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Abstract
We introduce modal compact Hausdorff spaces as generalizations of modal spaces, and show these are coalgebras for the
Vietoris functor on compact Hausdorff spaces. Modal compact regular frames and modal de Vries algebras are introduced as
algebraic counterparts of modal compact Hausdorff spaces, and dualities are given for the categories involved. These extend
the familiar Isbell and de Vries dualities for compact Hausdorff spaces, as well as the duality between modal spaces and modal
algebras. As the first step in the logical treatment of modal compact Hausdorff spaces, a version of Sahlqvist correspondence
is given for the positive modal language.
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1 Introduction

A duality between modal algebras and modal spaces (descriptive Kripke frames) is of crucial
importance in modal logic. Modal algebras are obtained by extending Boolean algebras with a normal
additive unary operation. Modal spaces are Stone spaces equipped with a binary relation satisfying
certain conditions. This duality is an extension of the celebrated Stone duality between Boolean
algebras and Stone spaces. Every axiomatically defined system of modal logic, via this duality, is
sound and complete with respect to modal spaces. In contrast to this, there exist relationally (Kripke)
incomplete systems of modal logic. This bridge between modal algebras and modal spaces has been
instrumental in investigations of wide range of phenomena in modal logic and led to a resolution of
many open problems in the area (see, e.g. [8, 10, 32]).

Modal spaces also admit a coalgebraic representation as coalgebras for the Vietoris functor on
the category Stone of Stone spaces and continuous maps [1, 16, 33]. The category of Vietoris
coalgebras on Stone is isomorphic to the category of modal spaces and corresponding morphisms
(continuous p-morphisms). This isomorphism brings an extra dimension, as well as a host of methods
and techniques developed in coalgebra and coalgebraic logic, into modal logic investigations [43].
From the coalgebraic point of view, however, the Vietoris functor, as well as the notion of a Vietoris
coalgebra, can be defined in a more general setting of compact Hausdorff spaces. Stone spaces
are compact Hausdorff spaces that, in addition, are zero-dimensional (have a basis of clopen sets).
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2 Modal compact Hausdorff spaces

Ubiquitous mathematical structures such as [0,1] provide examples of compact Hausdorff spaces that
are not zero-dimensional. Moreover, there are many logical formalisms (e.g. probabilistic systems)
that have as their models structures based on (not necessarily zero-dimensional) compact Hausdorff
spaces.

In this article, we study compact Hausdorff analogues of modal spaces that are obtained by
extending the Vietoris functor from Stone to the category KHaus of compact Hausdorff spaces
and continuous maps. This results in the notion of a modal compact Hausdorff space. This is
a structure (X ,R), where X is a compact Hausdorff space and R is a continuous relation on X ,
meaning the corresponding map from X to its Vietoris space is continuous. The category MKHaus
of modal compact Hausdorff spaces and continuous p-morphisms is then isomorphic to the category
of coalgebras for the Vietoris functor on KHaus.

Apart from their connection to coalgebras, modal compact Hausdorff spaces have an interesting
role as part of the wider study of topological spaces with additional binary relations. Examples of such
include Nachbin’s ordered topological spaces. These are pairs (X ,≤), where X is a topological space
and ≤ is a quasi-order on X whose graph is closed in the product [38]. The continuity of a relation in
the above sense implies its graph is closed, so modal compact Hausdorff spaces with a reflexive and
transitive relation fall in scope of Nachbin’s theory. Continuous relations on topological spaces also
play an important role in logical considerations, in particular, in interpreting quantifiers/modalities
in topological spaces [11–13, 24, 36, 42].

We extend the duality between modal algebras and modal spaces to the setting of modal compact
Hausdorff spaces. As noted above, the key part of the duality between modal algebras and modal
spaces is Stone duality between Boolean algebras and Stone spaces. The main ingredient of our new
duality will be a duality between compact Hausdorff spaces and certain algebraic structures. There
exist a number of dualities for compact Hausdorff spaces, including Gelfand-Stone duality via real
C∗-algebras [20, 21, 39, 40], Kakutani-Yosida duality via real vector lattices [30, 31, 44], de Vries
duality via complete Boolean algebras with proximity [14], Isbell duality via compact regular frames
[2, 27, 28] and Jung-Sünderhauf-Moshier duality via proximity lattices [29, 37]. We base our duality
on de Vries and Isbell dualities as we view these as the closest to Stone duality. Moreover, many
tools and techniques from the duality for modal algebras can be adapted to these settings.

A frame [28] is a complete lattice where finite meets distribute over infinite joins, and a frame
homomorphism is a map that preserves finite meets and infinite joins. Primary examples of frames
are the lattices of open sets of a topological space. A certain class of frames, the compact regular
ones, were shown by Isbell to be exactly the ones that are isomorphic to the open set lattices of
compact Hausdorff spaces, leading to a dual equivalence between KHaus and the category KRFrm
of compact regular frames and frame homomorphisms.

We define a modal compact regular frame to be a compact regular frame with two modal operators
�,� that satisfy the conditions that are used in [28, Ch. III.4] to describe the point-free analogue of the
Vietoris functor for KHaus. We note that each of � and � is determined by the other, as is the case for
modal algebras. A morphism between modal compact regular frames is a frame homomorphism that
preserves the modal operators. We show the resulting category MKRFrm of modal compact regular
frames is dually equivalent to MKHaus, thereby extending Isbell duality to the modal setting.

A de Vries algebra [3, 14] is a complete Boolean algebra with additional relation ≺, called a
proximity, satisfying certain conditions. The motivating example is the complete Boolean algebra of
all regular open sets of a compact Hausdorff space, with U ≺V if the closure of U is contained in
V . From a de Vries algebra, one contructs a compact Hausdorff space by topologizing its maximal
round filters, much as one does in Stone duality. Morphisms between de Vries algebras are functions
satisfying certain conditions with respect to the Boolean algebra structure and proximities involved.
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Modal compact Hausdorff spaces 3

These form a category DeV of de Vries algebras when equipped with a composition of morphisms
� that, importantly, is different from usual function composition. Then de Vries duality shows DeV
is dually equivalent to KHaus.

We define a modal de Vries algebra to be a de Vries algebra with an additional unary operation �

that, in a certain sense, is finitely additive with respect to the proximity relation ≺. Modal de Vries
morphisms are de Vries morphisms satisfying a condition involving ≺ and � that is similar to, but
weaker than, the homomorphism property. With the same composition � as de Vries algebras, this
yields a category MDV of modal de Vries algebras that we show is dually equivalent to MKHaus,
thereby extending de Vries duality to the modal setting.

Behaviour in MDV is not exactly as one might expect. While modal operators � do preserve
proximity, they need not preserve order. Also, isomorphisms need not be homomorphisms with
respect to the modal operators involved, and it is possible to have two different modal de Vries
operators on the same de Vries algebra giving isomorphic modal de Vries algebras.

We identify two full subcategories of MDV where the behaviour is better. The categories LMDV and
UMDV of lower and upper continuous modal de Vries algebras are those where the modal operators
can be approximated, respectively, from below and from above. Here, the modal operators are order-
preserving and isomorphisms do have the usual homomorphism property. We show each member of
MDV is isomorphic to a member of LMDV and to a member of UMDV. So LMDV and UMDV are
equivalent to MDV, hence are dually equivalent to MKHaus. Topology lends understanding to the
situation. For a modal compact Hausdorff space (X ,R), there are two natural ways to define a modal de
Vries operator � on its de Vries algebra of regular open sets, a lower continuous one given by ICR−1

and an upper continuous one given by IR−1C. Here I and C denote topological interior and closure.
It is instructive to consider these extensions of Isbell and de Vries dualities as they apply to the

classical setting of modal spaces where we have the familiar modal algebras as algebraic duals. For
a modal space X= (X ,R) with corresponding modal algebra B= (B,�,�), the associated modal
compact regular frame is the ideal completion of B where the modal operators � and � are extended
in the usual way; and the lower and upper continuous modal de Vries algebras associated with X are
given by the MacNeille completion of B, considered as a de Vries algebra, with the modal operator
� given by either the lower or upper extension of the operator on B.

Finally, we begin development of a logical theory for modal compact Hausdorff spaces X, modal
compact regular frames L, and modal de Vries algebras A. We restrict to the positive fragment of
modal logic using the operators �,�. For formulas ϕ and ψ in this language, we define what it
means for each type of structure to satisfy a sequent ϕ�ψ , and show that if X, L, and A are related
by our dualities, then they satisfy the same sequents ϕ�ψ . We also develop a version of Sahlqvist
correspondence. Stronger languages, including negation and/or infinite disjunctions, may be more
suitable for these structures, but this will have to be undertaken at a future time.

The article is organized as follows. In Section 2, we recall the standard duality between modal
algebras and modal spaces, the Vietoris functor, and the coalgebraic representation of modal spaces.
We also introduce modal compact Hausdorff spaces and show MKHaus is isomorphic to the category
of coalgebras for the Vietoris functor on KHaus. In Section 3, we recall Isbell duality, introduce modal
compact regular frames, develop their basic properties and show MKRFrm is dually equivalent to
MKHaus. In Section 4.1, we recall de Vries duality. In Section 4.2, we introduce modal de Vries
algebras and develop their basic properties. In Section 4.3, we consider lower and upper continuous
modal de Vries algebras, and show MDV is equivalent to each of its subcategories LMDV and UMDV
of lower and upper continuous modal de Vries algebras. In Section 5, we lift de Vries duality to a dual-
ity between MKHaus and LMDV, and between MKHaus and UMDV. It follows that MKHaus is also
dually equivalent to MDV. In Section 6, we summarize our duality results. We also show how Isbell,
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4 Modal compact Hausdorff spaces

de Vries, and modal algebra dualities follow as particular cases of our dualities, and make links in the
modal space setting to ideal and MacNeille completions of modal algebras. In Section 7, we provide
an interpretation of the positive modal language in our structures and establish a version of Sahlqvist
correspondence. Section 8 concludes with a few brief comments on directions for further study.

2 Modal compact Hausdorff spaces

In this section, we introduce our primary object of study, modal compact Hausdorff spaces, and show
they play the role for the Vietoris functor on compact Hausdorff spaces that modal spaces play for
the Vietoris functor on the category of Stone spaces. We begin recalling some basics.

Definition 2.1 (see, e.g., [43])
Let C be a category and let T :C→C be an endofunctor. A T -coalgebra is a pair (X ,σ ), where σ :
X →T X is a morphism in C. A morphism between two coalgebras (X ,σ ) and (X ′,σ ′) is a morphism
f in C such that the following diagram commutes:

X

σ

��

f �� X ′

σ ′
��

T X T f
�� T X ′

Consider the power set functor P on the category of sets. Recall that P maps a set W to its power
set P(W ), and a function f :W →W ′ to the direct image function Pf given by Pf (U )= f [U ] for all
U ⊆W .

