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Abstract

We define a 2-category whose objects are fuzzy sets and whose
maps are relations subject to certain natural conditions. We enrich
this category with additional monoidal and involutive structure coming
from t-norms and negations on the unit interval. We develop the basic
properties of this category and consider its relation to other familiar
categories. A discussion is made of extending these results to the
setting of type-2 fuzzy sets.

1 Introduction

A fuzzy set is a map A : X — I from a set X to the unit interval 1. Several
authors [2, 6, 7, 20, 22] have considered fuzzy sets as a category, which we
will call FSet, where a morphism from A : X — Ito B :Y — I is a function
f: X — Y that satisfies A(z) < (Bo f)(x) for each x € X. Here we continue
this path of investigation.

The underlying idea is to lift additional structure from the unit interval,
such as t-norms, t-conorms, and negations, to provide additional structure
on the category. Our eventual aim is to provide a setting where processes
used in fuzzy control can be abstractly studied, much in the spirit of recent
categorical approaches to processes used in quantum computation [1].

Order preserving structure on I, such as t-norms and conorms, lifts to
provide additional covariant structure on FSet. In fact, each t-norm T
lifts to provide a symmetric monoidal tensor ®7r on FSet. However, it is
problematic to lift order inverting structure on I, such as a negation —,
to FSet. For this reason, and its inherent interest, we widen the category



FSet of fuzzy sets and functions to the category FRel of fuzzy sets and
relations. Here the objects are fuzzy sets as before, but a morphism between
fuzzy sets A: X — T and B : Y — [ is a relation R from X to Y that
satisfies Ry = A(x) < B(y). Order inverting structure on I then lifts to
contravariant structure on FRel making use of the converse of a relation.

The categories FSet and FRel parallel the familiar categories Set, of sets
and the functions between them, and Rel, of sets and the relations between
them. Just as Rel differs from Set in an essential way, behaving much more
like a category of vector spaces than the category of sets, so also does FRel
differ from FSet.

In particular, FRel has finite biproducts, hence a semiadditive structure
on its homsets. Lifting a negation and t-norm from the unit interval I
equips FRel with an involution { and a symmetric monoidal structure ®.
Additionally, Rel naturally carries a 2-category structure, where morphisms
between relations are given by set inclusion. This is the case with FRel as
well.

Our purpose here is to outline the basic properties of the categories
FSet, FRel, and their relationships to each other and to the categories Set
and Rel. We develop such basic properties as biproducts, monomorphisms,
epimorphisms, injectives, projectives, as well as properties related to lifting
structure from I to these categories.

We consider the matter of extending the categorical setting to interval-
valued and type-2 fuzzy sets. The idea is to replace I with a the appropriate
truth value algebra. Following Zadeh [23], the truth value algebra for type-2
fuzzy sets is the algebra M of all functions from I to itself. This carries not
one, but two natural orders. Here we propose the intersection of these orders
as the basic one. A later paper considers this order in more detail [12].

Finally, we briefly compare the category FRel to some other categorical
generalizations of Rel.

2 The Category FRel of Fuzzy Sets and Relations

In this section, we define the categories of interest in this note, and give
some notation. We begin with the category of primary interest, FRel.



Definition 2.1 The category FRel of fuzzy sets and relations is defined as
follows:

1. An object is a map A from a set X to the unit interval I. (We will
write either A : X — 1 or simply (X, A) for an object).

2. A morphism from (X, A) to (Y, B) is a relation R C X XY satisfying
A(xz) < B(y) for all (z,y) € R (sometimes written as TRy ).

3. Composition of morphisms is the usual composition of relations: if
RCX XY and SCY x Z, then

SoR={(x,z): there exists y €Y such that (z,y) € R, (y,2) € S}.

The condition in (2) will be indicated by diagrams of the form

A
X I
Rl <
Y I
B

Lemma 2.2 IfR: (X,A) — (Y,B) and S : (Y, B) — (Z,C) are morphisms
in FRel, then so is S o R.

Proof. Note z (S o R) z if and only if there exists y € Y with xRy and yS=.
In this case, A(z) < B(y) and B(y) < C(z) so that A(z) < C(z). Thus
S o R is a morphism in FRel. m

Since composition of relations is associative, the same is true for mor-
phisms in FRel. The diagonal morphism 1x, where 1x = {(z,2) : z € X}
is the identity relation on (X, A). It satisfies Roly = Rand 1x oS =95
for R and S for which the compositions are defined. This establishes that
FRel is a category.

Definition 2.3 The category FSet of fuzzy sets and functions is the subcat-
egory of FRel whose objects are the same as in FRel but whose morphisms
are those morphisms in FRel that are actually functions.

Note that when R is a function, condition (2) of Definition 2.1 is equiv-
alent to A (z) < B(R(z)). That is, A < Bo R, in the case R is a function.

Notation 2.4 We often use (X, A) for an object in either FSet or FRel,
and R : (X, A) — (Y, B) for a morphism in either category.



3 Categorical Properties of FRel

In this section, we point to some basic properties of the category FRel.
Largely, these parallel results for the category Rel. While these results for
Rel are well known in many circles, we had difficulty finding them in print.

Definition 3.1 [13, p. 47] Let Z be an object in a category C. We call Z
initial if for each object A there is exactly one morphism from Z to A; we
call Z terminal if for each object A there is exactly one morphism from A
to Z; and we call Z a zero object if it is both initial and terminal.

For objects A, B in a category with zero object Z, we use 04 p for the
unique morphism A — Z — B.

Proposition 3.2 The empty set (with the empty function into 1) is a zero
object in FRel.

Proof. Given any object (X, A) in FRel there are unique morphisms

A 0
I

X
0 [ and [

0
) — 1 X

=

The inequalities are satisfied by default. Thus the sets FRel (X, A), (&, @))
and FRel ((@,2), (X, A)) each contain exactly one morphism. m

Definition 3.3 [13, p. 306] A category C with zero has biproducts if for
each family (A;)r of objects there is an object @, A;, together with families
of morphisms p; - Ay — @, Aj and Ty : P, Aj — A;, such that

1. The morphisms p; : Ai — @; Aj are a coproduct of the family (A;)r.
2. The morphisms m; : @; A; — A; are a product of the family (A;)r.

3. miou; =0 for eachi,j € I.

Here d;;j is the identity map 14, if i = j and the zero map 04, a; tf i # j.



