism group of V , and the fundamental theorem of
projective geometry states PSL(V ) is the automorphism group of Sub V . Clearly PSL(V ) is a
subgroup of index 2 in the group of all automorphisms and dual automorphisms of Sub V , and
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by Chevalier’s result, Theorem 3.11, this is the automorphism group of Fact V . This gives the
following.

3.15 Let V be a finite-dimensional vector space over a field K. The phase group of
V is the group K∗ of non-zero elements of K. The image of Γ is PGL(V ), and this is a subgroup
of the index 2 subgroup PSL(V ) of Aut(Fact V ). If K has no non-trivial automorphisms, then
PGL(V ) = PSL(V ), so the image of Γ has index 2 in the automorphism group of Fact V .

4. The case of a 27-element set — the first half

We show that for X a 27-element set, the map Γ gives an isomorphism from the permutation
group of X to the group of automorphisms of Fact X . The proof has two main parts. The first
is to show that the automorphisms of Fact X correspond to automorphims of the poset Req X
of regular equivalence relations of X , i.e. those equivalence relations where every block has the
same size. That is the content of this section. The second half is to show that automorphisms of
Req X correspond to permutations of X , and is in the following section.

4.1 An equivalence relation on X with 9 blocks of 3 elements each is called a small
relation, and usually denoted by a lower case latin letter such as a. Its blocks are denoted a1, . . . , a9.
An equivalence relation with 3 blocks of 9 elements each is called a large relation and denoted by an
upper case latin letter such as A. Its blocks are denoted A1, . . . , A3. Ordered pairs of equivalence
relations, such as (a,A), will be written as aA.

We review some basics from Section 1 in this setting. The blocks of Fact X all have 3 atoms,
and each element of Fact X is either a bound 0 or 1, an atom, or a coatom. The non-trivial factor
pairs of X are the aA and Aa where a is small, A is large, and a ∩A = ∆ where ∆ is the identity
relation. Of these, the aA are the atoms and the Aa are the coatoms of Fact X . For atoms aA
and bB we have aA ⊥ bB iff a ⊆ B, b ⊆ A, and a, b permute. We come to our key notion that will
allow us to deal with automorphisms of Fact X .

4.2 Call sets of atoms X and Y of Fact X orthogonal, and write X ⊥ Y if each
member of X is orthogonal to each member of Y.

We next turn to the results on orthogonal sets of atoms that will allow us to show that auto-
morphisms of Fact X act component-wise on factor pairs. In its proof, and elsewhere, we assume
X is the set {0, 1, 2}3. We frequently draw X as shown below, and use suggestive terminology
such as the bottom floor, middle floor, top floor, left side wall, middle wall, right wall, front wall,
back wall, in the obvious way. We refer to the elements of X as strings such as 102 rather than as
ordered triples (1, 0, 2) to aid readability of diagrams. The x, y, z-axes have their usual meaning.

4.3 Suppose a, b are small, permute, and have a ∩ b = ∆. Set

X(a, b) = {aA : aA is an atom and b ⊆ A}
Y(a, b) = {bB : bB is an atom and a ⊆ B}

Then X(a, b) and Y(a, b) each have 36 elements and X(a, b) ⊥ Y(a, b). Further, the intersection of
the second coordinates, A, of members of X(a, b) is b, and the intersection of the second coordinates,
B, of members of Y(a, b) is a.

P r o o f. Assume blocks of a are lines parallel to the z-axis, and blocks of b are lines parallel to the
y-axis. As a, b are small, permute, and a∩ b = ∆ we have a ◦ b is an equivalence relation that must
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200

020
000

002

Figure 1. X

be large, in this case its blocks are the planes x = 0, x = 1 and x = 2, i.e. the front wall, middle
wall, and back wall. It follows that this assumption on the choice of a, b general.

The large A with aA ∈ X(a, b) are those with b ⊆ A and a∩A = ∆. These conditions mean that
each block of A consists of 3 lines in the y-direction (b-blocks) and that no two of these lines are
vertical translates of one another (since A ∩ a = ∆). So each of the blocks of A contains exactly
one of 000, 001, and 002.

The block of A containing 000 must contain the line in y-direction with 000, as well as one line
y-direction from the plane x = 1, and one line y-direction from the plane x = 2. So there are
3 · 3 ways to construct this block of A. Assuming the block containing 000 is chosen, we consider
the block of A containing 001. This block contains the line y-direction with 001 as well as one
of the two remaining lines y-direction from the plane x = 1, and one of the two remaining lines
y-direction from the plane x = 2. So there are 2 · 2 ways to construct this block. Then the final
block of A is determined. In all, there are 3 · 3 · 2 · 2 = 36 ways to construct A.

We have shown that X(a, b) has 36 elements, and by symmetry so does Y(a, b). To see X(a, b) ⊥
Y(a, b) suppose aA ∈ X(a, b) and bB ∈ Y(a, b). By definition a ⊆ B, b ⊆ A, and we began
by assuming a, b permute. Thus aA ⊥ bB. The description of the large A with aA ∈ X(a, b)
shows their intersection is b, and this, with its dual statement, gives the further condition of the
proposition. "

We next show that these simple conditions characterize the sets arising as X(a, b) and Y(a, b).
This proof will take some effort and is spread through a number of claims across several pages.

4.4 If X,Y are two sets of 36 atoms each with X ⊥ Y, then there are small
permuting a, b with a ∩ b = ∆ such that X = X(a, b) and Y = Y(a, b).

P r o o f. Suppose the atoms in X are xiXi and those in Y are yjYj for i, j = 1, . . . , 36. We assume
further that x1X1 is the factor pair where the x1 blocks are lines parallel to the z-axis and the X1

blocks are the planes z = 0, z = 1, z = 2; and y1Y1 is the factor pair where the y1 blocks are the
lines parallel to the y-axis and Y1 blocks are the planes y = 0, y = 1, y = 2.

4.5 There are 36 small u with uY1 an atom orthogonal to x1X1, and the transitive closure
of the union of these u’s is X1.

P r o o f. Such u must be small, permute with x1, be contained in X1 and intersect Y1 trivially. As
u is contained in X1 it partitions each block of X1 (the planes z = 0, 1, 2) into three pieces of three,
and as u permutes with x1 (whose blocks are vertical lines), the partitions of these three planes
must be vertical translates of one another. So u is completely determined by its intersection with
the plane z = 0. As u intersects Y1 trivially, none of the blocks of u in the plane z = 0 contains
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Figure 2. x1 and X1

Figure 3. y1 and Y1

two elements with the same y-coordinate. So each of these three blocks contains exactly one of
000, 100, 200. There are 3 · 3 ways to choose the block containing 000, then 2 · 2 ways to choose
the block containing 100. This then determines u, so there are 36 such u. It is clear from the
description of the construction of such u’s that the transitive closure of their union is X1. "

4.6 It cannot happen that all xiXi or all yjYj have the same second coordinate.

P r o o f. Suppose all the yjYj have the same second coordinate, which will be Y1. As each yjYj

is an atom orthogonal to x1X1, the yj for j = 1, . . . , 36 must be the 36 u’s of Claim 4.5. Since
xiXi ⊥ yjYj for each i, j, we have yj ⊆ Xi for each i, j, and as the yj are the 36 u’s, and the
transitive closure of these 36 u’s is X1, it follows that Xi = X1 for each i. Using a symmetric
version of Claim 4.5, there are 36 small v’s with vX1 an atom orthogonal to y1Y1, and these
v’s must be the xi. These v’s are the small congruences that partition blocks of Y1 (the planes
y = 0, 1, 2) into blocks of three, are disjoint from X1, and whose partitions of the different blocks
of Y1 are translates of one another along the y-axis. One such choice of u, v is shown below.