Definition 2.2 (see, e.g. [8, 10])
AKripke frame is a pair (W ,R), where W is a nonempty set and R is a binary relation on W . For Kripke
frames (W ,R) and (V ,R), a function f :W →V is a p-morphism if (i) wRw′ implies f (w)Rf (w′) and
(ii) f (w)Rv implies there is w′ ∈W with wRw′ and f (w′)=v.

The following well-known result (see, e.g. [17, Proposition I.4.14]) is useful when dealing with
p-morphisms. For w∈W , we recall that R[w]={v∈W :wRv} and R−1[w]={v∈W :vRw}; also, for
S ⊆W , R[S]={w∈W :R−1[w]∩S �=∅} and R−1[S]={w∈W :R[w]∩S �=∅}.
Lemma 2.3
For (W ,R) and (V ,R) Kripke frames and f :W →V , the following are equivalent.

(1) f is a p-morphism.
(2) For each A⊆W , we have f (R[A])=R[f (A)].
(3) For each B⊆V , we have f −1(R−1[B])=R−1[f −1(B)].

Kripke frames can naturally be viewed as coalgebras for the power set functor on sets as any
relation R on W can be viewed as a function ρR :W →P(W ) that maps a point w to the set R[w]. The
following is a basic result of the coalgebraic treatment of modal logic (see, e.g. [43, Example 9.4]).

Theorem 2.4
The category of Kripke frames and p-morphisms is isomorphic to the category of P-coalgebras.

As many modal logics are incomplete with respect to Kripke semantics, there is an obvious need
to generalize Kripke semantics in such a way as to yield completeness. This results in the concept
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of general frames, which are triples (W ,R,B), where (W ,R) is a Kripke frame and B is a Boolean
subalgebra of P(W ) closed under the modal operator associated with R. Descriptive frames are those
general frames, where B is the Boolean algebra of clopen sets of a Stone topology on W , and it is well
known (see, e.g. [8, 10]) that each modal logic is complete with respect to the semantics of general
or descriptive frames. Descriptive frames are equivalent to the modal spaces described below.

Definition 2.5
A modal space is a pair X= (X ,R) where X is a Stone space and R is a binary relation on X satisfying
(i) R[x] is closed for each x∈X and (ii) R−1[U ] is clopen for each clopen U ⊆X . Let MS be the
category of modal spaces and continuous p-morphisms.

Modal spaces can also be represented as coalgebras, but on the category Stone of Stone spaces
and continuous maps. The analogue of the power set functor on the category of Stone spaces is given
by the Vietoris construction, which may be defined as follows.

Definition 2.6
For a topological space X and U ⊆X an open set, consider the sets

�U = {F ⊆X :F is closed and F ⊆U }
�U = {F ⊆X :F is closed and F ∩U �=∅}.

Then the Vietoris space V(X ) of X is defined to have the closed sets of X as its points, and the
collection of all sets �U ,�U , where U ⊆X is open, as a subbasis for its topology.

It is a standard result in topology (see, e.g. [15, p. 380]) that if X is a Stone space, then so is V(X ),
and note that if X is a Stone space, then in Definition 2.6 we could take U to be clopen. The Vietoris
construction V extends to a functor V :Stone→Stone, which sends a Stone space X to V(X ) and
a continuous map f :X →Y to V(f ) where V(f )(F)= f [F] for all closed sets F ⊆X . In considering
V-colagebras, note that if R is a relation on X , then ρR :X →P(X ) given by ρR(x)=R[x] is a well-
defined continuous map from X to V(X ) iff (X ,R) is a modal space. This leads to the following
theorem.

Theorem 2.7 ([1, 16, 33])
MS is isomorphic to the category of V-coalgebras on Stone.

Modal spaces have an algebraic realization that lies at the heart of the algebraic treatment of modal
logic.

Definition 2.8 (see, e.g. [8, 10])
A modal algebra is a pair B= (B,�), where B is a Boolean algebra and � is a unary operation on
B satisfying (i) �0=0 and (ii) �(a∨b)=�a∨�b for each a,b∈B. For modal algebras A= (A,�)
and B= (B,�), a map h :A→B is a modal homomorphism if h is a Boolean homomorphism and
h(�a)=�h(a) for each a∈A. Let MA be the category of modal algebras and modal homomorphisms.

Before proceeding, we recall Stone duality, and introduce our notation for the functors involved.
For a Boolean algebra B, let SpB be the Stone space X of B, i.e. the space of maximal filters of B
topologized by the basis {ϕ(a) :a∈B}, where ϕ(a)={x∈X :a∈x}, and for a Boolean homomorphism
h, let Sph=h−1. For a Stone space X , let ClopX be the Boolean algebra of clopen subsets of X , and
for a continuous map f , let Clop f = f −1. Then Sp and Clop are contravariant functors giving a duality
with adjunctions ϕ :B→Clop(SpB) and ε :X →Sp(ClopX ) where ε(x)={U ∈Clop(X ) :x∈U }.
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Theorem 2.9
The duality between Boolean algebras and Stone spaces lifts to a duality between the categories MA
of modal algebras and MS of modal spaces.

We do not reproduce the proof of this standard result [8, 10], but recall how the functors Sp and
Clop are lifted. For a modal algebra B= (B,�), let SpB= (X ,R), where X is the Stone space of
B and R is given by xRy iff �[y]⊆x, where �[y]={�a :a∈y}; and for a modal space X= (X ,R),
let ClopX= (ClopX ,R−1). The action of Sp and Clop on morphisms remains as before, and ϕ,ε
remain adjunctions.

We now consider matters in the more general setting of compact Hausdorff spaces.

Theorem 2.10
(see, e.g. [15, p. 244]) The Vietoris construction yields a functor V :KHaus→KHaus where a
continuous map f :X →Y is taken to V(f ) with V(f )(F)= f [F] for all closed sets F ⊆X .

It is natural to consider coalgebras for this functor.

Definition 2.11
For R a relation on a compact Hausdorff space X , we say R is point closed if the relational image
R[x] is a closed set for each x∈X . We say R is continuous if it is point closed and the associated map
ρR :X →V(X ) taking a point x to R[x] is a continuous map from X into its Vietoris space V(X ). In
other words, R is continuous if (X ,ρR) is a Vietoris coalgebra.

For a subset S of X , we use −S for the complement of S in X .

Proposition 2.12
A relation R on a compact Hausdorff space X is continuous iff R satisfies the following conditions:

(1) R[x] is closed for each x∈X .
(2) R−1[F] is closed for each closed F ⊆X .
(3) R−1[U ] is open for each open U ⊆X .

Proof. The function ρR :X →V(X ) is well defined iff R[x] is closed for each x∈X . Recall that the
Vietoris space has as a subbasis all sets {H :H ⊆U } and {H :H ∩U �=∅}, where U is open. Note
x∈R−1[U ] iff R[x]∩U �=∅, so R−1[U ]=ρ−1

R ({H :H ∩U �=∅}). Also, x �∈R−1[F] iff R[x]⊆−F , so

−R−1[F]=ρ−1
R ({H :H ⊆−F}). Therefore, if ρR is continuous, items 2 and 3 hold; and if items 2

and 3 hold, then the inverse image of each set in the subbasis is open, so ρR is continuous. �
Remark 2.13
It is obvious that if R is continuous, then R−1[x] is closed for each x∈X . It is also not difficult to
verify that R[F] is closed for each closed F ⊆X (see the proof of Lemma 7.10.2). However, R[U ]
may not always be open for an open U ⊆X .

We come now to our key notion, which amounts to a concrete realization of colagebras for the
Vietoris functor on compact Hausdorff spaces.

Definition 2.14
We call a pair (X ,R) a modal compact Hausdorff space (abbreviated: MKH-space) if X is compact
Hausdorff and R is a continuous relation on X .
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Proposition 2.15
The collection MKHaus of MKH-spaces and continuous p-morphisms forms a category under usual
function composition, and the isomorphisms in MKHaus are the continuous p-morphisms f that are
homeomorphisms between the underlying spaces and satisfy xRz iff f (x)Rf (z).

Proof. Suppose X , Y , and Z are MKH-spaces and f :X →Y and g :Y →Z are continuous
p-morphisms. Surely g◦f is continuous. If xRu, then f (x)Rf (u), hence gf (x)Rgf (u). Suppose gf (x)Rz.
Then there is y∈Y with f (x)Ry and g(y)=z, and this gives u∈X with xRu and f (u)=y, hence with
gf (u)=z. So g◦f is a continuous p-morphism. Clearly the identity map is a continuous p-morphism
as well, and so MKHaus forms a category. If f is a continuous p-morphism from X to Y that has an
inverse, then surely f is a homeomorphism as its inverse is continuous. But xRz implies f (x)Rf (z),
and this implies f −1f (x)Rf −1f (z), hence xRz. �

The proof of the next theorem uses Proposition 2.12 and is similar to the proof of Theorem 2.7, so
we omit its proof.

Theorem 2.16
MKHaus is isomorphic to the category of Vietoris coalgebras on KHaus.

While this is a primary motivation for our study of MKH-spaces, these are interesting mathematical
objects in their own right, related to areas such as ordered topological spaces. In the next several
sections, we create algebraic equivalents to MKH-spaces, along the lines of the algebraic realization
of modal spaces provided by modal algebras. A primary tool will be the following result known as
Esakia’s Lemma.

Lemma 2.17 (Esakia)
If R is a point-closed relation on a compact Hausdorff space X , then for each down-directed family
of closed sets Fi (i∈ I ) of X we have R−1[⋂I Fi]=⋂

I R−1[Fi].
Proof. That R−1[⋂I Fi]⊆⋂

I R−1[Fi] is trivial. If x �∈R−1[⋂I Fi], then R[x] is disjoint from
⋂

I Fi.
As R[x] and the Fi are closed, compactness gives some finite intersection is empty, so the down-
directed assumption gives R[x] is disjoint from some Fi. Therefore, x �∈R−1[Fi] for some i∈ I , hence
x �∈⋂

I R−1[Fi]. �

3 Modal compact regular frames

In this section, we generalize the concept of compact regular frame to that of modal compact regular
frame, and extend Isbell duality between compact Hausdorff spaces and compact regular frames to
a duality between modal compact Hausdorff spaces and modal compact regular frames.

Definition 3.1 (see, e.g. [28])
A frame L is a complete lattice that satisfies a∧∨

S =∨{a∧s :s∈S}. It is compact if whenever∨
S =1, there is a finite subset T ⊆S with

∨
T =1. A function f :L→M between frames is a frame

homomorphism if it preserves finite meets and arbitrary joins.

The prime example of a frame is the collection �X of all open sets of a topological space X , and
this frame is compact iff the space X is compact. For f :X →Y a continuous map between spaces,
the map f −1 :�Y →�X is a frame homomorphism. In fact, setting �f = f −1 gives a contravariant
functor � from the category of topological spaces to the category of frames.
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Definition 3.2 (see, e.g. [28])
A point of a frame L is a frame homomorphism p :L→2 to the 2-element frame. The set
of points pL forms a topological space when topologized by the sets ϕ(a)={p :p(a)=1}
where a∈L.