The category Rel has biproducts. For a family of sets (X;); let X be their
disjoint union | |; X; = {(x,7) : € X; for some i € I} and define relations
p; from X; to X and m; from X to X; by setting p; = {(z, (x,7) : v € X;}
and m; = {((z,4),z) : € X;}. Then the disjoint union X with morphisms
p; and m; is a biproduct of the family (X;); (see for example [1]).

Proposition 3.4 The category FRel has biproducts given by disjoint unions.
In more detail, for objects (X;, A;) with (i € I), let X = | |; X; be the dis-
joint union of the X;, define a map A : X — 1 by setting A(z,i) = A;(x),
and define relations p; from X; to X and m; from X to X; by setting

wi = {(x, (z,1)) : x € X;}
m = {((x,i),z) : x € X;}

Then (X, A) with the morphisms p;, 7; fori € I is a biproduct of the (X;, A;).

Proof. To see the y; are morphisms in FRel, take an element (x, (z,4)) in p;
and note that by definition A;(xz) = A(x,4), hence A;(x) < A(x,i), showing
; is a morphism from (X;, A;) to (X, A). Similarly, for ((x,4),z) in 7; we
have A(z,i) = A;(x), showing m; is a morphism from (X, A) to (X;, 4;).

Suppose R; : (X;, A;) — (Y, B) for each i € I. Define a relation R from
X to Y by setting (z,i) Ry iff z R; y. It is easy to see R is a morphism from
(X, A) to (Y, B) and is the unique such morphism in FRel with Ro u; = R;
for each ¢ € I. Thus the p; are the morphisms for a coproduct.

Suppose S; : (Y, B) — (X, A;) for each ¢ € I. Define a relation S from
Y to X by setting y S (z,i) iff y S; x. It is easy to see S is a morphism from
(Y, B) to (X, A) and is the unique such morphism in FRel with m; 0.5 = 5;
for each ¢ € I. Thus the 7; are morphisms for a product.

Finally, a calculation gives m; o ui; is the identical relation on X; if ¢ = j
and is the empty relation from X; to X; if 7 # j. Thus mjo p; = 9;;. m

Corollary 3.5 Fach object in FRel is isomorphic to a biproduct of singleton
sets: (X, A) = P,cx {2z}, Az), where Ay (z) = A(z).

Examples of categories with finite biproducts include abelian groups,
and vector spaces over a given field K. In such categories there is an addi-
tive structure on homsets and a type of matrix mechanics for working with
morphisms. These notions lift to any category with biproducts. We briefly
describe some aspects for FRel, see [13, Chapter XI] for a complete account.



Definition 3.6 A semiadditive category is a category C where each hom-
set C(B,C) is equipped with the structure of a commutative monoid with
operation + such that for any f: A— B, g,h: B—C, and k:C — D

(g+h)of=(gof)+(hof)
ko(g+h)=(kog)+ (koh).

Any category with biproducts carries a unique semiadditive structure
[13, p. 310] that can be defined via biproducts. In Rel, this semiadditive
structure on Rel (X, Y) is given by letting R+.S be the union of the relations
R and S from X to Y. The empty relation serves as additive identity. This
is known, and easily verified by checking that union does give a semiadditive
structure that distributes over composition.

Proposition 3.7 The semiadditive structure on homsets in FRel is given
by taking R+ S to be the union of the relations R U S. Here, the empty
relation serves as the additive identity.

Proof. Suppose R and S are morphisms from (X, A) to (Y, B). To see RUS
is a morphism from (X, A) to (Y, B), suppose z(RUS)y. Then either z Ry
or z Sy. In the first case, R being a morphism in FRel gives A(z) < B(y);
and in the second case S being a morphism in FRel gives A(x) < B(y).
So RU S is a morphism in FRel. Clearly U gives a commutative monoid
structure on FRel ((X, A), (Y, B)) with the empty relation as identity, and
composition distributes over union. m

In addition to carrying a semiadditive structure, homsets in Rel also
carry a complete lattice structure where the ordering of two relations is or-
dinary set inclusion. In fact, the homset Rel (X,Y") is the complete Boolean
algebra of all subsets of X x Y. In this way Rel is a 2-category where the
0-cells are sets, the 1-cells are relations between sets, and there is a unique
2-cell between relations R, S from X to Y precisely when R C S.

Proposition 3.8 Homsets in FRel carry the structure of complete Boolean
algebras when ordered by set inclusion. In fact, FRel ((X, A), (Y, B)) is the
complete Boolean algebra of all subsets of {(z,y) : A(z) < B(y)}. In this
way, FRel is a 2-category.

Proof. Being a subset of {(z,y) : A(x) < B(y)} is equivalent to being a
relation R from X to Y that satisfies Ry implies A(z) < B(y). =



An involution on a category C is a contravariant functor from C to itself
of period two. An involution { that is the identity on objects is called a
dagger, and a dagger category is a category with a dagger [18]. Rel is a
natural example of a dagger category where X' = X and for a morphism
R:X — Y we define Rt : Y — X to be the converse relation R~

Proposition 3.9 There is an involution { on FRel defined as follows. For
an object (X, A) and morphism R : (X, A) — (Y, B) set

1. (X, A} = (X,1 - A) where (1 — A)(z) =1 — A(z).
2. RY: (Y,B)} — (X, A)} is the converse relation R~ .
Note that 1 is an involution, but is not the identity on objects.

Proof. Suppose y Riz. As R! is the converse of R, this means z Ry. As R
is a morphism we have A(z) < B(y), hence 1 — B(y) < 1— A(x). So R is a
morphism from (Y, B) to (X, A)}. As (Ro S)~ =S~ o R~ it follows that
I is compatible with composition, and clearly i takes the identity map on
(X, A), the identical relation on X, to the identity map on (X, A)*. So f is
a contravariant functor that is obviously period two. m

We note that this involution i gives a bijective mapping from a homset
FRel ((X,A),(Y,B)) to FRel ((Y,1 — B),(X,1 — A)). This isomorphism
preserves both the commutative monoid structure and the Boolean algebra
structure on these homsets, so is both a commutative monoid isomorphism
and a Boolean algebra isomorphism. This involution also provides a duality
that is of use in establishing further properties of FRel.

Definition 3.10 A morphism f is monic if f o g = f o h implies g = h;
and epic if go f = ho f implies g = h.

