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Abstract For F the field of real or complex numbers, let CG(F) be the continuous
geometry constructed by von Neumann as a limit of finite dimensional projective
geometries over F. Our purpose here is to show the equational theory of CG(F) is
decidable.
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Let F be the field of real or complex numbers. For n ≥ 1, the subspaces of the
n-dimensional inner product space Fn form a modular ortholattice PGn−1(F), or
simply PGn−1. This lattice has a normalized dimension function dn : PGn−1 →
[0, 1] that associates to a subspace A, its dimension divided by n. von Neumann
[8] showed there is an embedding PGn−1 ↪→ PG2n−1 that preserves normalized
dimensions. So the inductive limit of the chain PG1 ↪→ PG3 ↪→ PG7 ↪→ · · ·
yields a modular ortholattice PG∞(F), or simply PG∞. This ortholattice PG∞ also
has a dimension function, so is a metric lattice [1], and its metric space completion is
a complete modular ortholattice CG(F), or simply CG.

This CG was von Neumann’s first example of a continuous geometry. Our purpose
is to show the equational theory of CG is decidable. The key tools are results of
Herrmann and Roddy [4] on equations in modular ortholattices, and of Dunn, Hagge,
Moss, and Wang [7] showing the first order theory of each PGn is decidable.

This manuscript was prepared after the Quantum Logic Inspired by Quantum Computation
Workshop in Bloomington IN in 2009. Since its preparation, the author has become aware of
independent work by Christian Herrmann [3].
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Definition 1 Let Eq(L) be the set of equations s ≈ t holding in L.

Lemma 2 Eq(CG) = Eq(PG∞).

Proof As PG∞ is a subalgebra of CG, any equation holding in CG holds in
PG∞. Suppose s(x1, . . . , xn) ≈ t (x1, . . . , xn) holds in PG∞. By [1], the oper-
ations of meet, join, and orthocomplementation on the metric lattice PG∞ are
uniformly continuous, and their continuous extensions to the metric completion CG
are its meet, join, and orthocomplementation. The terms s,t give uniformly con-
tinuous n-ary operations on PG∞ and CG, with the operations on CG extending
those on PG∞. As s ≈ t holds in PG∞, the operations on CG agree on the
dense subspace PGn

∞ of CGn, and by continuity, agree on CGn. So s ≈ t holds
also in CG.

Lemma 3 Eq(PG1) ⊃ Eq(PG2) ⊃ · · · is a strictly decreasing chain of sets whose
intersection is Eq(PG∞).

Proof If m ≤ n, PGm is isomorphic to an interval of PGn, so by [6] PGm is a
homomorphic image of a subalgebra of PGn, giving Eq(PGm) ⊇ Eq(PGn). If
m < n, PGn is of greater height than PGm, so by Łoś’ theorem is not a homo-
morphic image of a subalgebra of an ultrapower of PGm. As PGn is subdirectly
irreducible, Jónsson’s theorem [2] shows PGn does not belong to the variety gen-
erated by PGm, so Eq(PGm) strictly contains Eq(PGn). As PG∞ is the union of
the algebras PG2n−1, it follows that Eq(PG∞) is the intersection of this decreasing
chain.

We require two results from [4] that let us push a failure of s ≈ t in PG∞ down
to some PGm where m is determined solely from the form of the equation.

Lemma 4 Let s(x1, . . . , xn) and t (x1, . . . , xn) be ortholattice terms with variables
among x1, . . . , xn, and suppose s,t combined have a total of k occurrences of
∧, ∨. Then there is a bounded lattice term r(z1, . . . , z2n) with 2n variables and
3k + 5 occurrences of ∧, ∨ so that for any orthomodular lattice L the following are
equivalent.

1. s(x1, . . . , xn) ≈ t (x1, . . . , xn) holds in L.
2. z1 ≤ z′

2, . . . , z2n−1 ≤ z′
2n ⇒ r(z1, . . . , z2n) ≈ 0 holds in L.