For a frame homomorphism h :L→M , the map ph :pM →pL sending a point p of M to the point
p◦h of L is continuous. This gives a contravariant functor p from the category of frames to that
of topological spaces. Further, there is an adjunction between � and p given by ϕ :L→�pL and
ε :X →p�X where ε(x) is the point of �X with ε(x)(U )=1 iff x∈U . For further details see [28,
Chapter II.1].

Definition 3.3 (see, e.g. [28])
Suppose L is a frame. For each a∈L there is a largest element of L whose meet with a is zero, called
the pseudocomplement of a and written ¬a. For a,b∈L we say a is well inside b and write a≺b if
¬a∨b=1. We say L is regular if a=∨{b :b≺a} for each a∈L.

For a topological space X we use I and C for interior and closure in X . Also recall that , −A
denotes the complement of a subset A⊆X . In the frame �X we have ¬A=I−A for each open
A⊆X . It follows that A≺B iff CA⊆B. If X is compact Hausdorff, then �X is a compact regular
frame. For the next theorem see, e.g., [2, 27, 28].

Theorem 3.4 (Isbell)
The functors� and p restrict to provide a dual equivalence between the category KHaus of compact
Hausdorff spaces and continuous maps and the category KRFrm of compact regular frames and
frame homomorphisms.

We will lift this duality to one involving the category of modal compact Hausdorff spaces. We first
describe how to enrich the structure of compact regular frames to incorporate modality.

Definition 3.5
A modal compact regular frame (abbreviated: MKR-frame) is a triple L= (L,�,�) where L is a
compact regular frame, and �,� are unary operations on L satisfying the following conditions.

(1) � preserves finite meets, so �1=1 and �(a∧b)=�a∧�b.
(2) � preserves finite joins, so �0=0 and �(a∨b)=�a∨�b.
(3) �(a∨b)≤�a∨�b and �a∧�b≤�(a∧b).
(4) �,� preserve directed joins, so �

∨
S =∨{�s :s∈S}, �

∨
S =∨{�s :s∈S} for any

up-directed S.

Note, as � preserves finite and directed joins, � preserves arbitrary joins, however � need not
preserve either finite joins or arbitrary (directed) meets.

Lemma 3.6
Let L= (L,�,�) be an MKR-frame and a,b∈L. Then

(1) �a≤¬�¬a and �a≤¬�¬a.
(2) If a≺b, then �a≺�b and �a≺�b.
(3) If a≺b, then ¬�¬a≺�b and ¬�¬a≺�b.
(4) If a≺b, then �a≺¬�¬b and �a≺¬�¬b.
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Proof. (1) As ¬a∧a=0 we have �(¬a∧a)=0, and the definition of an MKR-frame gives �¬a∧
�a≤�(¬a∧a), hence �a∧�¬a=0, so �a≤¬�¬a. Similarly, �a∧�¬a=0, so �a≤¬�¬a.

(2) Suppose a≺b. Then ¬a∨b=1, so �(¬a∨b)=1, and as the definition of an MKR-frame
gives �(¬a∨b)≤�¬a∨�b, we have �¬a∨�b=1. In any frame, x≤¬y iff y≤¬x, so (1) gives
�¬a≤¬�a. Thus ¬�a∨�b=1, which gives �a≺�b. Also, �(¬a∨b)=1 gives �b∨�¬a=1.
By (1), �¬a≤¬�a, so �b∨¬�a=1. Thus �a≺�b.

(3) In proving the previous item we showed a≺b implies �¬a∨�b=1. Thus ¬¬�¬a∨�b=1,
showing ¬�¬a≺�b. We also showed that �¬a∨�b=1, so ¬¬�¬a∨�b=1, showing ¬�¬a≺
�b.

(4) If a≺b, then by (1) and (2), �a≺�b≤¬�¬b and �a≺�b≤¬�¬b. The result follows. �
Remark 3.7
Just as with modal algebras, the operations � and � on an MKR-frame are definable from each
other. Using the above lemma, that each element in a compact regular frame is the directed join
of the elements way below it, and the fact that � and � preserve directed joins, one can show that
�b=∨{¬�¬a :a≺b} and �b=∨{¬�¬a :a≺b}. We have taken both � and � as primitive for a
tidier definition.

Definition 3.8
For MKR-frames L= (L,�,�) and M= (M ,�,�), an MKR-morphism from L to M is a
frame homomorphism h :L→M that satisfies h(�a)=�h(a) and h(�a)=�h(a) for each a∈
L. Let MKRFrm be the category whose objects are MKR-frames and whose morphisms are
MKR-morphisms.

We now describe the lifting of the functors � and p to provide a duality between MKHaus and
MKRFrm.

Definition 3.9
For X= (X ,R) an MKH-space, let �X= (�X ,�,�) where �X is the frame of open sets of X and
�,� are defined by setting for each open U ⊆X ,

(1) �U =−R−1[−U ].
(2) �U =R−1[U ].

For f :X→Y a continuous p-morphism, define �f :�Y→�X by �f = f −1.

Proposition 3.10
� :MKHaus→MKRFrm is a functor.

Proof. For X= (X ,R) an MKH-space, �(X ) is a compact regular frame. For U ⊆X open, we have
�U =−R−1[−U ] and �U =R−1[U ] are open since the continuity of R provides that the inverse
image of an open set is open, and of a closed set is closed. So � and � are unary operations on �X .
The fact that R−1 preserves arbitrary unions shows � preserves arbitrary joins and � preserves finite
meets. That � preserves directed joins follows from Esakia’s Lemma. To show �X is an MKR-
frame, it remains to verify the third condition of Definition 3.5. Let x∈�(U ∪V ). Then R[x]⊆U ∪V .
If x �∈�U , then there is y �∈U with xRy. Then y∈V , so x∈R−1[V ]=�V . Thus �(U ∪V )⊆�U ∪�V .
Suppose x∈�U ∩�V . Then R[x]⊆U and there is y∈V with xRy. Then y∈U ∩V , so x∈�(U ∩V ).
This shows �X is an MKR-frame.

For f :X→Y a continuous p-morphism, �f = f −1 :�X →�Y is a frame homomorphism and
�(g◦f )= (�f )◦(�g). To show �f is an MKR-morphism, we require f −1(�U )=�(f −1U ) and
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f −1(�U )=�(f −1U ). As f is a p-morphism, Lemma 2.3 shows R−1 and f −1 commute, and the
result follows. �
Definition 3.11
For L= (L,�,�) an MKR-frame, let pL= (X ,R) where

(1) X is the space of points of L.
(2) R is the relation on X defined by pRq iff q(a)=1 implies p(�a)=1 for all a∈L.

For h :L→M an MKR-morphism, define ph :pM→pL by (ph)(q)=q◦h.

Lemma 3.12
Let L= (L,�,�) be an MKR-frame with pL= (X ,R). Then

(1) pRq iff q(cp)=0 where cp =∨{b :p(�b)=0}.
(2) R−1[ϕa]=ϕ(�a).
(3) −R−1[−ϕa]=ϕ(�a).

Proof. (1) As � and p preserve arbitrary joins, p(�cp)=0, so cp is largest in {b :p(�b)=0}. Then
as pRq iff p(�a)=0 implies q(a)=0, we have pRq iff q(cp)=0.

(2) If p∈R−1[ϕa], then pRq for some q with q(a)=1. The definition of R then implies p(�a)=1, so
p∈ϕ(�a). If p∈ϕ(�a), then p(�a)=1, so a �≤cp. Then there is a point q with q(a)=1 and q(cp)=0,
so p∈R−1[ϕa].

(3) If p∈−R−1[−ϕa], then R[p] is disjoint from −ϕa. (1) shows R[p]=−ϕcp, so (−ϕcp)∩
(−ϕa)=∅, giving cp ∨a=1. By Definition 3.5 we have 1=�(a∨cp)≤�a∨�cp. Then 1=p(�a∨
�cp)=p(�a)∨p(�cp)=p(�a) since the construction of cp provides p(�cp)=0. Thus p∈ϕ(�a).

Conversely, suppose p∈ϕ(�a). As a is the join of the directed set {b :b≺a} and � preserves
directed joins, we have ϕ(�a)=⋃{ϕ(�b) :b≺a}. So there is b≺a with p(�b)=1. Definition 3.5
gives �b∧�¬b≤�(b∧¬b)=0, and as p(�b)=1, this yields p(�¬b)=0. Then if pRq, the definition
of R gives q(¬b)=0, and as b≺a means ¬b∨a=1, we have q(a)=1. Thus R[p] is contained in ϕa,
showing p∈−R−1[−ϕa]. �
Proposition 3.13
p :MKRFrm→MKHaus is a functor.

Proof. Suppose L= (L,�,�) is an MKR-frame, and pL= (X ,R). Then X is a compact Hausdorff
space. The conditions for the continuity of R (Proposition 2.12) are given by Lemma 3.12 since the
open subsets of X are exactly the ϕa where a∈L.

Suppose M= (M ,�,�) is an MKR-frame with pM= (Y ,R) and h :L→M is an MKR-
morphism. From Isbell duality ph :Y →X is continuous and p preserves composition. It remains
to show ph is a p-morphism (Definition 2.2). For readability we use f in place of ph.

We first show if U ⊆X is open, then f −1R−1[U ]=R−1f −1[U ]. Each open U is ϕa for some a∈L,
and it is well known that f −1[ϕa]=ϕ(ha) for each a∈L. Lemma 3.12 shows f −1R−1[ϕa]=ϕ(h(�a))
and R−1f −1[ϕa]=ϕ(�h(a)). As h is an MKR-morphism, h(�a)=�h(a), and the result follows.

Suppose f (y′) does not belong to the closed set R[f (y)]. Then there is an open neighbourhood U
of f (y′) disjoint from R[f (y)], so f (y) �∈R−1[U ]. Then y �∈ f −1R−1[U ]=R−1f −1[U ]. But f (y′)∈U
implies y′ ∈ f −1[U ], so y �∈R−1[y′]. Thus yRy′ implies f (y)Rf (y′), condition (i) of Definition 2.2.

Suppose x does not belong to f [R[y]]. Note that R[y] closed and f a continuous map between
compact Hausdorff spaces gives f [R[y]] closed. So there are disjoint open sets U and V with
f [R[y]]⊆U and x∈V . Then R[y] is contained in f −1[U ], so is disjoint from f −1[V ], and this
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implies y �∈R−1f −1[V ]= f −1R−1[V ]. Thus f (y) �∈R−1[x]. So f (y)Rx implies x= f (y′) for some yRy′,
condition (ii) of Definition 2.2. �
Theorem 3.14
The functors � and p provide a dual equivalence between MKHaus and MKRFrm.