Figure 4. A choice of u and v
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Note that the transitive closure of the union of the blocks of u, v containing 200 has more than
9 elements, and as u ∩ v = ∆, this implies they do not permute. This provides a contradiction to
the fact that xiXi ⊥ yjYj , since this implies xi permutes with yj for each i, j. "

If all the xiXi have the same first component, they must all have different second components,
and these second components must all contain y1. This implies that X is contained in X(x1, y1)
and as both have 36 elements, they are equal. Proposition 4.3 gives that the intersection of the
second members of X(x1, y1) equals y1. As this intersection contains each yj , this implies that
all yjYj have the same first component, hence Y = Y(x1, y1). This would establish our result, as
would the dual argument if all yjYj have the same first components. Modulo a renumbering of the
elements, we then have the following result that we will use to argue by contradiction.

4.7 If Proposition 4.4 is not true, then x1 ̸= x2 and y1 ̸= y2.

Since we have xiXi ⊥ y1Y1, the blocks of xi are contained in the blocks of Y1 (the planes
y = 0, 1, 2) and the blocks of xi contained in one of these planes are translates in the y-direction
(since blocks of y1 are lines in the y-direction) of the blocks contained in another plane. Similarly,
the blocks of yj are contained in the blocks of X1 (the planes z = 0, 1, 2) and the blocks of yj
contained in one of these planes are translates in the z-direction (since blocks of x1 are lines in the
z-direction) of the blocks contained in another plane.

4.8 If xi ̸= x1 and yj ̸= y1, then the transitive closures Trcl(x1 ∪ xi) and Trcl(y1 ∪ y2)
each have three blocks of three and three blocks of six.

P r o o f. We know x1 ̸= xi, both are contained in Y1, and both are determined by their intersection
with one of the blocks (planes) of Y1. So Trcl(x1 ∪ xi) is also determined by its intersection with
one block of Y1. As the transitive closure coalesces blocks of x1, this intersection with a block of
Y1 can have

(i) three blocks of three,

(ii) one block of three and one block of six, or

(iii) one block of nine.

The first case gives x1 = xi. The third implies the transitive closure is Y1. As x1, xi ⊆ Yj for each
j, we would then have Y1 = Yj for all j, contrary to Claim 5.19. So if x1 ̸= xi, the second case
must hold. The argument for y1 ̸= yj is similar. "

By Claim 5.19 each yj must contain a block of y1 that is contained in the plane z = 0, hence
must contain one of the lines in the y-direction containing 000, 100 or 200. There is symmetry to
the situation, and we make the following assumption.

4.9 The relation y2 contains 000, 010, 020.

Consider the small relations β that are contained in X1, permute with x1, and contain the block
000, 010, 020. As such β are determined by their intersection with the block (plane) z = 0 of X1,
they partition the remaining six elements of this plane into two blocks of three. There are ten ways
to do this, shown below as β1, . . . ,β10 with β1 = y1. The discussion above provides the following
claim.

4.10 The relation y2, and any other yj that also contains the block 000, 010, 020, is one
of β1, . . . ,β10.

For any i we have xi ⊆ Y1, that xi permutes with y1, y2, and if x1 ̸= xi then Trcl(x1 ∪ xi)
has three blocks of three and three blocks of six. So the blocks of xi are contained in the blocks
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β1 β2 β3 β4

β5 β6 β7 β8

β9 β10

(planes) of Y1, and as xi permutes with y1, the blocks of xi in one plane of Y1 are translates in the
y-direction of the blocks of xi in another plane of Y1. So xi is determined by its intersection with
the plane y = 0, and the description of Trcl(x1 ∪ xi) shows xi contains one of the blocks of x1 in
this plane.

4.11 Under Assumption 4.9, all the xi contain 000, 001, 002.

P r o o f. We know each xi contains a block of x1 in the plane y = 0. Suppose this is the block is
the vertical line above 200. As xi permutes with y1, it also contains the vertical lines above 210
and above 220. If xi ̸= x1, then as xi is determined by its intersection with the plane y = 0, there
are u, v with xi relating 00u and 10v. As the blocks of xi in the planes y = 1, y = 2 are translates
in the y-direction of its blocks in the plane y = 0, xi relates 0mu and 1mv for m = 0, 1, 2.

We know y2 is one of β2, . . . ,β10. Inspecting these βj there are some a, b with y2 relating 1a0 and
2b0. Let cd0 be the third point in this block of y2. Consider the equivalence class S of Trcl(xi∪y2)
that contains 2b0. As the vertical line above 2b0 is a block of xi, and {1an, 2bn, cdn} is a block of
y2 for each n = 0, 1, 2, the class S contains the nine elements {1an, 2bn, cdn : n = 0, 1, 2}.

Setting m = a shows xi relates 0au and 1av. But 1av belongs to Trcl(xi ∪ y2), hence so does
0au. This shows S has more than 9 elements, and this implies xi does not permute with y2, a
contradiction. Thus if xi contains the vertical line above 200 it must be x1, and a similar argument
shows that if xi contains the vertical line above 100 it is x1. Therefore, if xi ̸= x1 it must contain
the vertical line above 000. "

4.12 Under Assumption 4.9, all the yj contain the block 000, 010, 020, hence all are among
β1, . . . ,β10.

P r o o f. By Claim 4.8, each yj contains a line in the y-direction containing either 000, 100 or 200.
The arguments in Claim 4.11 show that if y2 contains the line with 000, then all the xi contain
the vertical line with 000. Symmetry clearly shows that if y2 contains the horizontal line with n00,
then all xi contain the vertical line with n00. In any case, all xi ̸= x1 contain the same vertical
line. Clearly the dual argument shows all yj ̸= y1 contain the same horizontal line. "
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There are ten small α that are contained in Y1, permute with y1, and contain the block
000, 001, 002. These shown below as α1, . . . ,α10 with α1 = x1. The above results show all the xi

are among α1, . . . ,α10, and all the yj are among β1, . . . ,β10.