Proof The proof is that of [4, Lemma 3.1]. Set u = (s ∧(s′ ∨ t ′))∨(t ∧(s′ ∨ t ′)), and
note orthomodularity shows s ≈ t is equivalent to u ≈ 0. Use DeMorgan’s laws to
rewrite u as a bounded lattice term in the variables x1, x ′

1, . . . , xn, x ′
n, and the result

follows as bounded lattice terms are monotone in their arguments. As s ≈ t has a
total of k occurrences of ∧, ∨, then u has a a total of 3k + 5 occurrences of ∧, ∨, and
hence so does r .
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Lemma 5 Suppose L is a complemented, atomic, modular lattice, r(x1, . . . , xn)
is a bounded lattice term whose variables are among x1, . . . , xn and having k
occurrences of ∧, ∨, a is an atom of L, and b1, . . . , bn ∈ L are such that a ≤
r(b1, . . . , bn). Then there are c1, . . . , cn ∈ L of height at most 2k with ci ≤ bi , and
a ≤ r(c1, . . . , cn).

Proof The inductive proof is that of [4, Lemma 2.1] with bookkeeping of the bounds
on heights. If k = 0 then r is either the constant 1 or a variable xj and the ci can
all be chosen to be either 0 or a. If r = r1 ∧ r2, the inductive hypothesis gives
c1i ≤ bi of height at most 2k−1 with a ≤ r1(c11, . . . , c1n) and c2i ≤ bi of height at
most 2k−1 with a ≤ r2(c21, . . . , c2n). Set ci = c1i ∨ c2i . If r = r1 ∨ r2 things are
trivial if a ≤ r1(b1, . . . , bn) or a ≤ r2(b1, . . . , bn). Otherwise, modularity is used
to show there are atoms a1, a2 with a1 ≤ r1(b1, . . . , bn), a2 ≤ r2(b1, . . . , bn), and
a ≤ a1 ∨ a2. The inductive hypothesis gives c1i ≤ bi of height at most 2k−1 with
a1 ≤ r1(b1, . . . , bn), and c2i ≤ bi of height at most 2k−1 with a2 ≤ r2(b1, . . . , bn).
Set ci = c1i ∨ c2i .

Proposition 6 Suppose s(x1, . . . , xn) and t (x1, . . . , xn) are ortholattice terms whose
variables are among x1, . . . , xn and that together they have k total occurrences of
∧, ∨. Then the following are equivalent.

1. s ≈ t holds in CG.
2. s ≈ t holds in PG∞.
3. s ≈ t holds in PGm−1 where m = 2n23k+5.

Proof The equivalence of the first two statements is Lemma 1, and Lemma 2 shows
the second implies the third.

To show the third imples the second, let r(z1, . . . , z2n) be the bounded lattice
term given in Lemma 4 with 2n variables and 3k + 5 occurrences of ∧, ∨. If
s ≈ t does not hold in PG∞, then by Lemma 3 it fails in PGq for some q. So there
are b1, . . . , b2n in PGq with b1 ≤ b′

2, . . . , b2n−1 ≤ b′
2n and r(b1, . . . , b2n) .= 0.

As PGq is a complemented, atomic, modular lattice, there is an atom a with a ≤
r(b1, . . . , bn). Lemma 5 provides c1, . . . , c2n in PGq of height at most 23k+5, with
a ≤ r(c1, . . . , c2n), and ci ≤ bi . Let c = c1 ∨ · · · c2n, and note the height h of c is at
most m = 2n23k+5.

With the orthocomplementation x− = x ′ ∧ c, the interval [0,c] of PGq

forms an ortholattice isomorphic to PGh−1. As c1 ≤ c−
2 , . . . , c2n−1 ≤ c−

2n and
r(c1, . . . , c2n) .= 0, we have s ≈ t fails in the interval [0,c], so it fails in PGh−1, and
therefore also fails in PGm−1.