Proof. For X= (X ,R) an MKH-space and L= (L,�,�) an MKR-frame, define ε :X→p�X by
setting ε(x) to be the point with ε(x)(U )=1 iff x∈U for each open U ⊆X , and let ϕ :L→�pL
be given by ϕ(a)={p :p(a)=1}. From Isbell duality, ε and ϕ are natural isomorphisms on the level
of compact Hausdorff spaces and compact regular frames. It remains to show ε is a continuous
p-morphism and ϕ is an MKR-morphism.

Asϕ is a frame isomorphism, to show it is an MKR-isomorphism we must showϕ(�a)=�ϕ(a) and
ϕ(�a)=�ϕ(a) for each a∈L. This is immediate from the definition of �,� on�pL and Lemma 3.12.
As ε is known to be a homeomorphism, we must show it is a p-morphism. Assume xRy. Then for
each open U with y∈U we have x∈R−1[U ]=�U , hence ε(y)(U )=1 implies ε(x)(�U )=1, so
ε(x)Rε(y). Assume q is a point of�X and ε(x)Rq. As ε is a homeomorphism, there is a unique y∈X
with ε(y)=q. If x �Ry, then as R[x] is closed, there is an open neighbourhood U of y disjoint from
R[x]. Then x �∈R−1[U ]=�U . This gives ε(y)(U )=1 and ε(x)(�U ) �=1, contradicting ε(x)Rq. �
Remark 3.15
There are connections between MKR-frames and the construction of Vietoris frames of compact
regular frames [5, 28]. In fact, MKR-frames are algebras for the Vietoris functor on KRFrm. This
is an alternate route to the duality of Theorem 3.14.

4 Modal de Vries algebras

In this section, we begin our effort to lift de Vries duality from the setting of compact Hausdorff
spaces to modal compact Hausdorff spaces. We introduce the category of modal de Vries algebras,
and two of its subcategories that play interesting roles. The extension of de Vries duality is in the
following section.

4.1 de Vries duality

Definition 4.1
A de Vries algebra is a pair A= (A,≺) consisting of a complete Boolean algebra A and a binary
relation ≺ on A satisfying the following.

(1) 1≺1.
(2) a≺b implies a≤b.
(3) a≤b≺c≤d implies a≺d .
(4) a≺b,c implies a≺b∧c.
(5) a≺b implies ¬b≺¬a.
(6) a≺b implies there exists c with a≺c≺b.
(7) a �=0 implies there exists b �=0 with b≺a.

It follows from the definition that if a is an element of a de Vries algebra, then a=∨{b :b≺a}.
This is reminiscent of the fact that each element of a compact regular frame is the join of the elements
that are well inside it.
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Definition 4.2
Let A= (A,≺) and B= (B,≺) be de Vries algebras. A map α :A→B is a de Vries morphism if

(1) α(0)=0.
(2) α(a∧b)=α(a)∧α(b).
(3) a≺b implies ¬α(¬a)≺α(b).
(4) α(a)=∨{α(b) :b≺a}.

For de Vries morphisms α :A→B and β :B→C, define their composite (β∗α)(a)=∨{βα(b) :
b≺a}.

Then β∗α is a de Vries morphism, and with this definition of composition the collection DeV of
de Vries algebras and de Vries morphisms forms a category with the identity functions serving as
identity morphisms. We recall two facts that will be used in later sections. The first is trivial to verify,
the second is in [14].

Lemma 4.3
If β :B→C is a de Vries morphism that preserves arbitrary joins, then for any de Vries morphism
α :A→B we have β�α is equal to the function composite β ◦α.

Proposition 4.4
If α :A→B is a de Vries morphism, then α is an isomorphism in DeV iff α is a Boolean algebra
isomorphism and x≺y⇔α(x)≺α(y).

Asubset U of a topological space X is regular open if U =ICU . It is well known that the set RO(X )
of regular open subsets of X is a complete Boolean algebra where

∨
Ui =IC

⋃
Ui,

∧
Ui =I

⋂
Ui,

and ¬U =I−U . Define ≺ on RO(X ) by U ≺V iff CU ⊆V . Then if X is compact Hausdorff, its
regular open sets are a basis of its topology and X ∗ = (RO(X ),≺) is a de Vries algebra. Moreover,
if f :X →Y is continuous, then f ∗ :Y ∗ →X ∗ given by f ∗(U )=ICf −1(U ) is a de Vries morphism,
and so (−)∗ :KHaus→DeV is a functor.

Definition 4.5
For a de Vries algebra A= (A,≺) and S ⊆A let ↑↑S ={b :a≺b for some a∈S} and
↓↓S ={b :b≺a for some a∈S}. We call a filter F of A a round filter if F =↑↑F and an ideal I
of A a round ideal if I =↓↓I . Maximal round filters are called ends.

For a de Vries algebra A= (A,≺), let X =A∗ be the set of its ends, and for a∈A set ϕ(a)={x∈X :a∈
x}. Then {ϕ(a) :a∈A} is a basis of a compact Hausdorff topology on X ; the sets ϕ(a) are exactly the
regular open sets of this topology; and Cϕ(a)⊆ϕ(b) iff a≺b. If α :A→B is a de Vries morphism,
then α∗ :B∗ →A∗ given by α∗(x)=↑↑α−1(x) is continuous. Therefore, (−)∗ :DeV→KHaus is a
functor. Moreover, ϕ :A→A∗∗ is a de Vries isomorphism, and ε :X →X ∗∗, given by ε(x)={U ∈
RO(X ) :x∈U }, is a homeomorphism. Thus, we arrive at the following theorem [14].

Theorem 4.6 (De Vries)
DeV is dually equivalent to KHaus.

4.2 Modal de Vries algebras

Definition 4.7
Let A= (A,≺) be a de Vries algebra. We call � :A→A de Vries additive if (i) �0=0 and (ii) a1 ≺a2,
b1 ≺b2 imply �(a1 ∨b1)≺�a2 ∨�b2. A de Vries additive operation on A is called a modal de
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Vries operator, and a de Vries algebra with a de Vries additive operator is a modal de Vries algebra
(abbreviated: MDV-algebra).

Proposition 4.8
If A= (A,≺,�) is an MDV-algebra, then � is proximity preserving, meaning a≺b implies �a≺�b
for each a,b∈A.

Proof. If a≺b, then �a=�(a∨a)≺�b∨�b=�b. �
Example 4.9

(1) A finitely additive operation on a de Vries algebra need not be de Vries additive. To see this, let
A= (A,≺) be a de Vries algebra, a∈A, and define � on A by �0=0 and �x=a for all x �=0.
Then � is finitely additive, but it is not de Vries additive unless a≺a.

(2) A de Vries additive operator need not be finitely additive. To see this, consider the de Vries
algebra P(ω), where a≺b iff a⊆b and either a is finite or b is cofinite. This is isomorphic
to the de Vries algebra of regular open sets of the one-point compactification of the natural
numbers. Define � on P(ω) by �a=1 if a is cofinite and �a=0 otherwise. To see � is de
Vries additive, suppose a1 ≺a2 and b1 ≺b2. If either a2,b2 is cofinite, then �a2 ∨�b2 =1.
Otherwise, as a1 ≺a2 and b1 ≺b2, we must have both a1,b1 are finite, so a1 ∨b1 is finite, hence
�(a1 ∨b1)=0. So � is de Vries additive, but surely it is not finitely additive.

(3) A de Vries additive operator need not be order-preserving. Proceed as in (2), but define �a=1
if a is cofinite, �a=0 if a is finite, and define � in some random but not order-preserving way
on the remainder.

The above examples show neither finite additivity nor de Vries additivity imply the other. However,
we do have the following.

Proposition 4.10
If � is a finitely additive, proximity preserving operation on a de Vries algebra, then � is de Vries
additive.

Proof. Suppose a1 ≺a2 and b1 ≺b2. Then by finite additivity, �(a1 ∨b1)=�a1 ∨�b1. As � is
proximity preserving, �a1 ≺�a2 and �b1 ≺�b2, hence �(a1 ∨b1)≺�a2 ∨�b2. �
Definition 4.11
Let A= (A,≺,�) and B= (B,≺,�) be MDV-algebras. We call α :A→B a modal de Vries morphism
(abbreviated: MDV-morphism) if

(1) α is a de Vries morphism.
(2) a≺b implies α(�a)≺�α(b).
(3) a≺b implies �α(a)≺α(�b).

Proposition 4.12
For MDV-morphisms α :A→B, β :B→C, define the composite β∗α by

(β∗α)(a)=
∨

{βα(b) :b≺a}.

Then with this definition of composition, the collection MDV of modal de Vries algebras and modal
de Vries morphisms forms a category with the identity functions serving as the identity morphisms.
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Proof. As the � composite of de Vries morphisms is a de Vries morphism, to show β�α is an
MDV-morphism, we must show

a≺b ⇒ �(β∗α)(a)≺ (β∗α)(�b).

a≺b ⇒ (β∗α)(�a)≺�(β∗α)(b).

To establish these, find p,q,r with a≺p≺q≺r ≺b. Then

�(β∗α)(a) ≺ �βα(p) ≺ β(�α(q)) ≺ βα(�r) ≺ (β∗α)(�b).

The first step follows from x≺y⇒ (β∗α)(x)≺βα(y) and the fact that � preserves proximity; the
second follows from the fact that α preserves proximity and β being an MDV-morphism; the third
follows from α being an MDV-morphism and the fact that β preserves proximity; the fourth follows
from � preserving proximity and x≺y⇒βα(x)≺ (β∗α)(y). This gives the first formula.

For the second formula,

(β∗α)(�a) ≺ βα(�p) ≺ β(�α(q)) ≺ �βα(r) ≺ �(β∗α)(b).

Here, the first step follows from the fact that � preserves proximity and x≺y⇒ (β∗α)(x)≺βα(y);
the second follows from α being an MDV-morphism and the fact that β preserves proximity; the
third follows from the fact that α preserves proximity and β being an MDV-morphism; and the fourth
follows from x≺y⇒βα(x)≺ (β∗α)(y) and the fact that � preserves proximity.

This establishes that β∗α is an MDV-morphism. That ∗ is associative follows as it is associative
when applied to de Vries algebra morphisms. The identity map on an MDV-algebra is known to be
a de Vries algebra morphism, and it is easily seen that it satisfies the additional conditions to be an
MDV-morphism since � satisfies a≺b⇒�a≺�b. It follows that the collection of modal de Vries
algebras with modal de Vries morphisms forms a category. �

Isomorphisms in the category of de Vries algebras are Boolean isomorphisms α that satisfy x≺y
iff α(x)≺α(y) [14, Chapter I.5]. So isomorphisms in MDV also have these properties. However, as
the following example shows, isomorphisms in MDV need not satisfy α(�a)=�α(a). The reason
for this is that composition ∗ is not function composition.