α1 α2 α3 α4

α5 α6 α7 α8

α9 α10

4.13 The xi are among α1, . . . ,α4 and the yj are among β1, . . . ,β4.

P r o o f. If we consider Trcl(αi ∪ βj) for i = 5, . . . , 10 and j = 2, . . . , 4 we see that the block
containing 200 consists of all elements in the planes x = 1, x = 2. It follows that αi does not
permute with βj . If we consider Trcl(αi ∪ βj) for i = 2, . . . , 4 and j = 5, . . . , 10 we see that the
block containing 200 again consists of all elements in the planes x = 1, x = 2. So in this case also
αi does not permute with βj . Note also that αi ∩ βj ̸= ∆ when i = 5, . . . , 10 and j = 5, . . . , 10. So
if some xi is one of α5, . . . ,α10, then no yj can be one of β2, . . . ,β10 since for each xi and yj we
have xi permutes with yj and xi ∩ yj = ∆. But this is contrary to some yj ̸= y1, so no xi can be
among α5, . . . ,α10. Similarly no yj can be among β5, . . . ,β10. "

4.14 Each of X and Y have at most 24 elements.

P r o o f. By Claim 4.13 we have x2 = αi and y2 = βj for some i, j = 2, 3, 4. The the diagram
below shows Trcl(x1 ∪ x2) and Trcl(y1 ∪ y2).

Each Yj contains Trcl(x1 ∪ x2) and each Xi contains Trcl(y1 ∪ y2). To find a large relation
that contains Trcl(x1 ∪ x2) we must pair the three vertical lines with the three blocks of six. So
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there are six ways to construct a large relation containing Trcl(x1 ∪ x2), and similarly six large
relations containing Trcl(y1 ∪ y2). So there are at most six different Xi and at most six different
Yj . As there are at most four choices for xi and four for the yj our claim is proved. "

This contradiction proves Proposition 4.4. "

We now begin the task of using Proposition 4.4 to work with automorphisms. For this, a different
method of representing X is convenient for a number of the proofs. We assume the elements of
X are 1, . . . , 27 and indicate a factor pair aA of X by arranging the numbers 1, . . . , 27 in three
columns of 9 elements each, with the rows of the array being the blocks of the small relation a,
and the columns of the array being the blocks of the large relation A.

1 10 19
2 11 20
3 12 21
4 13 22
5 14 23
6 15 24
7 16 25
8 17 26
9 18 27

4.15 Atoms aA and aB with the same first coordinate are near to one another if
A ∩B has one block of 9 elements, 2 blocks of 6 elements, and 2 blocks of 3 elements.

Note that aA and aB are near if aB is obtained by picking three elements x1, x2, x3 in a block
A1 of A, picking a second block A2 of A, finding the three elements y1, y2, y3 in A2 with xi and
yi related by a, and then constructing B by switching x1, x2, x3 and y1, y2, y3. More precisely, let
B1 = A1 − {x1, x2, x3} ∪ {y1, y2, y3}, B2 = A2 − {y1, y2, y3} ∪ {x1, x2, x3}, and B3 = A3. Below is
an example of two atoms near to one another. The bullet marks indicate the rows of the elements
involved in the switching.

• 1 10 19
• 2 11 20
• 3 12 21

4 13 22
5 14 23
6 15 24
7 16 25
8 17 26
9 18 27

10 1 19
11 2 20
12 3 21
4 13 22
5 14 23
6 15 24
7 16 25
8 17 26
9 18 27

4.16 If aA and aB are near, there is a small d with aA and aB in X(a, d).

P r o o f. Up to relabeling of elements of X , the situation shown above is typical. Let d be the
small relation whose blocks are obtained by splitting each column into three batches of three so
that the swapped elements form two blocks. For instance, d might be {1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{10, 11, 12}, {13, 14, 15}, {16, 17, 18}, {19, 20, 21}, {22, 23, 24}, {25, 26, 27}. "

4.17 If aA and aB are atoms with the same first coordinate, then their images
under an automorphism Φ of Fact X also have the same first coordinate.

P r o o f. Note first that any X(a, d) and Y(a, d) are two sets of 36 atoms each with X(a, d) ⊥ Y(a, d).
Therefore the same is true of the images of these sets under Φ, so Proposition 4.4 says the images
of these sets are of the form X(a′, d′) and Y(a′, d′) for some a′, d′. So if aA and aA′ are two atoms
that belong to some X(a, d), then the images of aA and aA′ under Φ must have the same first
coordinate. In particular, if aA and aA′ are near, their images have the same first coordinate.
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4.18 If aA and aB are atoms and B is formed from A by swapping two elements that lie
in the same block of a, then the images of aA and aB under Φ have the same first coordinate.

P r o o f. Up to relabeling the elements of X , we may assume aA is the factor pair discussed above
and that B is formed from A by swapping the elements 1, 10. In the figure below, we have six
factor pairs aA0, . . . , aA5 with A0 = A and A5 = B.

1 10 19
2 11 20
3 12 21
4 13 22
5 14 23
6 15 24

• 7 16 25
• 8 17 26
• 9 18 27

1 10 19
2 11 20
3 12 21

• 4 13 22
• 5 14 23
• 6 15 24
16 7 25
17 8 26
18 9 27

• 1 10 19
• 2 11 20

3 12 21
13 4 22
14 5 23
15 6 24

• 16 7 25
17 8 26
18 9 27

10 1 19
11 2 20
3 12 21

13 4 22
• 14 5 23
• 15 6 24

7 16 25
• 17 8 26

18 9 27

10 1 19
• 11 2 20

3 12 21
• 13 4 22

5 14 23
6 15 24
7 16 25
8 17 26

• 18 9 27

10 1 19
2 11 20
3 12 21
4 13 22
5 14 23
6 15 24
7 16 25
8 17 26
9 18 27

Note aAi and aAi+1 are near for each i = 0, . . . , 4, so their images have the same first coordinate.
Thus the images of aA and aB have the same first coordinate. "

To conclude the proof of Proposition 4.17, we note that for any atoms aA and aB having the
same first coordinate, that B can be formed by repeatedly swapping two elements in A that belong
to the same block of a. So the above claim shows the images of aA and aB have the same first
coordinate. "

We next consider matters for images of second coordinates of atoms.

4.19 Suppose a, b permute and a ∩ b = ∆. Let C = a ◦ b and define

Z(a, b) = {cC : a, b, c is a factor triple}

Then Z(a, b) is those atoms cC where there are an aA ∈ X(a, b) and bB ∈ Y(a, b) with aA, bB, cC
pairwise orthogonal. Further, there are 32 · 32 elements in Z(a, b).

P r o o f. Each such orthogonal triple a, b, c gives atoms a(b ◦ c) b(a ◦ c) and c(a ◦ b). These are
pairwise orthogonal atoms with the first and second belonging to X(a, b) and Y(a, b) respectively,
and the third to Z(a, b). Any two of these atoms determine the third, and our result follows. "

4.20 Call X a slab if it is a set of 36 atoms and there is another set Y of 36 atoms
with X ⊥ Y. Call X,Y,Z a triple if X ⊥ Y and the members of Z are exactly the atoms making
up blocks with atoms from X and Y.

We have seen in Proposition 4.4 that each slab X is of the form X(a, b) for some small a, b. These
a, b are uniquely determined as a is the first component of members of X and b is the intersection
of the second components of X. So a slab X determines uniquely its companion Y and the resulting
set Z of atoms making up blocks with elements of X and Y. So X determines the triple X,Y,Z.
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4.21 If X,Y,Z is a triple, then any two atoms in Z have the same second coordi-
nate, and the images of these atoms under an automorphism Φ of Fact X have the same second
coordinate.