To describe monic morphisms in Rel, note a relation R from X to Y
gives a map R[-]: 2% — 2Y from the power set of X to the power set of Y’
taking a subset Z C X to the set R[Z] = {y € Y : z Ry for some z € Z}.
In [19] it was shown that the monic morphisms in Rel are those relations R
where R]-] is one-one. This lifts to FRel.



Proposition 3.11 For R: (X, A) — (Y, B) in FRel, these are equivalent.

1. R s monic.
2. R[-]:2% —2Y is one-one.

3. For each x € X there isy € Y with x the only element related to y.

Proof. (1 = 2) Let U,V C X with R[U] = R[V]. Take a singleton {x}
and let 0 : {x} — [0,1] be the map sending x to 0. Define relations S,T
from {x} to X by letting S = {(x,u) : uw € U} and T = {(*,v) : v € V}.
Our inequality is satisfied so S, T : ({x},0) — (X, A). Since R[U] = R[V],
it follows that Ro S = RoT, and as R is monic, that S =T. Thus U = V.
(2 = 3) R[X — {z}] # R[X]. (3 = 1) Suppose S,T : (Z,C) — (X, A)
and S # T. We may assume there is zSx with z 7'z. Choose y with
'Ry < o' =x. Then z(Ro S)y but not 2(RoT)y. So RoS # RoT. So
R is monic. m

Corollary 3.12 For R: (X, A) — (Y, B) in FRel, these are equivalent.

1. R 1is epic.
2. R[-]:2Y — 2% is one-one.

3. For each y €'Y there is x € X with y the only element related to x.

Proof. As { is an involution, R is epic if and only if R* is monic. m

Definition 3.13 A morphism f: A — B is an isomorphism if there is a
morphism g : B — A with go f =14 and fog = 1p. Such g, if it exists, is
unique, and is called the inverse of f.

Isomorphisms are always both monic and epic. A category is called
balanced if every morphism that is both monic and epic is an isomorphism.
The category Rel is balanced since the morphisms that are monic and epic
are exactly the bijective correspondences, and for these their converse is
their inverse. This does not hold in FRel since the identity relation from
(X,0) to (X, 1), where 0, 1 are the obvious constant functions, is both monic
and epic by the above results, yet has no inverse in the category FRel.



Proposition 3.14 A morphism R : (X, A) — (Y, B) in FRel is an isomor-
phism if and only if R is a bijection and A = Bo R. In this case, its inverse
is its converse R~ wviewed as a morphism from (Y, B) to (X, A).

Proof. Suppose R is an isomorphism. By Proposition 3.11 and Corol-
lary 3.12, for each x € X there is y € Y with = the only element related
to y, and for each y € Y there is 2’ € X with y the only element related
to /. This implies R is a bijection. In Rel, a bijection is an isomorphism
with its converse being its inverse, and by the uniqueness of inverses, the
converse of R is the only relation S from X to Y with So R = 1x and
RoS =1y. As R has an inverse in FRel, it follows that this inverse must
be its converse R~ viewed as a morphism from (Y, B) to (X, A). As both
R:(X,A) — (Y,B) and R~ : (Y,B) — (X, A) are morphisms in FRel, if
x Ry then A(x) < B(y) and B(y) < A(x), hence A(x) = B(y). It follows
that A = B o R. Showing the other direction, that a bijection R satisfying
A = Bo R is an isomorphism amounts to the trivial observation that in this
case R~ : (Y,B) — (X, A) is a morphism in FRel. m

In a category with involution i, an isomorphism f is called unitary if f*
is its inverse. It is easily seen that in Rel each isomorphism is unitary. The
situation is different in FRel.

Corollary 3.15 In FRel, an isomorphism R : (X, A) — (Y, B) is unitary
if and only if A and B are constant functions taking value %

Proof. The previous result shows the inverse of R is the converse R~
viewed as a map from (Y, B) to (X, A), and R* is the converse of R viewed
as a map from (Y,1 — B) to (X,1 — A). Thus R~' = R} precisely when
A=1—Aand B =1- B, and this occurs when A and B are constants
taking value % [

Definition 3.16 In a category C, an object Z is injective if for each monic
f: X =Y andeach g: X — Z, thereis an h:Y — Z withg=ho f.

/
X Y
g \ /
A

We say e : X — Z is an injective hull of X if e is monic, Z is injective,
and for any k : Z — V we have k o e being monic implies k is monic.



Proposition 3.17 In FRel the injectives are the objects (Z,1) where 1 is
the constant function on Z taking value 1. For each object (X, A), the
identical embedding Ax : (X, A) — (X, 1) is an injective hull.

Proof. Suppose R : (X, A) — (Y, B) is monic and S : (X, A) — (Z,1). Let
Y1 = {y € Y : there is exactly one x with x Ry}. By Proposition 3.11, for
each x € X there is y € Y7 with x Ry. Define T': (Y,B) — (Z,1) to be
T={(y,z):y €Y1 and xS z for some x Ry}. Trivially T is a morphism in
FRel and To R = S. So (Z,1) is injective.

Suppose (Z,A) is an object and zp € Z has A(zy) < 1. Pick a sin-
gleton set {x}, define S : ({*},0) — (Z,A) to be S = {(*,20)} and let
R : ({*},0) — ({*},1) be the identical relation. Surely R is monic. There
can be no morphism 7' : ({*},1) — (Z, A) with T o R = S since such a T
would have x T'zp and 1 £ A(2p). So (Z, A) is not injective.

To see Ax : (X, A) — (X, 1) is an injective hull, note Proposition 3.11
gives that Ax is monic, and we have shown (X,1) is injective. Suppose
R:(X,1) — (Y,B) and that R o Ax is monic. As a relation rather than a
morphism, R o Ax = R, then Proposition 3.11 gives that R is monic. =

The notion of a projective object in a category is dual to that of an
injective object, and the notion of a projective cover is dual to that of an
injective hull. Here the direction of the morphisms is reversed, and monics
are replaced by epics (see [13] for details).

Proposition 3.18 In FRel the projectives are the objects (Z,0) where 0
is the constant function on Z taking value 0. For each object (X, A), the
identical embedding Ax : (X,0) — (X, A) is a projective cover.