Example 4.13
Let A= (P(ω),≺,�) be the MDV-algebra of Example 4.9.2, where a≺b iff a⊆b and either a is
finite or b is cofinite, and �a=1 if a is cofinite and �a=0 otherwise. Let A′ = (P(ω),≺,�′), where
�′a=1 if a is cofinite, �′a=0 if a is finite, and �′a=a otherwise. It is easy to see that A′ is an MDV-
algebra. Clearly A and A′ have the same de Vries algebra structure, but different modal operators.
Let α :A→A′ be the identity map. Obviously α is a de Vries isomorphism. It is also an MDV-
morphism as a≺b implies either a is finite or b is cofinite, so either �a=�′a=0 or �b=�′b=1.
So a≺b implies α(�a)≺�′α(b) and �α(a)≺α�′(b). The same argument shows that the identity
map β :A′ →A is also an MDV-morphism. Therefore, α and β are inverses of each other, and so are
MDV-isomorphisms. On the other hand, α(�x) �=�′α(x) and β(�′x) �=�β(x) when x is infinite but
not cofinite.

4.3 Lower and upper continuity

Definition 4.14
Let A= (A,≺,�) be an MDV-algebra. We say
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(1) � is lower continuous if �a=∨{�b :b≺a} for each a∈A.
(2) � is upper continuous if �a=∧{�b :a≺b} for each a∈A.

We say A is lower (upper) continuous if � is lower (upper) continuous.

Proposition 4.15
Let A= (A,≺,�) be an MDV-algebra.

(1) If � is lower continuous, then � is order-preserving.
(2) If � is upper continuous, then � is both order-preserving and finitely additive.

Proof. (1) Let a≤b. As � is lower continuous, �a=∨{�c :c≺a}. But c≺a implies c≺b, and as
�b=∨{�c :c≺b}, we have �c≤�b. It follows that �a≤�b.

(2) Let � be upper continuous. An argument dual to (1) shows � is order-preserving. So for
any a,b∈A we have �a∨�b≤�(a∨b). For the other inequality, note by upper continuity we have
�a∨�b=∧{�c :a≺c}∨∧{�d :b≺d}. By infinite distributivity in any complete Boolean algebra,
we have �a∨�b=∧{�c∨�d :a≺c, b≺d}. But if a≺c and b≺d , de Vries additivity of � gives
�(a∨b)≺�c∨�d , providing the other inequality. �

We provide several examples to show that lower continuity of � does not imply finite additivity,
and that neither lower nor upper continuity of � implies finite multiplicity.

Example 4.16

(1) The MDV-algebra of Example 4.9.2 has a lower continuous operation � that is not finitely
additive.

(2) For any modal algebra (B,�) whose underlying Boolean algebra is complete, (B,≤,�) is an
MDV-algebra that is both lower and upper continuous. However, � need not preserve finite
meets.

Definition 4.17
Let LMDV be the category of lower continuous modal deVries algebras and modal deVries morphisms
between them, and let UMDV be the category of upper continuous modal de Vries algebras and modal
de Vries morphisms between them.

Clearly LMDV and UMDV are full subcategories of MDV. We next consider the nature of
isomorphisms in these categories.

Definition 4.18
For MDV-algebras A= (A,≺,�) and B= (B,≺,�), a set map α :A→B is a structure-preserving
bijection if it satisfies the following conditions.

(1) α is a Boolean isomorphism.
(2) a≺b iff α(a)≺α(b) for all a,b∈A.
(3) α(�a)=�α(a) for all a∈A.

Note that isomorphisms between de Vries algebras are exactly the set mappings that satisfy items
(1) and (2) of Definition 4.18, and Example 4.13 gives an isomorphism between MDV-algebras that
does not satisfy item (3) of Definition 4.18.

Proposition 4.19

(1) A structure preserving bijection between MDV-algebras is an isomorphism in MDV.
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(2) Isomorphisms in LMDV are exactly the structure-preserving bijections.
(3) Isomorphisms in UMDV are exactly the structure-preserving bijections.

Proof. (1) It is trivial to verify that a structure-preserving bijection α between MDV-algebras is
an MDV-morphism, and that the set inverse α−1 of a structure-preserving bijection is a structure-
preserving bijection, hence also an MDV-morphism. As structure-preserving bijections preserve
arbitrary joins, we have α�α−1 =α◦α−1 and α−1�α=α−1 ◦α where ◦ is ordinary function
composition. Thus, both evaluate to the identity morphisms in MDV, showing they are mutually
inverse isomorphisms.

(2) As isomorphisms between de Vries algebras are set mappings satisfying items (1) and (2) of
Definition 4.18, it is enough to show that if � and �′ are two lower continuous de Vries additive
operators on the same de Vries algebra (A,≺) with id : (A,≺,�)→ (A,≺,�′) an MDV-morphism,
then �=�′. Having id be a de Vries morphism means a≺b implies �a≺�′b and �′a≺�b. Then
using lower continuity, �b=∨{�a :a≺b}≤�′b and similarly �′b≤�b. Thus, �=�′.

(3) Dual argument to (2). �
This shows that isomorphisms between lower, or upper, continuous MDV-algebras behave like

homomorphisms with respect to the modal operators. One might wonder if this property extends to
all de Vries morphisms between lower, or upper, continuous MDV-algebras. The following example
shows it does not.

Example 4.20
Let A= (P(ω),≺,�) be the MDV-algebra of Example 4.9.2, where a≺b iff a⊆b and either a is finite
or b is cofinite, and �a=1 if a is cofinite and �a=0 otherwise. As we have already noted, A∈LMDV.
Let I be a non-principal maximal ideal of P(ω), and let A′ = (P(ω),≤,�′), where ≤ is the inclusion
order, �′a=0 if a∈ I , and �′a=1 otherwise. Then �′ is finitely additive and proximity preserving
(i.e. order-preserving), so A′ is an MDV-algebra. Also, A′ ∈LMDV trivially as the proximity on
A′ is ≤ so each element is proximal to itself. Let α :A→A′ be the identity map. Then α is an
MDV-morphism. To see this, suppose a≺b. Then either a is finite or b is cofinite. We must show
(i) α(�a)≤�′α(b), which means �a≤�′b and (ii) �′α(a)≤α(�b), which means �′a≤�b. If a is
finite, then �a=�′a=0, so both follow. If b is cofinite, then �b=�′b=1, and again both follow.
On the other hand, α(�a) �=�′α(a). To see this, note that α(�a)=�′α(a) means �a=�′a, which
is clearly not the case.

Modifying � on P(ω) so that �a=0 if a is finite and �a=1 otherwise, gives an example of a de
Vries morphism α between upper continuous MDV-algebras with α(�a) �=�′α(a).

Theorem 4.21
Let A= (A,≺,�) be an MDV-algebra. Define �L on A by setting

�La=
∨

{�b :b≺a} for each a∈A.

Then AL = (A,≺,�L) is a lower continuous MDV-algebra, and the identity maps iA :A→AL and
jA :AL →A are mutually inverse MDV-isomorphisms.

Proof. First we show that �L is a modal de Vries operator on (A,≺). Obviously �L0=0. Suppose
a1 ≺a2 and b1 ≺b2. Then there exist a,b∈A such that a1 ≺a≺a2 and b1 ≺b≺b2. Since � is
proximity preserving, we have �Lx≤�x for each x∈A. Therefore, as � is de Vries additive,

�L(a1 ∨b1)≤�(a1 ∨b1)≺�a∨�b≤�La2 ∨�Lb2. (1)
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Thus, �L is de Vries additive, and so AL is an MDV-algebra. Next we show that AL is lower
continuous. For this we must show that �Lb=∨{�La :a≺b} for each b∈A. As �L is de Vries
additive, a≺b gives �La≺�Lb, hence �La≤�Lb. It follows that

∨{�La :a≺b}≤�Lb. For the
other inequality we recall that �Lb=∨{�c :c≺b}. Suppose c≺b. Then there exists a∈A such that
c≺a≺b. By definition of �L, we have �c≤�La. It follows that �Lb≤∨{�La :a≺b}. Thus, AL is
a lower continuous MDV-algebra.

Clearly iA and jA are mutually inverse de Vries morphisms. It remains to show they are MDV-
morphisms. For this, we must show a≺b implies �a≺�Lb and �La≺�b. If a≺b, then as � is
proximity preserving, �a≺�b, and as �La≤�a, we have �La≺�b. To show �a≺�Lb, choose
c∈A with a≺c≺b. By definition of �L, we have �a≤�Lc, and as �L is proximity preserving,
�Lc≺�Lb. Thus, �a≺�Lb. �

A dual condition holds for upper continuous MDV-algebras.

Theorem 4.22
Let A= (A,≺,�) be an MDV-algebra. Define �U on A by setting

�U a=
∧

{�b :a≺b} for each a∈A.

Then AU = (A,≺,�U ) is an upper continuous MDV-algebra, and the identity maps μA :A→AU
and νA :AU →A are mutually inverse MDV-isomorphisms.

Proof. The proof is dual to that of Theorem 4.21 with the exception of the step corresponding
to Equation (1). Here we first note �x≤�U x for each x∈A. Then for a1 ≺a≺a2 and b1 ≺b≺b2,
we use the definition of �U to obtain �U (a1 ∨b1)≤�(a∨b), then use the de Vries additivity of
� to obtain �(a∨b)≺�a2 ∨�b2, and then note �a2 ∨�b2 ≤�U a2 ∨�U b2. Thus, �U (a1 ∨a2)≺
�U a2 ∨�U b2, providing de Vries additivity. �

Note that if A is a lower continuous MDV-algebra, the definition of lower continuity gives A=AL,
and if A is an upper continuous MDV-algebra, then A=AU . The following is then immediate from
[34, p. 92].

Theorem 4.23
There is an equivalence L :MDV→LMDV where LA=AL for each object A, and there is an
equivalence U :MDV→UMDV where UA=AU for each object A.

While this result might seem counterintuitive, we recall that the categories involved are not
concrete categories, as composition of morphisms is not given by function composition. This allows
isomorphisms in MDV to be more general than the existence of a structure-preserving bijection, and
this is precisely what allows each MDV-algebra to be isomorphic to a lower and upper continuous
one.

Corollary 4.24
LMDV and UMDV are equivalent to each other.

Remark 4.25
More can be said about these equivalences. Let I and J be the inclusion functors of LMDV and
UMDV into MDV. Then [34, p. 92] shows (L,I ,i,1) is an adjoint equivalence from MDV to LMDV
and (U ,J ,μ,1) is an adjoint equivalence from MDV to UMDV.

The restrictions of L and U to LMDV and UMDV provide more than an equivalence, they are
inverse isomorphisms. To see this, one shows that for any α :A→B, that Lα= iB�α�jA is the same
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set mapping as α, as is Uα. Then Proposition 4.19 shows A=LUA for each A∈LMDV since A and
LUA are isomorphic via a de Vries morphism that is the identity map as a set mapping. Similarly
B=ULB for each B∈UMDV.

5 Lifting de Vries duality

In this section, we extend de Vries duality to a duality between MKHaus and MDV.