P r o o f. From the comments above, this triple is X(a, b),Y(a, b),Z(a, b) for some a, b. The second
coordinate of members of Z must then be a ◦ b, so all members of Z have the same second
coordinate. The images of X,Y,Z under Φ form a triple. As members of X have the same first
coordinate, by Proposition 4.17 their images under Φ have the same first coordinate a′, and the
images of members of Y have the same first coordinate b′. So the image of X is X(a′, b′), the image
of Y is Y(a′, b′), hence the image of Z is Z(a′, b′). Therefore the images of members of Z all have
the same second coordinate a′ ◦ b′. "

Earlier, we defined nearness for atoms with the same first coordinate. We now define a notion of
nearness for atoms with the same second coordinate. Here we use ⊕ for the symmetric difference
of sets.

4.22 Atoms aA and bA with the same second coordinate are near if b is formed
from a as follows. Find by 6 elements x1, . . . , x6 in a block A1 of A and let a1, . . . , a6 be blocks
of a with xi ∈ ai. Let b have blocks b1, . . . , b9 such that for i = 1, 3, 5 bi = ai ⊕ {a1, ai+1} and
bi+1 = ai+1 ⊕ {ai, ai+1}, and bi = ai for i = 7, 8, 9.

So aA and bA are near if b is formed from a by making three non-overlapping swaps of elements
all in one block of A. A typical example is shown below where we use like symbols at left to
indicate the the rows of the pairs of swaps.

△ 1 10 19
△ 2 11 20
⋆ 3 12 21
⋆ 4 13 22
• 5 14 23
• 6 15 24

7 16 25
8 17 26
9 18 27

1 10 20
2 11 19
3 12 22
4 13 21
5 14 24
6 15 23
7 16 25
8 17 26
9 18 27

4.23 If aA and bA are near, there is a triple X,Y,Z with aA, bA ∈ Z.

P r o o f. Reverting to our earlier method of representing X , assume elements of X are triples such
as 012 arranged on the x, y, z-axes. We assume without loss of generality that A, a, and b are as
follows. The blocks of A are the planes x = 0, 1, 2 and A is at left below; the blocks of a are lines
parallel to the x-axis shown in the middle below; and the small relation b is shown at right below.
Any near aA and bA can be realized in this way for some enumeration of X .

Then consider the small relation p whose blocks are lines parallel to the y-axis, and the small
relation q whose blocks are lines parallel to the z-axis. We have shown p, q below.
Clearly a, p, q are an orthogonal triple. To see b, p, q are an orthogonal triple, it is enough to see
b, p, q pairwise permute, and b ∩ (p ◦ q) = p ∩ (b ◦ q) = q ∩ (b ◦ p) = ∆. Thus aA and bA belong to
Z(p, q). "
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4.24 If aA and bA are atoms with the same second coordinate, then their images
under an automorphism Φ of Fact X have the same second coordinate.

P r o o f. We first show that if aA and cA are such that a and c agree except for having two elements
in the same block of A interchanged, then Φ(aA) and Φ(cA) have the same second coordinate.
Consider the situation below that represents four atoms aA, uA, vA, cA where aA and cA are
such that a, c agree except for two elements swapped. Each pair of elements in this sequence are
near atoms with the same second coordinate, so by Lemma 4.23 and Proposition 4.21 their images
have the same second coordinate. Thus Φ(aA) and Φ(cA) have the same second coordinate. Up
to rearrangement of elements of X , this argument is general.

1 10 19
△ 2 11 20
△ 3 12 21

4 13 22
5 14 23

⋆ 6 15 24
⋆ 7 16 25
• 8 17 26
• 9 18 27

1 10 19
△ 2 11 21
△ 3 12 20
⋆ 4 13 22
⋆ 5 14 23
• 6 15 25
• 7 16 24

8 17 27
9 18 26

△ 1 10 19
△ 2 11 20

3 12 21
⋆ 4 13 23
⋆ 5 14 22

6 15 24
7 16 25

• 8 17 27
• 9 18 26

1 10 20
2 11 19
3 12 21
4 13 22
5 14 23
6 15 24
7 16 25
8 17 26
9 18 27

To complete the proof we have only to note that for any aA and bA with the same second
coordinate, we can transform a into b through a series of moves, each swapping two elements
belonging to the same block of A. "

Propositions 4.17 and 4.24 allow the following definition.

4.25 For an automorphism Φ of Fact X , define endomorphisms ΦS of the small
relations and ΦL of the large relations as follows.

ΦS a = the first coordinate of any Φ(aA) where aA is an atom

ΦL A = the second coordinate of any Φ(aA) where aA is an atom

The following is easily verified form the definition.

4.26 For Φ,Ψ automorphisms of Fact X we have

(1) (Ψ ◦ Φ)S = ΦS ◦ ΦS

(2) (Ψ ◦ Φ)L = ΦL ◦ ΦL

Further, if Φ is the identity map on Fact X, both ΦS and φL are identity maps.

It follows that ΦS is a permutation of the set of small relations of X , ΦL is a permutation of the
large relations, and that the obvious maps S and L from the automorphism group of Fact X to
the permutation groups of the small and large relations are group homomorphisms.

4.27 There is a group embedding R of the automorphism group of Fact X into the
group of order-automorphisms of the poset Req X taking Φ to ΦR where

ΦR x =

{
ΦS x if x is small

ΦL x if x is large
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P r o o f. From Lemma 4.26 it follows that each ΦR is a permutation of the regular equivalence
relations, and that R is a group homomorphism from the automorphism group of Fact X to the
group of permutations of Req X . From the definition, it is trivial that ΦR is the identity iff Φ is the
identity, so R is a group embedding. It remains only to show that each ΦR is an order-embedding.
For this, we know R is a group homomorphism, so it is enough to show ΦR is order-preserving.

Suppose a is small and A is large with a ≤ A. Then there is a small b with a∩b = ∆, a permuting
with b, and a◦b = A. So there is a triple X,Y,Z with the first coordinate of members of X being a,
the first coordinate of members of Y being b, and the second coordinate of members of Z being A.
As we have seen, the images of X,Y,Z under Φ are a triple with the first coordinate of members
of the image of X being ΦS a, the first coordinate of members of the image of Y being ΦS b, and
the second coordinate of members of the image of Z being ΦLA. This implies ΦS a ≤ ΦL A, and
shows ΦR is order-preserving. "

5. The case of a 27-element set — the second half

Here we complete the proof that for X a 27-element set, the map Γ gives an isomorphism from
the permutation group of X to the group of automorphisms of Fact X . In particular, we show
the automorphisms of the poset Req X correspond to permutations of the set X .