Proof. This follows as the involution I takes injectives to projectives, pro-
jectives to injectives, and interchanges monics and epics. =

Properties of four categories are summarized in the following table, from
which it can be seen that Set and FSet have very similar properties, as do
Rel and FRel.
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’ H Set FSet ‘ Rel FRel
Term. Obj. {x} ({*},1) %) (9, 2)
Init. Obj. %) (2, 9) %) (9,9)
Zero Obj. no no @ (2,9)
Product XxY | (X xY,AAB) Xuy Xuy
Coproduct Xuy Xuy Xuy Xuy
Biproduct no no Xuy Xuy
Monics 1-1 1-1 28 -2V 11| 2X¥ -2V 1]
Epics onto onto 2V 2% 11| 2¥ —2% 1]
Isom’s bijection bijection 2X — 2 bij. | 2% — 2V bij.
A=DBof A=BoR
Injectives || sets # @ | (X,1), X # O sets (X,1)
Projectives sets (X,0) sets (X,0)

4 Related Categories

In this section we consider the relationships among the categories Set, Rel,
FSet and FRel. In particular, we show there are a number of adjunctions
between these categories. The situation is illustrated below.

Fy
Set Rel
G
F27G2aH2 F37G37H3
Fy
FSet FRel
Gy

Figure 1: Functors relating categories

Definition 4.1 For categories C and D and functors F' : C — D and
G :D — C, we say (F,Q) is an adjoint situation if F is left adjoint to G
and G is right adjoint to F'. This implies that for objects X € C and Y € D,
there is a natural isomorphism between the homsets

C(X,G(Y)) ~ D(F (X),Y)).
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For a full account of adjoint functors, adjoint situations, and their prop-
erties with respect to composition and preservation of limits and colimits,
see [15]. We next describe the functors indicated above.

Definition 4.2 Let Fy : Set — Rel be the inclusion functor and define
G1 : Rel — Set for an object X and morphism R : X — Y by setting

1. G1(X) to be the power set 2.

2. G1(R) to be the relational image function R[-]:2% — 2V,
Theorem 4.3 The pair (F1,G1) is an adjoint situation.

Proof. We supply only the main point. For sets X and Y there is a bijection
between relations from X to Y and functions from X to the power set 2.
Here a relation R is taken to the function f with f(z) being the set of all
elements related to z. This provides a natural isomorphism from Rel(X,Y")
to Set(X,2Y). Thus Rel(F1X,Y) ~ Set(X,G1Y). =

Definition 4.4 The forgetful functor Gy : FSet — Set takes an object
(X,A) to X and a morphism R : (X, A) — (Y,B) to R: X — Y. Similarly,
there is a forgetful functor G5 : FRel — Rel.

Definition 4.5 Define Fy, Hy : Set — FSet and F3, H3 : Rel — FRel for
an object X and morphism R: X —Y by setting

1. F5(X) and F5(X) to be the object (X,0).
2. Hy(X) and Hs3(X) to be the object (X, 1).

3. F5»(R), F5(R), Hy(R) and H3(R) are R.

Here, 0 and 1 are the obvious constant functions, and in (3) R is of course
considered with the appropriate domain and codomain.

Theorem 4.6 Each of the pairs (Fa, G2), (G2, Ha), (F3,G3) and (G, H3)
are adjoint situations.

Proof. While a morphism R : X — Y in either Set or Rel will not lift to
a morphism R : (X, A) — (Y, B) for any choice of functions A and B, the
morphism R will lift if either A is the constant 0 or B is the constant 1,
since the required inequality will then be trivial. So
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FSet((X,0), (Y, B)) ~ Set(X,Y)
Set(X,Y) ~ FSet((X, A), (Y, 1))

The first shows FSet(F»(X), (Y, B)) ~ Set(X,G2(Y, B)), and the second
that Set(G2(X,A),Y) ~ FSet((X, A), H2(Y)). These lead to the adjoint sit-
uations (Fy, G2) and (G2, H2). The arguments to show (F3, G3) and (G, H3)
are adjoint situations are essentially identical. m

Definition 4.7 Let Fy : FSet — FRel be the inclusion functor and define
G4 : FRel — FSet for an object (X, A) and a morphism R : (X, A) — (Y, B)
by setting

1. G4(X, A) = (2%, inf A) where inf A(S) = inf{A(z) : z € S}.
2. G4(R) is the relational image function R[-]:2% — 2V,
Theorem 4.8 The pair (Fi, G4) is an adjoint situation.

Proof. Say R: (X,A) — (Y, B) in FRel. For S C X and y € R[S] there is
x € S with z Ry. As A(z) < B(y), we have (inf A)(S) < (inf B)R[S]. So

R[-]: (2%,inf A) — (2Y,inf B) is a morphism in FSet. It follows that Gy is
a functor. Also

FRel((X, A), (Y, B)) ~ FSet((X, A), (2 ,inf B)).

Indeed, if R : (X,A) — (Y, B), then A(z) < (inf B)R[{z}], showing that
R[{-}] : (X,A) — (2Y,inf B). Conversely, for f : (X, A) — (2V,inf B),
define a relation R : X — Y by xRy if y € f(x). Then z Ry implies
A(z) < (inf B)(f(x)), hence A(z) < B(y). =

One easily checks commutation properties of the above diagram. As ad-
joint situations compose to adjoint situations, it follows that the functors
from Set to FRel sending a set X to (X,0) and (X, A) to 2% give an ad-
joint situation. We next consider two endofunctors on FRel that play an
interesting role.

Definition 4.9 Let Proj,Inj : FRel — FRel be given by
1. Proj = F30(G3. and
2. Inj = H3 0 Gjs.

We call these the projective cover and injective hull functors.
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Here the names are chosen because Proj sends an object (X, A) to its
projective cover (X,0) and Inj takes (X, A) to its injective hull (X, 1). See
Propositions 3.17 and 3.18. A simple calculation gives the following.

Proposition 4.10 {o Proj = Injoi.

5 Monoidal Structure

Recall that a symmetric monoidal category C is a category equipped with a
bifunctor ® : C x C — C, a distinguished object I, and natural isomorphisms
axyz XY ®Z) - (X®Y)®Z, oxy : X®Y - Y ®X, and
Ax : X — A® I, subject to certain coherence conditions [15, p. 157]. The
bifunctor ® is often called a tensor product, and I the tensor unit.

Proposition 5.1 Fach of Set, Rel, FSet, and FRel has finite products,
so has a monoidal structure ® given by products and called its Cartesian
monoidal structure.

1. In Set, X ® Y is ordinary Cartesian product X x Y.
2. In Rel, X ® Y is disjoint union X LY.

3. In FSet, (X,A)® (Y, B) is (X x Y,min{A, B}).

4. In FRel, (X,A)® (Y,B) is (X UY,AUB).

Note in Rel and FRel this product tensor is the biproduct @ discussed above.