Lemma 5.1
If A= (A,≺,�) is an MDV-algebra and x is an end of A, then Ix ={a∈A :�[↑↑a]�⊆x} is an ideal of A.

Proof. Surely Ix is a downset of A and 0∈ Ix. Suppose a,b∈ Ix. Then there are a1,b1 with a≺a1,
b≺b1 and �a1 �∈x,�b1 �∈x. Using interpolation, there are a2,b2 with a≺a2 ≺a1 and b≺b2 ≺b1.
As � is proximity preserving, we have �a2 ≺�a1 and �b2 ≺�b1, and this shows ↑↑�[↑↑a]�⊆x and
↑↑�[↑↑b]�⊆x. Since ↑↑�[↑↑a], ↑↑�[↑↑b] are round filters and x is an end, ↑↑�[↑↑a]∩ ↑↑�[↑↑b]�⊆x. So
there is some c �∈x and a≺a′,b≺b′ with �a′ ≺c and �b′ ≺c. Use interpolation to find a′′,b′′ with
a≺a′′ ≺a′ and b≺b′′ ≺b′. Then a∨b≺a′′∨b′′, and using the de Vries additivity of � we have
�(a′′∨b′′)≺�a′∨�b′ ≺c. It follows that � [↑↑(a∨b)] �⊆x, hence a∨b∈ Ix. �
Theorem 5.2
Let A= (A,≺,�) be an MDV-algebra and let X be its space of ends. Define R� on X by setting
xR�y iff �[y]⊆x. Then R� is point-closed and for any a∈A, we have:

(1) R−1
� ϕ(a)=⋃{ϕ(�b) :b≺a}.

(2) R−1
� Cφ(a)=⋂{ϕ(�b) :a≺b}=⋂{Cϕ(�b) :a≺b}.

Consequently, A∗ = (X ,R�) is an MKH-space.

Proof. To see R� is point-closed, suppose x∈X and y �∈R�[x]. Then �[y] �⊆x, so there is a∈y
with �a �∈x. Then y is in the basic open set ϕ(a), and if z ∈ϕ(a), we have a∈z, so �[z] �⊆x, hence
z �∈R�[x]. So ϕ(a) is an open neighbourhood of y disjoint from R�[x], showing R�[x] is closed.

Claim 5.3
For any a,b∈A:

(i) R−1
� ϕ(a)⊆ϕ(�a).

(ii) If b≺a, then ϕ(�b)⊆R−1
� ϕ(a).

Proof of Claim.
(i) If x∈R−1

� ϕ(a), then there is some y∈ϕ(a) with xR�y. So a∈y and �[y]⊆x, so �a∈x. Thus,
x∈ϕ(�a).

(ii) Let x∈ϕ(�b) so �b∈x. Consider the ideal Ix of Lemma 5.1. As �b∈x, the definition of Ix
gives b �∈ Ix. Therefore, there is an ultrafilter u of A with b∈u and u∩Ix =∅. Set y=↑↑u. Then y is an
end of A, and as b≺a and b∈u, we have a∈↑↑u=y. So y∈ϕ(a). Suppose d ∈y. Then there is e∈u
with e≺d . As u is disjoint from Ix, we have e �∈ Ix so �[↑↑e]⊆x. This shows �d ∈x. So we have
�[y]⊆x, hence xR�y. Therefore, x∈R−1

� ϕ(a). �

Continuing the proof of Theorem 5.2.

(1) Since ϕ(a)=⋃{ϕ(b) :b≺a} and R−1
� commutes with arbitrary unions, R−1

� ϕ(a)=⋃{R−1
� ϕ(b) :

b≺a}. But for b≺a, Claim 5.3 gives R−1
� ϕ(b)⊆ϕ(�b)⊆R−1

� ϕ(a), giving R−1
� ϕ(a)=⋃{ϕ(�b) :

b≺a}.
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(2) If a≺b, then Cϕ(a)⊆ϕ(b). So R−1
� Cϕ(a)⊆R−1

� ϕ(b), and the first part of Claim 5.3 shows
R−1

� ϕ(b)⊆ϕ(�b). So R−1
� Cϕ(a)⊆⋂{ϕ(�b) :a≺b}. For the other containment, since Cϕ(a)=⋂{ϕ(d ) :a≺d}, where the intersection is down-directed, and as R� is point-closed, we may apply

Esakia’s Lemma to obtain R−1
� Cϕ(a)=⋂{R−1

� ϕ(d ) :a≺d}. If a≺d , then by interpolation there is
b with a≺b≺d . By the second part of Claim 5.3, ϕ(�b)⊆R−1

� ϕ(d ). This establishes the other
containment, giving R−1

� Cϕ(a)=⋂{ϕ(�b) :a≺b}.
For the second equality in (2), clearly

⋂{ϕ(�b) :a≺b}⊆⋂{Cϕ(�b) :a≺b}. For the other
containment, suppose a≺b. Use interpolation to find d with a≺d ≺b. Then as � is proximity
preserving, �d ≺�b, giving Cϕ(�d )⊆ϕ(�b).

We already saw that R� is point-closed. Let U ⊆X be open. Then U =⋃{ϕ(a) :ϕ(a)⊆U }, so
R−1

� U =⋃{R−1
� ϕ(a) :ϕ(a)⊆U }. By (1), each R−1

� ϕ(a) is open, implying that R−1
� U is open. Let

F ⊆X be closed. Then F =⋂{Cϕ(a) :F ⊆Cϕ(a)}.As this is a down-directed intersection, by Esakia’s
Lemma, R−1

� F =⋂{R−1
� Cϕ(a) :F ⊆Cϕ(a)}. By (2), each R−1

� Cϕ(a) is closed. So R−1
� F is closed.

Thus, A∗ is an MKH-space. �
Theorem 5.4
Let A,B be MDV-algebras and α :A→B be an MDV-morphism. Define α∗ :B∗ →A∗ by
α∗(x)=↑↑α−1(x). Then α∗ is a continuous p-morphism.

Proof. By de Vries duality, α∗ is a well-defined continuous map. To show α∗ is a p-morphism, we
must show xR�z implies α∗(x)R�α∗(z), and α∗(x)R�y implies there exits z ∈B∗ with xR�z and
α∗(z)=y. Applying the definitions of the terms involved, we must show:

�[z] ⊆ x ⇒ �[↑↑α−1(z)] ⊆ ↑↑α−1(x).

�[y] ⊆ ↑↑α−1(x) ⇒ there exists z ∈B∗ with �[z]⊆x and ↑↑α−1(z)=y.

For the first formula, suppose �[z]⊆x and a∈↑↑α−1(z). Then there is b∈α−1(z) with b≺a, so
there is c∈A with b≺c≺a. As b∈α−1(z), we have α(b)∈z, and as �[z]⊆x, we have �α(b)∈x.
Since b≺c and α is an MDV-morphism, �α(b)≺α(�c), so α(�c)∈x. This gives �c∈α−1(x). But
c≺a gives �c≺�a, hence �a∈↑↑α−1(x). We have shown �[↑↑α−1(z)]⊆↑↑α−1(x).

For the second formula, suppose x is an end of B and y is an end of A with �[y]⊆ ↑↑α−1(x).
We must show there exists z ∈B∗ with �[z]⊆x and ↑↑α−1(z)=y. We begin with two claims. Let
α(y)={α(a) :a∈y} and ↑α(y) be the upset of α(y).

Claim 5.5
↑α(y) is a round filter of B and �[↑α(y)]⊆x.

Proof of Claim.
If a,b∈y, then as y is a round filter ofA, there is c∈y with c≺a,b. Then asα is proximity preserving,

α(c)≺α(a),α(b). From this it follows that ↑α(y) is a round filter of B. Next, let a∈↑α(y). Then there
exist b,c,d ∈y with b≺c≺d and α(d )≤a. As α is an MDV-morphism, we have α(�b)≺�α(c) and
α(c)≺α(d )≤a. As � is proximity preserving, �α(c)≺�a. Thus, α(�b)≺�a. Since �b∈�[y]⊆
↑↑α−1(x), there is e∈α−1(x) with e≺�b. Therefore, α(e)∈x and α(e)≺α(�b), implying α(�b)∈x.
Thus, �a∈x, and so �[↑α(y)]⊆x. �

Claim 5.6
For T ={a :�a �∈x} we have ↓↓T is a round ideal of B.
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Proof of Claim.
Note that ↓↓T is a downset and as �0=0, we have 0∈↓↓T . Suppose a,b∈ ↓↓T . Then there are

a≺a1 ≺a2 ≺a3 and b≺b1 ≺b2 ≺b3 with a3,b3 ∈T . So �a3,�b3 �∈x. This gives ↑↑�a2 �⊆x and
↑↑�b2 �⊆x.As x is an end, ↑↑�a2∩↑↑�b2 �⊆x. It is easy to see that this intersection equals ↑↑(�a2 ∨�b2),
so ↑↑(�a2 ∨�b2) �⊆x, and this implies �a2 ∨�b2 �∈x.As � is de Vries additive, we have �(a1 ∨b1)≺
�a2 ∨�b2, and this gives �(a1 ∨b1) �∈x. So a1 ∨b1 ∈T , and as a∨b≺a1 ∨b1 we have a∨b∈ ↓↓T .
Thus, ↓↓T is an ideal, and is clearly round. �

Continuing the proof of Theorem 5.4.

As �[↑α(y)]⊆x, we have ↑α(y) is disjoint from T , hence disjoint from the round ideal ↓↓T . As ↑α(y)
is a (round) filter, we can find an ultrafilter u of B that contains ↑α(y) and is disjoint from ↓↓T . Let
z =↑↑u. Then z is an end of B. As ↑α(y) is a round filter contained in u, we have ↑α(y) is contained in
z =↑↑u. Then y⊆α−1(z), and as y is a round filter, y⊆ ↑↑α−1(z). But de Vries duality gives ↑↑α−1(z)
is an end of A, and we assumed y was an end of A, so the containment y⊆↑↑α−1(z) gives equality
y=↑↑α−1(z). It remains only to show �[z]⊆x. Suppose a∈z and �a �∈x. Then a∈T . As z is round,
we can find b∈z with b≺a. Then b∈ ↓↓T . But z ⊆u and u was chosen to be disjoint from ↓↓T , a
contradiction. Consequently, α∗ :B∗ →A∗ is a continuous p-morphism. �
Theorem 5.7
There is a functor (−)∗ :MDV→MKHaus taking an MDV-algebra A to the MKH-space A∗ of its
ends, and an MDV-morphism α :A→B to the continuous p-morphism α∗ :B∗ →A∗.

Proof. Theorem 5.2 shows that (−)∗ maps objects of MDV to objects of MKHaus and Theorem 5.4
shows (−)∗ maps morphisms of MDV to morphisms of MKHaus. As the map α∗ produced is exactly
the map produced in de Vries duality from the underlying de Vries algebras of A and B, and the
rules of composition in MDV and MKHaus are exactly as they are in DeV and KHaus, it follows
that (−)∗ is compatible with composition and identities, so is indeed a functor. �

Having a functor to go from MDV to MKHaus we consider the other direction. In fact, we construct
two functors from MKHaus to MDV; one will land in LMDV and the other in UMDV.