5.1 For small a, b, if Trcl(a ∪ b) has 7 blocks of 3 and 1 block of 6, then a, b have 70
large upper bounds.

P r o o f. Note that any equivalence relation containing a joins together blocks of a, and this includes
Trcl(a∪ b). As Trcl(a∪ b) has 7 blocks of 3 and 1 block of 6, the large relations containing this
transitive closure are formed by picking one of the blocks of 3 to match with the block of 6, and
there are 7 ways to do this, then splitting the remaining 6 blocks of 3 into two batches of 3, and
there are 10 ways to do this. "

We extend this notion to other pairs of elements. Here we write (1-6, 7-3) = 70 to mean if
Trcl(a ∪ b) has 1 block of 6, and 7 blocks of 3, then a, b have 70 large upper bounds in common.
We will not prove the following result, but will use it. Its proof is a matter of counting along the
lines above.

5.2 For small relations a, b, we have the following.

(9-3) = 280 (1-6,7-3) = 70 (1-9,6-3) = 10 (2-6,5-3) = 20
(3-6,3-3) = 6 (4-6,1-3) = 0 (1-9,1-6,4-3) = 4 (1-9,2-6,2-3) = 2
(1-9,3-6) = 0 (2-9,3-3) = 1 (2-9,1-6,1-3) = 1 (3-9) = 1

5.3 Suppose a is small and a1, . . . , a9 are the blocks of a. Define

X(a : ai, aj) = {b : b is small and n ̸= i, j =⇒ an is a block of b}.

Our next aim is be able to abstractly recognize such sets of small relations in the poset of
regular equivalence relations. This will show such sets are mapped in a well-behaved manner by
automorphisms of Req X .

5.4 X(a : ai, aj) has 10 elements, and any two distinct elements of this set have 70 large
upper bounds in common. Conversely, any set X of 10 small relations where any two have 70 large
upper bounds is of the form X(a : ai, aj) where a can be chosen to be any member of X and ai ∪ aj
is the same no matter the a chosen.
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P r o o f. The elements of X(a : ai, aj) are those small b that share at least 7 blocks with a. These
are the b’s formed by taking these 7 blocks of a, then splitting up ai ∪ aj into two groups of 3,
where the order of these groups, and in these groups, doesn’t matter. So there are 10 such b, one
of which will be a. Lemma 5.1 shows that any two distinct members of this group have 70 large
upper bounds in common.

Conversely, suppose X is such a set. Pick any element in this, say a. For another element b in
this set to have 70 large upper bounds in common with a, it must be that Trcl(a∪ b) has 1 block
of 6 and 7 blocks of 3. So a, b have 7 blocks in common. Take a third element c in X. We must
have that any two of a, b, c share 7 blocks. Say a, b share the blocks a3, . . . , a9 of a. Then as a ̸= b
we have neither a1, a2 is a block of b. So the blocks of b are b1, b2, a3, . . . , a9 where neither b1, b2
equals a1, a2. Suppose a, c do not share the same 7 blocks a3, . . . , a9. Say a3 is not a block of c.
Then for c to share 7 blocks with a we must have one of a1, a2 is a block of c. Say a1 is a block of
c. Then neither b1, b2 can be a block of c, since both contain some, but not all of a1. Also a3 is not
a block of c, but is a block of b. So c cannot share 7 blocks with b. Thus all members of X have
the same 7 blocks of a in common. So X = X(a : a1, a2). If we had chosen a different element from
X to begin, say b, the blocks bi, bj would have been different, but bi ∪ bj would equal a1 ∪ a2. "

5.5 A set X of small relations is called a collapse if it satisfies the conditions of
Lemma 5.4. We say a, b are neighbours and write a ∼ b if they both belong to a collapse.

5.6 Two collapses X and Y are said to share a block if X ∩ Y ̸= ∅ and no a, b in
X ∪ Y have exactly 20 common large upper bounds.

5.7 Let a be a small relation with blocks a1, . . . , a9. Then the collapses X(a : ai, aj) and
X(a : am, an) share a block iff one of i, j equals one of m,n.

P r o o f. Suppose these collapses share a block. If ai, aj , am, an are all different, then there would
be elements b ∈ X and c ∈ Y with Trcl(b ∪ c) having 2 blocks of 6 and 5 blocks of 3, hence
by Lemma 5.2, the pair b, c would have 20 upper bounds. So one of ai, aj equals one of am, an.
Conversely, if i = m, then for any b, c in X(a : ai, aj)∪X(a : ai, an) we have Trcl(b∪ c) has either
1 block of 9 and 6 blocks of 3 (if one is from each set), or has 1 block of 6 and 7 blocks of 3 (if both
are from the same. In either case, by Lemma 5.2 they do not have exactly 20 upper bounds. "

5.8 Each small relation a is in exactly 36 collapses.

P r o o f. If a is in a collapse X, then by Lemma 5.4, we have X = X(a : ai, aj) for two blocks ai, aj
of a. There are 36 ways to choose these two blocks, since their order does not matter. "

5.9 A 3-element subset α of X is called a small block. For such α, set

Xα = {a : α is a block of a}.

5.10 Let X be a set of 24!/(8!)(3!)8 small relations with ∼ the restriction of the neighbour
relation to X, and suppose the following hold for all a, b, c ∈ X.

(1) 28 of the collapses containing a are subsets of X.

(2) 8 of the collapses containing a intersect X only in {a}.
(3) Any two collapses of a that intersect X only in {a} share a block.

(4) If a ∼ b, c and b, c have 20 upper bounds, there is d ̸= a in X with b, c ∼ d.

Then X = Xα for some small block α. Conversely, each Xα satisfies these properties.
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P r o o f. We first show Xα satisfies these properties. That it has the indicated number of elements
is routine. Suppose a ∈ Xα, and that the blocks of a are a1, . . . , a9 with a1 = α. By Lemma 5.4
the collapses containing a are exactly the X(a : ai, aj). If either i, j equals 1, then the only element
of this collapse having α as a block is a, and if i, j ̸= 1, then all elements of this collapse have
α as a block, so this collapse is contained in Xα. So there are 28 collapses containing a that are
contained in Xα and 8 that intersect Xα only in {a}. Any two collapses that intersect Xα only in
{a} are of the form X(a : a1, ai) and X(a : a1, aj), so by Lemma 5.7 they share a block. For the
final condition, suppose b, c ∈ Xα with a ∼ b, c and that b, c have 20 large upper bounds. This
means b is in a collapse of a, and this collapse must be of the form X(a : ai, ai) with i, j ̸= 1, and
similarly c is in X(a : am, an) with m,n ̸= 1. Since b, c have 20 large upper bounds, Trcl(b ∪ c)
has 2 blocks of 6 and 5 blocks of 3, and the two blocks of 6 are ai ∪ aj and am ∪ an. So i, j,m, n
are all distinct. Form d to behave like b on ai ∪ aj and like c on am ∪ an, and to agree with a
elsewhere. Then d is in the collapse X(b : am, an) and also in the collapse X(c : ai, aj), so b, c ∼ d.
As i, j,m, n ̸= 1, we have d ∈ X. So Xα satisfies these conditions.

For the forward direction, suppose that X is a set with the indicated number of small relations
that satisfies these conditions.

5.11 For a ∈ X with blocks a1, . . . , a9, there is a block ak, that we denote α(a), with
X(a : ai, aj) ⊆ X if i, j ̸= k and X(a : ai, aj) ∩ X = {a} if either i, j = k.