Proof. This is a reiteration of results on products in these categories given
in a previous section, with the well known fact that products give a monoidal
structure in any category with finite products. =

The category Rel carries another monoidal structure. In Rel, set X ® Y
on objects to be the usual Cartesian product of sets (which is not the cate-
gorical product), and set R® S for morphisms to be usual product relation.
With this monoidal structure, Rel behaves much like the category of finite
dimensional vector spaces over a given field, and has found application in re-
cent categorical treatments of quantum mechanics [1, 9]. Our main interest
in monoidal structure here is to lift this situation to FRel.
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Definition 5.2 A t-norm, or triangular norm, is a function T : T x 1 — 1
that is order preserving in both coordinates and satisfies

1. T(z,y) =T(y,x).
2. T(x,T(y,2)) =T(T(x,y), z).
3. T(l,z)==.

A conorm C is a function C : 1 x I — 1 satisfying the same conditions but
with (3) replaced by C(0,2) = x.

Common examples of t-norms include ordinary multiplication and the
operation min, common examples of conorms include truncated addition
and max. Such t-norms and conorms are used in fuzzy logic to play the role
of the connectives “AND” and “OR” of classical 2-valued logic.

Proposition 5.3 For any t-norm T on 1, there is a symmetric monoidal
structure @7 on FRel defined as follows.

1. (X,A) @7 (Y,B)= (X xY,T(A, B)) where T(A,B) =T o (A x B).
2. R®7 S s the ordinary product relation R x S.

3. The tensor unit is I = ({x},1) where {x} is some one-element set.

A corresponding result shows a conorm C yields a tensor ®¢, but with tensor
unit I = ({x},0).

Proof. Let R: (X,A) — (X', A") and S : (Y, B) — (Y, B’) be morphisms.
If (z,y) is R x S related to (z/,y), then x Ra’ and y S'y'. We then have that
A(x) < A'(2') and B(y) < B'(y’). Since the t-norm 7 is order preserving
in each coordinate, we then have that T(A, B)(z,y) < T(A',B")(',y).
So R x S is a morphism. That ®r is compatible with composition and
identity morphisms follows from the corresponding results for the tensor on
Rel defined through Cartesian product. So ®7 is a bifunctor.

Results for the tensor for Rel provide a tensor unit {*}, and natural iso-
morphisms axy z : X X (Y xZ) = (X xY)xZ,oxy : XxY — Y xX, and
Ax : X xI — I x X that satisfy the coherence conditions. To see these lift to
FRel amounts to using the characterization of isomorphisms in FRel given
in Proposition 3.14 as bijections preserving the additional mapping condi-
tion, and noting that T'(A,T(B,C)) = T(T(A, B),C), T(A,B) = T(B, A),
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and T'(A,1) = A. These of course follow from the the properties of t-norms
given in Definition 5.2. The modification for conorms is trivial. m

In Section 4 we provided a number of functors relating the categories
Set, Rel, FSet, and FRel. The ways these functors interact with various
monoidal structures are easily computed, and summarized below. We re-
call the monoidal tensor given by categorial product is called the Cartesian
tensor as in Proposition 5.1.

Proposition 5.4 The functors Fs, Go, Ho, F3,G3, Hs as well as G1 and G4
preserve Cartesian monoidal structure. The functors F3,Gs, Hs preserve
monoidal structure when Rel has monoidal structure given by X XY and
FRel has that given by a t-norm or conorm. The functor Fy preserves
monoidal structure when Set has Cartesian monoidal structure and Rel has
monoidal structure X XY, and Fy preserves monoidal structure when the
tensor on FSet is Cartesian and that on FRel is given by the t-norm min.

We have put various types of structure on the category FRel. We now
consider how these different types of structure relate to one another. For the
following result we let = : I — I be the negation =x = 1 — x and note that
for a t-norm T there is a conorm C' = —=T— given by C(z,y) = ~T(—x,y).
We call C' the complementary conorm to 7.

Proposition 5.5 Consider the category FRel with involution I, biproduct
@, and tensor @7 from a t-norm T whose complementary conorm is C.
Then for morphisms with appropriate domains and codomains we have

1. (Q® R} = Qto R
2. Q@r(ReS) = (Qer R)& (Qer S).
3. (Qar R = QF®c R

Proof. Suppose Q : (X,A) — (X',A") and R : (Y,B) — (Y',B’) and
S:(Z,D)— (Z',D"). (1) Then Q ® R is disjoint union QLI R considered as
a morphism from (X UY, AUB) to (X'UY’, AU B’). Thus (Q ® R)* is the
converse (Q U R)~ considered as a morphism from (X' UY’, 1 — (4"UB’))
to (X UY,1 — (AU B)). This is the biproduct Q* @ R of the morphisms
QF: (X' 1-A) - (X,1—-A)and R*: (Y',1-B') — (Y,1- B).

(2) This is a similar computation using @ x (RUS) = (Q x R)U(Q x 5)
and T(A,BUD) =T(A,B)UT(A, D), as well as several others of a similar
nature involving X x (YU Z), X' x (YU Z') and T(A', B'UD’).

16



(3) A similar computation noting 1 —T(A,B) =C(1—-A,1—-B). =

The above results involving tensors ®p from t-norms, ®¢ from conorms,
and even our involution I, are all instances of a more general process of
lifting structure from the unit interval I to FRel. Clearly ®7 and ®¢ come
from lifting t-norms and conorms, and { comes from lifting negation —.

Definition 5.6 We say an n-ary operation f : 1" — 1 is monotone if in
each argument it either preserves or reverses order.

Each monotone n-ary operation f : I — I can be considered an order
preserving operation f : 1%t x ... x [* — T where a; € {+,—} and I is
considered as I with the usual order <, and I~ is the dual of I, that is, I
under the reverse order >. Using FRel™ for FRel and FRel ™ for the opposite
category, we come to our key notion.

Proposition 5.7 For a monotone f : 1% x ... x % — 1, there is a functor
F(f) : FRel™ x --- x FRel“» — FRel defined on objects and morphisms by

1. F(f)(X1,41), ..., (Xn, An)) = (X1 x -+ x X, f(A1,...,An)).
2. F(f)(R1,...,Ry) = R{* x--- x RO,
Here RT = R and R~ = R~ is the converse relation.