With the result of Dunn, Hagge, Moss, and Wang [7] giving the decidability
of the first order theory of PGm−1, the equational theory of CG is decidable.
We do not know if the full first order theory is decidable, or if the theory of
quasi-identities (formulas of the form s1 ≈ t1 & · · · & sn ≈ tn ⇒ s ≈ t) in
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CG is decidable. While perhaps not directly related to this problem, we include a
small observation about quasi-identities in the setting of finite height orthomodular
lattices.

Proposition 7 Suppose L is an orthomodular lattice with an upper bound h on the
lengths of its chains. If the equational theory of L is decidable, then the theory of
quasi-identities in L is decidable.

Proof This relies on results in [5]. There, the notion of a partial matrix in an ortho-
modular lattice is developed. A partial matrix is a doubly indexed finite sequence
aij of elements of L. A partial matrix is admissible if it satisfies certain techni-
cal properties, and the size of a partial matrix is the sequence of lengths of its
rows. The sizes are linearly ordered in the lexicographical ordering, and if L has
height at most h, there is a finite upper bound on the possible sizes of admissible
partial matrices in L. Begin with the largest possible size σ , as determined by h.
Then [5, Lemma 6] provides a term tσ so that tσ ≈ 0 holds in L if, and only if,
L has no admissible partial matrix of this size. If L has none of the largest size,
let σ ′ be the next largest size and produce tσ ′ to determine if L has an admissi-
ble partial matrix of this size. Continuing in this way, as L is guaranteed to have
an admissible partial matrix, we can use the decidability of the equational theory of
L to determine the maximal size of an admissible partial matrix in L, and we call
this σ .

Then [5, Lemma 6] provides a term t (x1, . . . , xq), where q is the number of entries
in a maximal size admissible partial matrix, such that t (a1, . . . , aq) = 1 if a1, . . . , aq

comprise the entries of an admissible partial matrix in L listed in the natural order, and
t (a1, . . . , aq) = 0 otherwise. Also, [5, Lemma 2], there is a term p(x1, . . . , xq, y) so
that for any a1, . . . , aq in L, p(a1, . . . , aq, 0) = 0 and if a1, . . . , aq naturally form
an admissible partial matrix of size σ , then p(a1, . . . , aq, b) = 1 for any b .= 0.

Orthomodularity shows any equation s ≈ t is equivalent to one of the form u ≈ 0.
So any quasi-identity s1 ≈ t1 & · · · & sn ≈ tn ⇒ s ≈ t is equivalent in orthomodular
lattices to one of the form u1 ≈ 0 & · · · & un ≈ 0 ⇒ v ≈ 0, and by taking u =
u1 ∨ · · · ∨ un, to one of the form u ≈ 0 ⇒ v ≈ 0. We claim the following formulas
are equivalent in L.

1. u(y1, . . . , yn) ≈ 0 ⇒ v(y1, . . . , yn) ≈ 0
2. t (x1, . . . , xq) ∧ p(x1, . . . , xq, u(y1, . . . , yn))

′ ∧ v(y1, . . . , yn) ≈ 0

If the first fails, there are b1, . . . , bn with u(b1, . . . , bn) = 0 and v(b1, . . . , bn) .= 0.
Then the second fails when the admissible partial matrix a1, . . . , aq is substituted
for x1, . . . , xq and b1, . . . , bn are substituted for y1, . . . , yn as the first and second
terms in the second formula evaluate to 1 and the third is not 0. If the second formula
fails when some c1, . . . , cq are substituted for x1, . . . , xq and some b1, . . . , bn are
substituted for y1, . . . , yn, then t (c1, . . . , cq) .= 0, so the properties of t give that
c1, . . . , cq is an admissible partial matrix. Also p(c1, . . . , cq, u(b1, . . . , bn)) .= 1,
and as c1, . . . , cq is admissible, the properties of p give that u(b1, . . . , bn) = 0.
Finally, v(b1, . . . , bn) .= 0, and this gives a failure of the first formula.
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