P r o o f. There are 8 collapses X(a : ai, aj) that intersect X only in {a}, and any two of these share
a block. So they must share the same block, some ak, and these must be all collapses of a using
this block. "

5.12 If a, b ∈ X and a ∼ b, then α(a) = α(b).

P r o o f. Suppose a has blocks a1, . . . , a9 and α(a) = a1. As b ∈ X and a ∼ b we have b ∈
X(a : ai, aj) for some i, j ̸= 1. We assume b ∈ X(a : a2, a3). Let the blocks of b be b1, . . . , b9 with
the numbering chosen so that b1 = a1, b2∪ b3 = a2 ∪a3 and bi = ai for i = 4, . . . , 9. We must show
α(b) = b1.

We know α(b) ̸= b2, b3 since a ∈ X(b : b2, b3) showing that this collapse does not intersect X
only in {b}. We show α(b) ̸= b4, . . . , b9, hence α(b) = b1 as required. We provide the argument to
show α(b) ̸= b4, the others follow by symmetry.

Choose any element c in X(a : a4, a5) distinct from a. Let the blocks of c be numbered c1, . . . , c9
with ci = ai for i ̸= 4, 5 and with c4 ∪ c5 = a4 ∪ a5. Then Trcl(b ∪ c) has 2 blocks of 6, namely
a2∪a3 and a4∪a5, and 5 blocks of 3, the blocks a1, a6, . . . , a9. So b, c have 20 large upper bounds.
Then by condition (4) there is d ∈ X distinct from a with b, c ∼ d. Since d is in a collapse of b and
a collapse of c and differs from a, the only possibility for d is to have d agree with a (and with b, c)
on a1, a6, . . . , a9 and for d to be such that d agrees with b on a2 ∪ a3 and with c on a4 ∪ a5. As
b ∼ d we must have d ∈ X(b : bi, bj), and clearly i, j must be 4, 5. This shows X(b : b4, b5) does not
intersect X only in b, hence α(b) ̸= b4. "

5.13 If a ∈ X, then Xα(a) ⊆ X.

P r o o f. Choose a ∈ X. Note that if b is obtained from a by swapping two elements in blocks of
a other than α(a), then b ∈ X and a ∼ b, so by Claim 5.12, α(a) = α(b). So if b0, b1, . . . , bn is a
sequence of relations with b0 = a and each obtained from the previous by switching two elements
not contained in the block α(a), then α(bi) = α(a) and bi ∈ X for each i ≤ n. We claim that any
c having α(a) as a block can be obtained as bn for some such sequence b0, . . . , bn beginning with
b0 = a. Suppose not. Then among all elements bn obtained by such a sequence, choose one, say
b, that agrees with c on as many blocks as possible. Suppose the blocks of b are b1, . . . , b9, the
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a1
a2
a3
a4
a5
a6
a7
a8
a9

a

b1
b2
b3
b4
b5
b6
b7
b8
b9

b

c1
c2
c3
c4
c5
c6
c7
c8
c9

c

d1
d2
d3
d4
d5
d6
d7
d8
d9

d

blocks of c are c1, . . . , c9, that b, c agree on blocks b1, . . . , bk and that b1 = c1 = α(a). We may also
assume that block bk+1 is the block of b having the most elements in common with ck+1. Note
bk+1 and ck+1 have either one or two elements in common, and the other elements in ck+1 are in
blocks bk+1, . . . , b9 since bi = ci for i ≤ k. If bk+1 and ck+1 agree on two elements, we may assume
the third element of ck+1 in the block bk+2. Then by an appropriate swapping of elements in the
blocks bk+1, bk+2 of b, we can form another term bn+1 to put at the end of our sequence that agrees
with c on k + 1 blocks. If bk+1 contains only one element of ck+1, then we may assume the other
two elements of ck+1 are in bk+2, bk+3. We can then extend our sequence by forming bn+1, bn+2

first by swapping two elements in bk+1, bk+2, then performing one more swap to put the element
from bk+3 into the block to form ck+1. "

As Xα(a) ⊆ X and both have 24!/(8!)(3!)8 elements, they are equal. "

This result will allow us to transfer an automorphism of the poset of regular equivalence re-
lations to a certain kind of permutation of the set of small blocks. The key point is that for an
automorphism Λ of Req X , Lemma 5.10 shows that for a small block α, the image Λ[Xα] is a set
Xβ for some small block β.

5.14 Let Block X = {α : α is a small block of X}. We then define a permutation
ρ of this set to be special if for all small blocks α,β, γ

(1) |α ∩ β | = | ρ(α) ∩ ρ(β) |.
(2) γ ⊆ α ∪ β iff ρ(γ) ⊆ ρ(α) ∪ ρ(β).

One easily sees that the special permutations of BlockX form a subgroup of its permutation
group.

5.15 There is an embedding B of the automorphism group of Req X into the group
of special permutations of Block X taking Λ to ΛB where

ΛB(α) = β iff Λ[Xα] = Xβ.

P r o o f. Suppose α is a small block and Λ is an automorphism of Req X . The set Xα satisfies
the four conditions in Lemma 5.10. These conditions involve the notion of a collapse, the numbers
of collapses containing an element of Xα that are contained in Xα or nearly disjoint from this
set, whether certain collapses share a block, and a statement involving numbers of upper bounds.
Lemma 5.4 shows the image of a collapse under an automorphsim is a collapse, and the definition
of two collapses sharing a block is clearly preserved under automorphisms. Thus the image Λ[Xα]
satisfies the conditions of Lemma 5.10, hence is Xβ for some small block β. The definition of Xβ

shows the choice of β is unique.

520

 
 AUTHOR C

OPY 



AUTOMORPHISMS OF DECOMPOSITIONS

These comments show that for each automorphism Λ of Req X , there is a map ΛB from
Block X to itself, temporarily called an endomorphism of this unstructured set, defined by
ΛB(α) = β iff Λ[Xα] = Xβ . So there is a map B from the automorphism group of Req X to
the endomorphism monoid of the set of small blocks. Clearly B preserves composition and the
identity map, so B is a homomorphism from the automorphism group of Req X to the permutation
group of the small blocks. To see B is one-one, suppose Λ ̸= id. Then Λ(a) ̸= a for some small
relation a, so there is a block α of a that is not a block of Λ(a). It follows that Λ[Xα] ̸= Xα. So
B(Λ) ̸= id. Thus B is an embedding. It remains to show each ΛB is a special permutation.

5.16 |α ∩ β| = |ΛB(α) ∩ ΛB(β)|.