Proof. This is clearly well defined on objects. Suppose (Ri,...,R,) is
a morphism from ((X1, 41),...,(Xn, 4n)) to (Y1, B1),...,(Y,, By)) in the
category FRel®! x - -- x FRel*". Then

for a; =+ we have R;: (X;, 4;) — (Yi, By)

for ay = — we have R;:(Y;, B;) — (Xi, 4i)
Suppose (21, ...,Zyn) Ry X X RY) (Y1, ..., yn). Then for a; = + we have
x; R; yi, so A(x;) < B(y;), and for o; = — we have y; R; ;, so B(y;) < A(x;).
Thus f((A1(z1), ..., An(z0)) < F(B1(Y1)s- -+ Balyn))- So F(f)(Ra,..., Ry)

is a morphism in FRel. Showing that F'(f) preserves identity morphisms and
composition is routine. =

Definition 5.8 Suppose fi,..., fr are monotone with f; : ™ — 1. We let
(Fryooos fie) T4 — I

be the obvious map.
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Similarly, there is a functor (F(f1),..., F(fg)) : FRel™ ™ tmk _ FRelk
covariant in some arguments, contravariant in others, defined in a similar
manner to (fi,..., fx). Further, using the obvious natural transformations
for associativity of various cartesian products, we have the following.

Proposition 5.9 Suppose fi,..., fr are monotone with f; : I — 1, and
g : I¥ — 1 is monotone. Then the composite g(f1,..., fx) is monotone and
there is a natural isomorphism of functors

F(g(fi,- s fw)) = F(g) o (F(f1),-- -, F(fr))-

Proof. To avoid cumbersome notation, suppose fi : I? — I is type +, —,
that fo : T — I is type + and g : 1> — I is type —, +. Then g(f1, f2) is of
type —,+,+. Then F(g(f1, f2)) is a functor

F(g(f1, f2)) : FRel” x FRel x FRel — FRel.

This sends an object ((X, A), (Y, B), (Z,C)) to (X XY xZ, h), where h(z,y, z)
= g(f1(z,y), f2(2)), and it sends a morphism (R,S,T) to R~ x S x T.
We also have functors

(F(f1),F(f2)) : FRel x FRel x FRel — FRel x FRel
F(g) : FRel x FRel — FRel

Here (F'(f1),F(f2)) is covariant in its first argument, contravariant in its
second, while F(g) is contravariant in its first, covariant in its second. The
composite F(g) o (F(f1), F(f2)) takes the object ((X,A),(Y,B),(Z,C)) to
(X xY) x Z,h') where W ((x,y),2z) = g(f1(z,y), f2(2)). This composite
takes a morphism (R, S, T) to (R~x.S)xT. The usual natural isomorphisms
involved with associativity of cartesian products extend to give a natural
isomorphism between these functors. m

Corollary 5.10 If f,g are mutually inverse isomorphisms of I, then F(f)
and F(g) are mutually inverse isomorphisms of FRel.

Proof. This follows from Proposition 5.9 noting that the natural isomor-
phisms involved are actual equalities in this case. m

We say t-norms T' and 7" are equivalent, and write T' ~ T", if there is
an automorphism h of the ordered set I with h (T (x,y)) = T" (h(x), h(y)).
Then, using Corollary 5.10, we immediately have the following.
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Theorem 5.11 If t-norms T, T’ are equivalent via the isomorphism h of I,
then the functor F(h) is an isomorphism between the monoidal categories
(FRel, ®7,I) and (FRel, ®1+,I). Further, this functor F(f) restricts to an
isomorphism between (FSet, ®1, 1) and (FSet, @7, I).

6 Other Categories of Fuzzy Sets

Here we discuss some categories related to FRel and FSet. These include
extensions to interval-valued fuzzy sets [5] and type-2 fuzzy sets [21]. These
can be viewed as extensions of our earlier results obtained by replacing I by
more general ordered structures. We begin with the following definition due
to Goguen [7].

Definition 6.1 For a poset V', let Set (V') be the category whose objects are
pairs (X, A) where A: X — V and whose morphisms from (X, A) to (Y, B)
are functions f: X — Y with A(z) < B(f(z)).

We make the obvious modification to incorporate relations as morphisms.

Definition 6.2 For a poset V, let Rel (V') be the category whose objects are
pairs (X, A) where A: X — V and whose morphisms from (X, A) to (Y, B)
are relations R from X to'Y satisfying x Ry = A(x) < B(y).

So FSet is Set (I) and FRel is Rel (I). Goguen paid particular attention
to Set (V) when V is a completely distributive lattice, giving an abstract
axiomatization of such categories. Barr [2] also considered categories Set (V)
in the case where V is a kind of complete distributive lattice known as a
frame, and noted such categories can be embedded into topoi. Here we
consider instances of Rel (V') arising from structures related to fuzzy sets.
We begin with interval-valued fuzzy sets.

Definition 6.3 Define 112 = {(a,b) : 0 < a < b < 1} and partially order
this set by (a,b) < (¢,d) iff a < ¢ and b < d.

For an account of the role of 1% in interval-valued fuzzy sets see [5].
We only mention that it is a completely distributive lattice with meets and
joins given componentwise, and carries the further structure of a De Morgan
algebra where — (a,b) = (1 —b,1 — a).

Definition 6.4 Define the category IFRel of interval-valued fuzzy sets and
relations to be Rel (1%, and let IFSet be Set (I12]).
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A t-norm for interval-valued fuzzy sets is a function 7" : 12 x 112 — T2l
satisfying conditions similar to Definition 5.2. Using these, we can again
construct monoidal structure on IFRel and on IFSet. One can also use the
De Morgan negation on IZ to construct an involution on IFRel much as
above. However, just as with FRel, this involution does not restrict to an
involution on IFSet.

Theorem 6.5 For a t-norm T on I we can define a monoidal structure
®7 on IFRel by setting

2. Rr S=RxS.
3. I = ({x},1) is the tensor unit where 1(x) = (1,1).

Further TFRel has an involution § where (X, A)} = (X,=A) and R* = R~.

We next consider matters for the type-2 fuzzy sets introduced by Zadeh.
While the reader should consult [21] for a general background, we recall the
key notion of the algebra of truth values for type-2 fuzzy sets.