Theorem 5.8
Let X= (X ,R) be an MKH-space, and define unary operations �L and �U on the de Vries algebra
RO(X ) of regular open sets of X by

�LS = ICR−1(S),

�U S = IR−1C(S).

Then XL = (RO(X ),≺,�L) is a lower continuous MDV-algebra and XU = (RO(X ),≺,�U ) is an
upper continuous MDV-algebra.

Proof. Since the interior of the closure of any set is regular open, �L is well-defined. As X is an
MKH-space, R−1CA is closed, implying that �U is also well defined.

Clearly �L∅=∅. Suppose A1 ≺A2 and B1 ≺B2, so CA1 ⊆A2 and CB1 ⊆B2. To show �L is de
Vries additive, we must show C�L(A1 ∨B1)⊆�LA2 ∨�LB2.

C�L(A1 ∨B1) = CICR−1IC(A1 ∪B1)

⊆ CR−1C(A1 ∪B1)

= R−1CA1 ∪R−1CB1

⊆ R−1A2 ∪R−1B2

⊆ IC(ICR−1A2 ∪ICR−1B2)

= �LA2 ∨�LB2.
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The first step is from the definitions of �L and the join in RO(X ); the second is obvious; the third as
R−1 of a closed set is closed and both R−1 and C distribute over finite unions; the fourth as A1 ≺A2
and B1 ≺B2; the fifth as R−1 of an open set is open and IC is increasing on open sets; and the final
step is from the definitions of �L and the join in RO(X ).

We show �L is lower continuous. As �L is de Vries additive, it is proximity preserving, so
�LA≥∨{�LB :B≺A}. For the other inequality, note that A=⋃{B :B≺A}, so R−1A=⋃{R−1B :
B≺A}. For B open, the continuity of R gives R−1B=IR−1B⊆ICR−1B=�LB. It then follows that
R−1A⊆⋃{�LB :B≺A}. Thus ICR−1A⊆IC

⋃{�LB :B≺A}, showing �LA≤∨{�LB :B≺A}. This
shows XL = (RO(X ),≺,�L) is a lower continuous MDV-algebra.

We next show �U is de Vries additive. Surely �U ∅=∅. Suppose we have regular open sets A1 ≺A2
and B1 ≺B2, so CA1 ⊆A2 and CB1 ⊆B2. We show C�U (A1 ∨B1)⊆�U A2 ∨�U B2.

C�U (A1 ∨B1) = CIR−1CIC(A1 ∪B1)

⊆ CR−1C(A1 ∪B1)

= R−1CA1 ∪R−1CB1

⊆ R−1A2 ∪R−1B2

⊆ IC(IR−1CA2 ∪IR−1CB2)

= �U A2 ∨�U B2.

The first step is from the definitions of �U and the join in RO(X ); the second is obvious; the third
as R−1 of a closed set is closed and both R−1 and C distribute over finite unions; the fourth as
A1 ≺A2 and B1 ≺B2; for the fifth, as R−1A2 and R−1B2 are open, they are contained in IR−1CA2 and
IR−1CB2, and then we use that IC is increasing on open sets; the final step is from the definitions of
�U and the join in RO(X ).

To see �U is upper continuous, we must show �U A=∧{�U B :A≺B}.As �U is de Vries additive,
it is proximity preserving, so �U A⊆∧{�U B :A≺B}. For the other containment, it is enough to show

R−1CA⊇
⋂

{IR−1CD :A≺D}.

For this, note CA=⋂{B :A≺B}=⋂{CB :A≺B}. Therefore, R−1CA=R−1⋂{CB :A≺B}. As this
intersection is down-directed, by Esakia’s Lemma, R−1CA=⋂{R−1CB :A≺B}. Consequently,
R−1CA=⋂{R−1B :A≺B}. Suppose x∈⋂{IR−1CD :A≺D} and that A≺B. Then there is D with
A≺D≺B. So x∈IR−1CD. As D≺B we have CD⊆B, so x∈IR−1B, hence x∈R−1B. As this holds
for each B with A≺B, we have x∈R−1CA. This shows XU = (RO(X ),≺,�U ) is an upper continuous
MDV-algebra. �

Theorem 5.9
Let X= (X ,R) and Y= (Y ,R) be MKH-spaces and let f :X →Y be a continuous p-morphism. Define
f ∗ :RO(Y )→RO(X ) by setting f ∗(S)=ICf −1(S) for each S ∈RO(Y ).

(1) f ∗ :YL →XL is an MDV-morphism.
(2) f ∗ :YU →XU is an MDV-morphism.

Proof. It follows from de Vries duality that f ∗ is a de Vries morphism. We have to show f ∗ satisfies
the modal de Vries morphism conditions for compatibility with the operations involved. To verify
the conditions for f ∗ to be an MDV-morphism from YL to XL, we must show that for regular open
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subsets A,B of Y , that A≺B implies f ∗(�LA)≺�Lf ∗(B) and �Lf ∗(A)≺ f ∗(�LB). Upon substituting
the definitions involved, we must show:

CA⊆B ⇒ CICf −1ICR−1A ⊆ ICR−1ICf −1B.

CA⊆B ⇒ CICR−1ICf −1A ⊆ ICf −1ICR−1B.

For the first formula we have:

CICf −1ICR−1A = Cf −1ICR−1A

⊆ Cf −1R−1CA

= f −1R−1CA

= R−1f −1CA

⊆ R−1f −1B

= IR−1If −1B

⊆ ICR−1ICf −1B.

The first step is as CICU =CU for any open set U ; the second as ICR−1A⊆CR−1A⊆R−1CA,
which holds as R−1 of a closed set is closed; the third as R−1 of a closed set is closed and f −1 of a
closed set is closed; the fourth by Lemma 2.3; the fifth as A≺B; the sixth as f −1 of an open set is
open and R−1 of an open set is open; and the final step is trivial.

Similarly, for the second formula the reasoning is nearly identical.
CICR−1ICf −1A=CR−1ICf −1A⊆CR−1f −1CA=R−1f −1CA= f −1R−1CA⊆ f −1R−1B=

If −1IR−1B⊆ICf −1ICR−1B. This establishes (1), that f ∗ :YL →XL is an MDV-morphism.
For (2), to show f ∗ is an MDV-morphism from YU to XU , we must show that for regular

open subsets A,B of Y , that A≺B implies f ∗(�U A)≺�U f ∗(B) and �U f ∗(A)≺ f ∗(�U B). Upon
substituting the definitions involved, we must show:

CA⊆B ⇒ CICf −1IR−1CA ⊆ IR−1CICf −1B.

CA⊆B ⇒ CIR−1CICf −1A ⊆ ICf −1IR−1CB.

For the first formula we have CICf −1IR−1CA=Cf −1IR−1CA⊆Cf −1R−1CA= f −1R−1 CA=
R−1f −1CA⊆R−1f −1B=IR−1If −1B⊆IR−1CICf −1B. The reasoning for the steps involved is
similar to that above. For the second formula, by similar reasoning, CIR−1 CIC f −1A=CIR−1C f −1

A⊆CR−1C f −1A⊆CR−1 f −1CA=R−1 f −1CA= f −1R−1CA⊆ f −1R−1B=I f −1IR−1B⊆IC f −1

IR−1CB. This shows f ∗ is an MDV-morphism from YU to XU . �
Theorem 5.10
There are functors (−)L :MKHaus→LMDV and (−)U :MKHaus→UMDV, where (−)L and (−)U

take an MKH-space X= (X ,R) to XL = (RO(X ),≺,�L) and XU = (RO(X ),≺,�U ), respectively,
and for f :X →Y a continuous p-morphism, f L = f U = f ∗ =ICf −1.

Proof. Theorem 5.8 shows (−)L and (−)U take objects of MKHaus to objects of LMDV and UMDV,
respectively. As LMDV and UMDV are defined to be full subcategories of MDV, Theorem 5.9 shows
both (−)L and (−)U take continuous p-morphisms to MDV-morphisms, hence to morphisms in the
categories LMDV and UMDV. Again, the maps produced are exactly the ones produced in de Vries
duality for the underlying de Vries algebras, and as the rules of composition involved are the same
as those involved in de Vries duality, it follows that these are functors. �
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We next show these functors provide dualities between LMDV, UMDV, and MKHaus, hence
between MDV and MKHaus. To begin, recall that for a de Vries algebra A= (A,≺), the regular open
sets of the space of ends of A are exactly the sets ϕ(a)={x :a∈x} for a∈A. Further, ϕ is a de Vries
isomorphism between A and the de Vries algebra of regular open sets of its space of ends.

Theorem 5.11
Suppose A= (A,≺,�) is an MDV-algebra.

(1) If A is lower continuous, then ϕ is an MDV-isomorphism from A to A∗L.
(2) If A is upper continuous, then ϕ is an MDV-isomorphism from A to A∗U .

Proof. We know that in both cases ϕ is a de Vries algebra isomorphism. So by Proposition 4.19, to
show the first statement we must show that if � is lower continuous, then ϕ(�a)=�Lϕ(a), which
means ϕ(�a)=ICR−1

� ϕ(a). Also by Proposition 4.19, to show the second statement, we must show
that if � is upper continuous, then ϕ(�a)=�Uϕ(a), which means ϕ(�a)=IR−1

� Cϕ(a).
(1) Suppose � is lower continuous. By Claim 5.3, R−1

� ϕ(a)⊆ϕ(�a), and as ϕ(�a) is regular
open, ICR−1

� ϕ(a)⊆ϕ(�a). For the other containment it is enough to show ϕ(�a)⊆CR−1
� ϕ(a). As

each closed set is the intersection of the regular open sets that contain it, it is sufficient to show that
if CR−1

� ϕ(a) is contained in ϕ(c), then ϕ(�a) is contained in ϕ(c). For such c, making use of the
fact that R−1

� ϕ(a)=⋃{ϕ(�b) :b≺a} (see Theorem 5.2), we have �b≤c for each b≺a. Then as �

is lower continuous, we have �a=∨{�b :b≺a}, giving �a≤c, hence ϕ(�a)⊆ϕ(c) as required.
(2) Suppose � is upper continuous. By Theorem 5.2, IR−1

� Cϕ(a)=I
⋂{ϕ(�b) :a≺b}. If a≺b,

then as � is proximity preserving, �a≺�b, so ϕ(�a)⊆ϕ(�b), so ϕ(�a) is an open set contained in⋂{ϕ(�b) :a≺b}, hence ϕ(�a) is contained in I
⋂{ϕ(�b) :a≺b}. For the other containment, suppose

ϕ(c)⊆⋂{ϕ(�b) :a≺b}. Then c≤�b for each b with a≺b. Thus, c≤∧{�b :a≺b}. As � is upper
continuous, �a=∧{�b :a≺b}, so c≤�a. So ϕ(�a)=I

⋂{ϕ(�b) :a≺b} as required. �
Recall that for X a compact Hausdorff space, de Vries duality gives ε(x)={U ∈RO(X ) :x∈U } is

an end of RO(X ), and ε is a homeomorphism from X onto the space of ends of RO(X ).