P r o o f. Note α and β are disjoint iff Xα and Xβ are not disjoint. It follows that |α ∩ β | = 0 iff
|ΛB(α) ∩ ΛB(β) | = 0. As ΛB is a permutation, we have α = β iff ΛB(α) = ΛB(β) and the case
of an intersection in 3 elements follows. Once we know that α and β intersect in either 1 or 2
elements, we can distinguish the cases as follows: α and β intersect in 2 elements iff for any small
a having α as a block, there is a small b having β as a block, so that Trcl(a ∪ b) has 1 block of 6
and 7 blocks of 3. By Lemma 5.2 this condition on Trcl(a∪ b) occurs iff a, b have 70 large upper
bounds. So it follows that |α ∩ β| = 2 iff |ΛB(α) ∩ ΛB(β)| = 2. The statement for an intersection
in one element follows by elimination. "

5.17 γ ⊆ α ∪ β iff ΛB(γ) ⊆ ΛB(α) ∪ ΛB(β).

P r o o f. We show γ ⊆ α ∪ β implies ΛB(γ) ⊆ ΛB(α) ∪ ΛB(β). The other direction follows by the
same result for the inverse Λ−1. We aregue the contrapositive. Suppose x ∈ ΛB(γ) and x is not
in ΛB(α) ∪ ΛB(β). Choose two other elements y, z not belonging to ΛB(α) ∪ ΛB(β), and let δ be
the small block with ΛB(δ) = {x, y, z}. Then ΛB(δ) is disjoint from both ΛB(α) and ΛB(β), so δ
is disjoint from α and β. But ΛB(δ) intersects ΛB(γ) non-trivially, so γ contains an element of δ,
hence γ is not contained in α ∪ β. "

This concludes the proof of the proposition. "

We turn to our final step, associating to a special permutation ρ of Block X a permutation of
X . The key is the following lemma.

5.18 Let ρ be a special permutation of Block X. If α,β, γ are small blocks with α ∩ β
= {p} and ρ(α) ∩ ρ(β) = {x}, then p ∈ γ =⇒ x ∈ ρ(γ).

P r o o f. Using symmetry, there are four cases.

(1) γ intersects both α and β in two elements.

(2) γ intersects one of α,β in two elements, and the other in one element.

(3) γ intersects both α,β in one element.

(4) γ is equal to one of α,β.

We begin with a claim that establishes case (1) and that will be used repeatedly to establish the
other cases.

5.19 For any small blocks α,β, γ, if γ intersects both α,β in two elements and ρ(α) =
{x, y1, y2}, ρ(β) = {x, z1, z2}, then ρ(γ) is {x, yi, zj} for some i, j ∈ {1, 2}.

P r o o f. This is obvious from the fact that special permutations preserve the cardinality of inter-
sections and the pigeonhole principle. "
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5.20 Suppose p, q1, q2, r1, r2 are distinct elements of X. There there are unique elements
x, y1, y2, z1, z2 with

(1) ρ{p, q1, q2} = {x, y1, y2} (2) ρ{p, r1, r2} = {x, z1, z2}
(3) ρ{p, q1, r1} = {x, y1, z1} (4) ρ{p, q2, r2} = {x, y2, z2}
(5) ρ{p, q1, r2} = {x, y1, z2} (6) ρ{p, q2, r1} = {x, y2, z1}
(7) ρ{q1, q2, r1} = {y1, y2, z1} (8) ρ{q1, q2, r2} = {y1, y2, z2}
(9) ρ{q1, r1, r2} = {y1, z1, z2} (10) ρ{q2, r1, r2} = {y2, z1, z2}

P r o o f. We have ρ{p, q1, q2} and ρ{p, r1, r2} intersect in an element. So items (1) and (2) are
clear. For item (3) we have {p, q1, r1} intersects both of {p, q1, q2} and {p, r1, r2} in two elements,
so by Claim 5.19 we have ρ{p, q1, r1} equals {x, yi, zj} for some choice of i, j. At this point we are
free to choose the numbering of y1, y2 and z1, z2 as we please, and we number them to make (3)
hold. We again use Claim 5.19 to obtain ρ{p, q2, r2} is of the form {x, yi, zj} for some i, j, and as
ρ{p, q1, r1} and ρ{p, q2, r2} must intersect only in one element, it must be as indicated in (4). For
(5), the argument for (3) and (4) shows ρ{p, q1, r2} = {x, yi, zj} for some choice of i, j, and it cannot
be either of the results in (3) or (4). As {p, q1, r2} is contained in {p, r1, r2} ∪ {p, q1, r1}, by the
definition of special in Definition 5.14 we have that ρ{p, q1, r2} ⊆ {x, y1, z1, z2}. So ρ{p, q1, r2} =
{x, y1, z2}. For (6), ρ{p, q2, r1} is again of the form {x, yi, zj} and this is the only choice remaining.
For (7), the definition of special shows ρ{q1, q2, r1} ⊆ ρ{p, q1, q2} ∪ ρ{p, q1, r1}, therefore is a
3-element subset of {x, y1, y2, z1}. The only 3-element subset of this set not already in our list is
{y1, y2, z1}. The arguments for (8) through (10) are similar. "

We now return to the proof of Lemma 5.18. Assume that α ∩ β = {p}, and ρ(α) ∩ ρ(β) = {x},
and that γ is a small block with p ∈ γ. We must show x ∈ ρ(γ). Suppose α = {p, q1, q2} and
β = {p, r1, r2} and x, y1, y2, z1, z2 are as in Claim 5.20. We remarked that up to symmetry there
were four cases, and proved in Claim 5.19 case (1) where γ intersected both α,β in two elements.
Consider the other cases.

Case (2) has γ intersect α in two elements, and γ intersect β in one element. We may assume
γ = {p, q1, s} for some s not among p, q1, q2, r1, r2. Then ρ(γ) intersects ρ{p, q1, q2} = {x, y1, y2}
in 2 elements, and is disjoint from ρ{q2, r1, r2} = {y2, z1, z2}. So x belongs to ρ(γ). Case (3) has
γ intersect each of α,β in one element. Assume γ = {p, s, t} for some elements s, t not among
p, q1, q2, r1, r2. Then ρ(γ) intersects ρ{p, q1, q2} = {x, y1, y2} in 1 element, and is disjoint from
ρ{q1, q2, r1} = {y1, y2, z1}. So again, x belongs to ρ(γ). The final case (4), where γ equals one of
α,β is trivial. "

5.21 There is a one-one group homomorphism P from the group of special permu-
tations of Block X to the permutation group of X such that

α ∩ β = {p} and ρ(α) ∩ ρ(β) = {x} =⇒ (Pρ)(p) = x.

P r o o f. Suppose ρ is a special permutation. For any p ∈ X we can find small blocks α,β with
α ∩ β = {p}, and as ρ is special, ρ(α) ∩ ρ(β) is a singleton {x}. Suppose α′ and β′ are other small
blocks with α′ ∩ β′ = {p}. Then as ρ is special, ρ(α′)∩ ρ(β′) is a singleton. But p ∈ α′ and p ∈ β′,
and Lemma 5.18 shows x ∈ ρ(α′) and x ∈ ρ(β′). So ρ(α′) ∩ ρ(β′) = {x}. Thus, we can define a
map Pρ by setting (Pρ)(p) = x if there are small α, β with α ∩ β = {p} and ρ(α) ∩ ρ(β) = {x}.