Definition 6.6 The algebra of truth values for type-2 fuzzy sets is
M = ( [07 1][0,1] 7|_|7 |_|7* ’(_)7 i)

where the operations are convolutions of the usual operations V, A\, —,0,1 on
the unit interval:

(fug)(z) = sup{f(y)Ag(z):yVz=ux}
(frg)(z) = swp{f(W)Ag(z):ynz=ux}
fr(x) = sup{f(y):—~y=ux}

The constants 0(x) and 1(z) are the characteristic functions of {0} and {1},
respectively. The expression for f* of course simplifies to f*(x) = f(—z).

This algebra has many interesting algebraic properties [21]. It satisfies
all equations commonly used to define bounded lattices except the law of
absorption xM(xUy) = x = zU(zMNy), and it does satisfy the version of this
where the middle term in the three equalities is omitted. It forms a type of
structure known as a De Morgan bisemilattice. While this structure is
not a lattice, it can be treated in an order-theoretic way.
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Definition 6.7 Define relations <., <p and <q on M as follows:
L f<ugif fUg=g.
2. f<ngif flg=F.
3. f<agf f<ugand f<ng.
We call <, the join order, <q the meet order, and <; the double order.

Using basic properties of M, it is easily seen that <., and <pn are both
partial orders on M, and as <, is the intersection of these partial orders, it
is a partial order on M. Indeed, this holds for any bisemilattice. However,
while a poset, M is not a lattice under any of these orders. We next use this
poset M to define a category of type-2 fuzzy sets.

Definition 6.8 Let 2-FRel be the category Rel (M) where M is a considered
as a poset under its double order, and let 2-FSet be Set (M).

We next consider the matter of additional structure on 2-FRel. We
begin by using the operation * on M, given by f*(z) = f(—z), to define an
involution on 2-FRel.

Proposition 6.9 There is an involution I on 2-FRel taking (X, A) to (X, A*)
and R to its converse R™.

Proof. The key points are that * is a period two operation on M that is
order inverting with respect to the double order. It is obvious that it is
period two. In [21] it is shown that f <., g implies ¢* <p f*, and f <n g
implies g* <.y f*. From this it follows that f <; g implies ¢* <4 f*. =

The matter of monoidal structure is somewhat problematic. We begin
with the notion of a t-norm for type-2 fuzzy sets. The following is perhaps
the most restrictive notion [21].

Definition 6.10 For a t-norm T on 1, define its convolution to be the binary
operation T on M given by

T (f,9) (z) =sup{(f(y) Ag(2)) : T (y,2) = x}

In [21, p. 39-41] it is shown that such T is commutative, associative,
and has T as a unit. If 7' were order preserving in both coordinates with
respect to the double order, then it would give a monoidal structure on 2-
FRel, much as before. However, this seems not to be the case. There is a
subalgebra of M where things are better behaved.
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Definition 6.11 For f € M call f normal if its supremum is 1, and
convex if it is never the case that f(x) > f(y) < f(z) when z <y < z. Let
L be the set of all convex normal functions in M.

In [21] it is shown that L is a subalgebra of M = (M, 1,1, *,0,1); on L
the orders <pn, <, and <, agree and give lattice orders where meet is given
by M and join is given by U; and L is a distributive lattice with a De Morgan
structure given by .

Definition 6.12 Let CNRel be the category Rel (L) of convex normal sets
and relations, and CNSet be Set (L).

Before considering structure on these categories, we require a lemma.

Lemma 6.13 If T is a continuous t-norm on I, then its convolution T
restricts to an operation on L that is commutative, associative, has 1 as an
identity, and is order preserving in both coordinates.

Proof. We follow [21] and write f A g for T(f,g). Proposition 61 of [21]
shows 7' is commutative, associative, and has 1 as a unit on all of M, hence
these hold also on L. Theorem 63 of [21] shows more than it states: for p €
M, that p is convex iff p A (qUr) = (p A ¢)UU(p A7) for all ¢, € M. Suppose
f, g are convex and ¢,r € M. Then using this result and associativity,

(fag)a(gur) = fA(ga (gUr))
fAa((gagU(gar))
(fAa(gAaq)U(fA(gar))
(fag) Ag)U((fAg) aT)

proving f A g is convex.

In [21] f¥ and f% are used for the pointwise least increasing and decreas-
ing functions above f. So, [21, Proposition 30], f is normal iff f = fLF,
Proposition 62 of [21] gives (f Ag)" = fLa g” and (f Ag)® = fFA g So if
f,g are normal, then (f A g)*® = 1A 1 = 1 by Proposition 61. Hence f,g
normal implies f A g is normal. Thus T restricts to an operation on L.

It remains to show 7' in order preserving in each argument. On L the
orders <, <p, <4 agree, so g <g h is equivalent to g U h = h. Then for
fyg,h € L with g <4 h we have by the convexity of f that (f Ag)LU(f Ah) =
fA(gUh) = fAh. Thus g <4 h implies fAg <; f Ah. So T is order
preserving in the second coordinate, and by commutativity in its first. =

Using this and the De Morgan negation * on L, we have the following.
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Theorem 6.14 For any continuous t-norm T on 1, there is a monoidal
structure @7 on CNRel where

1. (X,A)® (Y,B) = (X xY,T(A, B))
2. RoS=RxS.

3. T = ({x},1) is the tensor unit where 1(x) = 1.

Further, there is an involution 1 on CNRel where (X, A)} = (X, A*) and
RY = R~ s the converse.

While L is complete and distributive, it is not completely distributive
[10]. This can be remedied. Each convex normal function can be straightened
out by taking its mirror image when it begins to decrease. Defining ffg if the
straightened out versions of f, g agree almost everywhere gives a congruence
on L with the quotient D = L/6 being a completely distributive lattice with
De Morgan negation. The reader should see [10, 11] for further details.

Theorem 6.15 The category Rel (D) has an involution given by the De
Morgan negation on D, and the t-norm T(z,y) = min{z,y} on I gives a
monoidal structure @1 on Rel (D).

Proof. The convolution 7" of the t-norm min is the operation M on M, which
is the meet of the lattice L. In [11] it is shown that @ is a lattice congruence,
so is compatible with the convolution T. Thus, this operation on D is the
meet of this lattice, so is commutative, associative, order preserving in each
coordinate, and has an identity. Thus, it yields a tensor on Rel (D). m

We suspect the above result holds for the convolution of any continuous
t-norm. We record this below.

Problem 6.16 Is the congruence 8 on L compatible with the convolution T
of each continuous t-norm on I?

We noted before that Goguen [7] axiomatized the categories arising as
Set (V') for a completely distributive lattice V. We feel an answer to the
following question(s) would be of interest.