One sees that P preserves composition and the identity map, so is a group homomorphism from
the special permutations of Block X to the permutation group of X . To see it is one-one, suppose
ρ is a special permutation that is not the identity. There there is a small block α with ρ(α) ̸= α,
hence some p ∈ α with p ̸∈ ρ(α). Find β with α∩β = {p}. Then ρ(α)∩ρ(β) ̸= {p}, so (Pρ)(p) ̸= p.
Thus Pρ ̸= id. "
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We recall our many steps. Theorem 1.6 states that Γ is a homomorphism from the permutation
group of X to the automorphism group of the omp Fact X , and Proposition 3.2 shows that Γ is
an embedding. Theorem 4.27 shows that R is a group embedding of the automorphism group of
Fact X into the automorphism group of the poset Req X of regular equivalence relations on X .
Proposition 5.15 shows there is an embedding B of the automorphism group of Req X into the
group of special permutations of the setBlockX of all small blocks ofX . Finally, Proposition 5.21
shows there is a group embedding P of the group of special permutations of Block X into the
permutation group of X .

5.22 Each of the following groups are isomorphic:

(1) The automorphism group of Fact X.

(2) The automorphism group of the poset Req X.

(3) The group of special permutations of Block X.

(4) The permutation group of X.

Further, the maps Γ, R, B, and P are isomorphisms.

P r o o f. We have shown each of these groups are isomorphic to subgroups of another via the
indicated maps, and the groups involved are finite. "

6. Further remarks

In this section, we discuss additional results, and a number of open problems. We begin with
the following result of Chevalier [9].

6.1 For a vector space V , each order-automorphism of Fact V is an omp auto-
morphism.

This result came from Chevalier’s proof characterizing automorphisms of Fact V . The key step
in showing that automorphisms essentially work componentwise, is that two atoms of Fact V have
distinct coatom upper bounds iff they have the same first or second coordinate. This property is
clearly preserved by any order-automorphism as it does not involve the orthocomplementation.
For finite vector spaces, one can show somewhat more.

6.2 For a finite vector space V , there is a unique orthocomplementation on Fact V
compatible with its order structure.

We will not give the proof, but remark that the key ingredient is Baer’s [2] result that any polarity
on a finite projective plane has an absolute point. This finiteness condition is needed as it is easily
seen that any orthocomplementation on the subspace lattice Sub V gives an orthocomplementation
on Fact V . So Fact R3 will admit many orthocomplementations [4, 6]. We do not know if these
auxiliary orthocomplementations are orthomodular.

6.3 If X is a set that is not small, are all order-automorphisms of Fact X omp
automorphisms? Is Fact X uniquely orthocomplemented?

Recall that a state [22, 28] on an omp P is a map σ from P to the real unit interval that maps
0 to 0, 1 to 1, and satisfies x ⊥ y =⇒ σ(x ⊕ y) = σ(x) + σ(y). For any omp whose blocks are
all finite, states correspond to maps from the atoms to the real unit interval such that the values
on the atoms of any block sum to 1. Clearly, on any omp whose blocks all have the same finite
number n of atoms, such as Fact V for a finite-dimensional vector space V or Fact X for a finite
set X , there is a state taking value 1/n on each atom.
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6.4 Fact Z3
2 has only the state taking value 1/3 on the atoms.

P r o o f. Recall that this omp has 28 atoms and 28 blocks. By hand, one can enumerate these
atoms as x1, . . . , x28 and these blocks B1, . . . , B28, and set up an incidence matrix A with the
columns representing atoms, the rows the blocks, and entry Aij being either 0 or 1 depending on
whether atom xj lies in block Bi. This matrix A will have each row consisting of three 1’s with the
other entries 0’s. Then states correspond to solutions of the system of equations Ax⃗ = 1 where 1 is
the column matrix of all 1′s. Using a computer algebra system, the determinant of this matrix is
non-zero. So the system has a unique solution, and this is the state taking constant value 1/3. "

One can easily produce, or find on the web [26], point-line incidence matrices for other small
projective planes over finite fields. Automating the above construction of the atom-block incidence
matrix as in the proof of Proposition 6.4 and using a software package to solve the system of equa-
tions, one obtains the following result. Matlab worksheets containing the needed input matrices
are found next to the link for this paper at [20].

6.5 For V a 3-dimensional vector space over a field with 2, 3, 4, 5, 7 elements, then
Fact V has only the constant state taking values 1/3 on the atoms.

If X is a set with p3 elements, for p prime, then each block of Fact X is a block of some
subalgebra isomorphic to Fact Z3

p. The following is then immediate.

6.6 For X a set with 23, 33, 53 or 73 elements, Fact X has only the state taking
constant value 1/3 on the atoms.

For a vector space V of dimension 2, or a finite set X where |X | has only 2 prime factors, the
omps Fact V and Fact X are of the form Mon for some n. These are known to have infinitely
many states.

6.7 If V is a finite-dimensional vector space of dimension at least 3, and if X is a
finite set whose cardinality has at least 3 prime factors, is the state taking constant value on the
atoms the only state on Fact V or Fact X?

We next turn our attention to group-valued measures that play an important role in the theory
of unigroups [11] of omps.

6.8 A group-valued measure on an omp P is a map σ from P into an abelian group
G that satisfies σ(0) = 0 and x ⊥ y =⇒ σ(x ⊕ y) = σ(x) + σ(y).

If each block of an omp P has the same finite number of atoms, then for any abelian group
G and element a ∈ G there is a group-valued measure on P taking the value a on each atom of
P . We call these constant measures. Using techniques from Proposition 6.4 and a linear algebra
package to solve equations over finite fields, we obtain the following. A Sage program for this is
found next to the link for this paper at [20].

6.9 Suppose k ∈ {2, 3, 4, 5, 7}, p ∈ {2, 3, 5, 7}, and consider Zp-valued measures on
Fact V where V is a 3-dimensional vector space over the k-element field. If p does not divide k,
then all such measures are constant, and if p divides k, then there are pk8 such measures.

When considering group valued measures on Fact X for a finite set X , we know the situation
for an 8-element set as Fact X is a horizontal sum of copies of Fact Z3

2, so has a huge number of
Z2-valued states. For other cases of finite sets of prime power cardinality, we know no more than
the obvious fact that Zp-valued states on Fact X will be constant when p does not divide |X |.
The appearance of a power of 8 in the above result is perhaps related to the following question.
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6.10 Determine the unigroup of Fact V for a finite-dimensional vector space V , and
the unigroup of Fact X for a finite set X.

The main open problem of this paper lies in extending results for the 27-element set to the
general case. We know the result does not hold when there are only two prime factors, and that is
does not hold for a set with 23 elements. We have no intuition about the behavior for other small
cases such as a set with 22 × 3, or 2 × 32, or 2× 3 × 5, or 2n elements. But we suspect that if X
has at least three prime factors bigger than 2, then the situation is well-behaved. We record this
below.

6.11 If X is a set of sufficiently large size, is the embedding Γ of the permutation group
of X into the automorphism group of Fact X an isomorphism?
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[23] KATRNOŠKA, F.: Logics of idempotents of rings. In: Proc. Second Winter School on Measure Theory, Lip-
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