Problem 6.17 Azxiomatize the categories Rel (V') where V is a completely
distributive lattice, perhaps with De Morgan involution, or t-norm.

23



7 Comparison with abstract categories of relations

The category FRel clearly has much in common with the category Rel.
An abstraction of categories of relations has been given under the name
of allegories [4]. FRel does not naturally form an allegory, but does have
features in common with them. Here we discuss the relationship of FRel to
allegories, and make some brief comments directed toward the relationship
between FRel and other categories generalizing Rel [3, 1].

Definition 7.1 An allegory is a 2-category C where homsets form posets
that are meet semilattices, equipped with an involution T that is the identity
on objects, that satisfies the modular law

(Ba) Ay < Blan(8Ty)
Herea: X =Y, 0: Y —>Zand~v: X —- Z .

The prime example of an allegory is Rel. Here homsets are complete
Boolean algebras with meets given by intersection. The dagger on Rel is
the identity on objects, and converse Rf = R~ on morphisms. This gives a
unary operation  on each homset Rel (X, X)) and makes these homsets into
structures known as relation algebras [16].

Proposition 7.2 FRel is a 2-category where homsets are complete Boolean
algebras, and FRel has an involution {. However, I is not the identity on
objects, making a direct interpretation of the modular law meaningless.

The modular law for allegories encodes properties of the converse of a re-
lation. We feel we should be able to access this somehow using the involution
T on FRel as it does give converse relations, but with altered domains and
codomains. One possibility is described below, essentially taking advantage
of copies of Rel inside of FRel.

Theorem 7.3 FRel is a 2-category where homsets are meet semilattices,
equipped with an involution I and an idempotent endofunctor P such that

1. P and 1 preserve meets.
2. P 1 agrees with P on objects and P 1P =P 1.
3. When (Ba) Ay is defined, P((Ba) Ay) < PB(PaA (P(BH)PY)).
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Proof. Let P be the projective cover functor of Definition 4.9, so for an
object (X, A) we have P(X,A) = (X,0) and for R : (X,A4) — (Y,B) we
have PR is the same relation R but as a morphism from (X,0) to (Y,0).
Then P is an endofunctor that is clearly idempotent.

(1) As meets are given by intersections, P(R A S) = PR A PS and
(RAS) = (RNS)" =R- NS~ =R ASE (2) Alof P, P}, PP
take an object (X, A) to (X,0). Both P { P and Pi take a morphism
R:(X,A) — (Y,B) to R~ : (Y,0) — (X,0). (3) The second condition
ensures the domains and codomains of the morphisms are such that when
the left side is defined, then so is the right side. As relations, ignoring
domain and codomain, PR = R and Rf = R~. So the identity becomes the
usual modular law in Rel. m

We note that the above result can be formulated also using the injective
hull functor I = Inj of Definition 4.9. Here I takes an object (X, A) to
(X,1), and a morphism R to the relation R with appropriately modified
domain and codomain. So I provides access to a copy of Rel inside FRel,
just as does P. We next make a few comments on generalizing this situation.

Definition 7.4 A fuzzy allegory is a 2-category C with involution § and
idempotent endofunctor P satisfying the conditions of Theorem 7.3.

We note that an allegory is the same as a fuzzy allegory where the
additional endofunctor P is the identity. We extend this further.

Proposition 7.5 For a fuzzy allegory C with endofunctor P and involution
I, the image category P(C) is an allegory under the dagger = P 1.

Proof. As P is idempotent, the image P(C) is a full subcategory of C, so
homsets in this image are meet semilattices when given the same structure
as the 2-category C. For T = P { we clearly have T is a contravariant functor
from P(C) to itself. Note 1 = P11 P = Pii, and as { is an involution
Tt = P, hence is the identity on P(C). For an object x of P(C) we have
Tf(x) =P 1Pz =P iz, and as P = P on objects, it follows that {(z) =
Pz = z. So 7 is the identity on objects.

Let «, 3,v be morphisms in P(C) with Sa A 7 defined. As P restricts
to the identity on P(C), 7.3 (3) gives (Ba) Ay < B(a A (P(5Y)7)). Now
P(3*) =P 3 = B'. This gives the modular law. m

To conclude, we briefly mention some facts that help in considering the
relationship of FRel to other generalizations of Rel considered by Carboni
and Walters [3] and Abramsky and Coecke [1].
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Definition 7.6 For a set X, let Ax be the relation from X to X x X, and
Vx be the relation from X x X to X, given by

Ax = {(z,(z,2)):ze€ X}
Vx = {((z,x),z) v € X}

We remark that these morphisms in Rel yield a Frobenius structure that
is key in Carboni and Walter’s [3] treatment. We note the following.

Proposition 7.7 For a t-norm T on 1, consider the following statements
about the tensor @ on FRel.

1. Ax : (X, A) = (X, A) @7 (X, A) is a morphism in FRel.
2. Vx: (X,A)®r (X,A) — (X, A) is a morphism in FRel.

Then (1) holds for all objects (X, A) iff T is the t-norm min. However (2)
holds for all objects (X, A) without any restriction on the t-norm.

Proof. Having Ax be a morphism simply means A(x) < T'(A(z), A(x)) for
all x € X. Having this hold for all objects (X, A) is equivalent to requiring
a < T(a,a) for all a € I. The one and only t-norm with this property is
min. Having Vx be a morphism means T'(A(x), A(x)) < A(x) which follows
as any t-norm satisfies T'(a, ) < . m

The matter of compact closure is even more problematic. Here, we use
the Kelly-Laplaza formulation of compact closure (see [1] for further details).

Definition 7.8 A compact closed category is a symmetric monoidal cat-
egory in which each object A has a dual object A*, a unit na : I — A*® A
and a counit €4 : AQ A* — I such that

A AR - AR (A" @A)~ (ARARA—-T®A~A
evaluates to the identity, as does the dual expression for A*.

Proposition 7.9 For any t-norm T on I, the symmetric monoidal category
(FRel, ®7) is not compact closed.

Proof. Recall, the tensor unit for ®p is ({*},1) where 1(x) = 1. Then for
any set X and any object (Y, B), the empty relation is the only morphism
from I to (Y, B) ®r (X,0) since T(B(y),0) = 0. No matter what object is
chosen for the dual of (X,0), the only candidate for the unit 7 x ¢ is the
empty relation, so the expression in Definition 7.8 cannot evaluate to the
identity. m
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