Proposition 5.12
Let X= (X ,R) be an MKH-space and let x,y∈X .

(1) xRy iff ε(x)R�Lε(y).
(2) xRy iff ε(x)R�U ε(y).

Proof. Recall ε(x)R�Lε(y) means �L[ε(y)]⊆ε(x), and ε(x)R�U ε(y) means �U [ε(y)]⊆ε(x). So

ε(x)R�Lε(y) iff y∈A⇒x∈ICR−1A,

ε(x)R�U ε(y) iff y∈A⇒x∈IR−1CA.

In these formulas, A ranges over all regular open sets. As X= (X ,R) is an MKH-space, the inverse
image of a closed set is closed, so for any set A we have ICR−1A is contained in IR−1CA. It follows
that ε(x)R�Lε(y) implies ε(x)R�U ε(y). So it is enough to show xRy implies ε(x)R�Lε(y) and that
ε(x)R�U ε(y) implies xRy.

Suppose xRy and y belongs to the regular open set A. Then xRy gives x∈R−1A. As R is continuous
and A is open, R−1A is open, so x∈IR−1A, hence x∈ICR−1A. This shows xRy implies ε(x)R�Lε(y).

Suppose x �Ry. Then y �∈R[x]. As R is continuous, R[x] is closed. As X is a compact Hausdorff
space, there are disjoint open sets U ,V with R[x]⊆U and y∈V . As the regular open sets form a
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basis, there is a regular open set A⊆V with y∈A. Then CA⊆−U , so IR−1CA⊆R−1 −U , and as
R[x]⊆U , we have x �∈IR−1CA. So x �Ry implies ε(x) �R�U ε(y). �
Corollary 5.13
For an MKH-space X, we have XL∗ is equal to XU ∗, and that the map ε is an isomorphism in
MKHaus from X onto these equal structures.

Using the above results, we obtain the following.

Theorem 5.14
The functors (−)∗ :LMDV→MKHaus and (−)L :MKHaus→LMDV give a dual equivalence
between LMDV and MKHaus, and the functors (−)∗ :UMDV→MKHaus and (−)U :MKHaus→
UMDV give a dual equivalence between UMDV and MKHaus.

Proof. To show that (−)∗ and (−)L give a dual equivalence, it is enough to show ϕ :1→ (−)L ◦(−)∗
and ε :1→ (−)∗◦(−)L are natural isomorphisms. By Theorem 5.11 and Corollary 5.13, ϕ and ε are
isomorphisms. It remains to show that for each α :A→B in LMDV, that α∗L�ϕA =ϕB�α; and for
each f :X→Y in MKHaus, that f L∗◦εX =εY◦f . This follows as the set mappings involved, and
the rules of composition, are exactly those in de Vries duality between de Vries algebras and compact
Hausdorff spaces. That (−)∗,(−)U give a duality between UMDV and MKHaus is similar. �
Corollary 5.15
The categories MDV and MKHaus are dually equivalent.

Proof. Apply Theorems 4.23 and 5.14. �
Corollary 5.16
The categories MKRFrm, MDV, LMDV, and UMDV are dually equivalent to the category of Vietoris
coalgebras on KHaus.

Proof. Apply Theorems 2.16, 3.14, 5.14 and Corollary 5.15. �

6 Summary of the dualities

In this section, we collect our duality results and describe how they can be viewed as extensions
of Isbell and de Vries dualities. We also consider their restrictions to the zero-dimensional case,
which implies the standard duality between modal algebras and modal spaces, and show these
have links to ideal and MacNeille completions of modal algebras. We begin with Figure 1 that
summarizes the results we have so far obtained. For readability, the identical embeddings of LMDV
and UMDV into MDV are not shown on this figure, nor are the composites of these with (−)∗.
We remark that the dualities involving MKHaus use some version of the axiom of choice. In [5]
choice-free equivalences between MKRFrm and both LMDV and UMDV, and hence MDV, are
given.

Our results are easily seen to extend the Isbell and de Vries dualities on which they are based.
Call an MKR-frame trivial if �,� are the identity maps, call an MDV-algebra A= (A,≺,�) trivial
if � is the identity map, and call an MKH-space X= (X ,R) trivial if R is the identity relation. Then
the obvious forgetful functors provide isomorphisms from the full subcategories of trivial MKR-
frames, trivial MDV-algebras and trivial MKH-spaces to the categories KRFrm, DeV and KHaus,
respectively. Moreover, the restrictions of the functors above provide the usual functors giving Isbell
and de Vries dualities.
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Figure 1.

Theorem 6.1
The dualities from MKRFrm and MDV to MKHaus naturally extend the Isbell and de Vries dualities
from KRFrm and DeV to KHaus.

We next consider our dualities in the zero-dimensional setting. We require some definitions
[3, 28].

Definition 6.2
A frame L is zero-dimensional if its complemented elements are join-dense in L. In a de Vries algebra
(A,≺), we say c is reflexive if c≺c, and we say (A,≺) is zero-dimensional if a≺b implies there exists
a reflexive c∈A with a≺c≺b.

Isbell and de Vries dualities restrict to give dualities between the category zKFrm of compact
zero-dimensional frames, the category zDeV of zero-dimensional de Vries algebras, and the category
Stone of Stone spaces [3, 4, 28]. Note that any zero-dimensional compact frame is regular, so zKFrm
is a full subcategory of KRFrm (see, e.g. [4, Section 4]). Defining zMKFrm, zMDV, zLMDV and
zUMDV to be the obvious full subcategories of MKRFrm, MDV, LMDV and UMDV, and noting that
the MKH-spaces whose underlying topologies are zero-dimensional are exactly the modal spaces,
our dualities restrict to provide the following.

Theorem 6.3
The category MS is dually equivalent to zMKFrm, zMDV, zLMDV and zUMDV.

Using Stone duality between Stone and the category BA of Boolean algebras and Boolean
homomorphisms, the restrictions of Isbell and de Vries dualities to the zero-dimensional case can be
given an algebraic form [4]. The main tools will be the ideal completion IB and MacNeille completion
B of a Boolean algebra B. We view both as complete lattices that contain B. In IB each element is
the join of the elements of B beneath it, and in B each element is both the join of the elements of
B beneath it, and the meet of the elements of B above it. Finally, we recall the clopen set functor
Clop :Stone→BA and the Stone space functor Sp :BA→Stone provide a dual equivalence that
lifts to a dual equivalence between MA and MS.

Definition 6.4
The ideal frame functor I :BA→zKFrm takes a Boolean algebra to its ideal frame, and a
Boolean homomorphism h to the frame homomorphism Ih where Ih(x)=∨{h(a) :a∈B and a≤x}.
The complemented element functor C :zKFrm→BA takes a frame to its Boolean algebra of
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complemented elements, and a frame homomorphism to its restriction to these complemented
elements.

For a Boolean algebra B, the frame of open sets of its Stone space is isomorphic to the ideal frame
of B, and the complemented elements of this ideal frame form a Boolean algebra isomorphic to B.
This leads to the results [28] that I��◦Sp and C�Clop◦p where � indicates naturally isomorphic
functors.

Definition 6.5
The MacNeille completion functor M :BA→zDeV sends a Boolean algebra B to the zero-
dimensional de Vries algebra (B,≺), where B is the MacNeille completion of B and x≺y if
x≤a≤y for some a∈B; and sends a Boolean homomorphism h to the de Vries morphism h
where h(x)=∨{h(a) :a∈B and a≤x}. The reflexive element functor R :zDeV→BA sends a zero-
dimensional de Vries algebra to its Boolean algebra of reflexive elements, and a de Vries morphism
to its restriction to the reflexive elements.

For a Boolean algebra B, the MacNeille completion of B is isomorphic to the regular open subsets
of its Stone space, and for such U and V regular open, we have CU ⊆V iff there is clopen C with
U ⊆C ⊆V . Conversely, the regular open sets U with CU ⊆U are the clopen ones. This leads to the
results [3] that M� (−)∗◦Sp and R�Clop◦(−)∗ where (−)∗ and (−)∗ are the restrictions of the
functors providing de Vries duality.

Definition 6.6
For a modal algebra B= (B,�) with �=¬�¬ define its ideal completion IB= (IB,�,�·), lower
MacNeille completion MLB= (B,≺,�L), and upper MacNeille completion MU = (B,≺,�U ) where

(1) �x=∨{�a :a∈B and a≤x} and �·x=∨{�a :a∈B and a≤x}.
(2) �Lx=∨{�a :a∈B and a≤x}.
(3) �U x=∧{�a :a∈B and x≤a}.

Theorem 6.7
The ideal frame and complemented element functors lift to functors I :MA→zMKFrm and C :
zMKFrm→MA with I taking a modal algebra to its ideal completion and C taking a zero-dimensional
MKR-frame to the modal algebra obtained by restricting � to the complemented elements. Further,
I��◦Sp and C�Clop◦p, so I and C give an equivalence between MA and zMKFrm.

Proof. The statements for the ideal functor will follow if we show that for a modal algebra B= (B,�)
with modal space X, the modal operators � and �· on IB are those transferred from �X by the
frame isomorphism e from �X to IB sending U to

∨{a :ϕ(a)⊆U }. For a clopen set ϕa of X , it is
standard from modal logic that R−1ϕa=ϕ�a and −R−1 −ϕa=ϕ�a, so e�ϕa=�a=�eϕa and
e�ϕa=�a=�· eϕa. The result then follows as in �X the actions of � and � on U are the joins of
their actions on the ϕa with ϕa⊆U , and in IB the actions of � and �· on eU are the joins of their
actions on the a with ϕa⊆U .

For the complemented element functor, let L= (L,�,�) be a zero-dimensional MKR-frame
with modal space pL= (X ,R). The restriction of ϕ is a Boolean algebra isomorphism from the
complemented elements of L to ClopX . For a∈L, Lemma 3.12 gives ϕ�a=−R−1 −ϕa and ϕ�a=
R−1ϕa, so if a is complemented, �a and �a are complemented. Therefore, the modal operators of
L restrict to its complemented elements, and the isomorphism ϕ from these complemented elements
to the modal algebra ClopX of clopen subsets of X is a modal isomorphism. Our statements about
C follow. �
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Corollary 6.8
The equivalence between MA and zMKFrm, together with the dual equivalence between zMKFrm
and MS, yields, up to natural isomorphism, the usual duality between MA and MS.

Proof. Informally, the duality between MA and MS is obtained from the duality between zMKFrm
and MS by restricting to the complemented elements of a zero-dimensional MKR-frame. More
formally, for the functors Clop and Sp between MA and MS, the above results show Clop�C◦�
and Sp�p◦I. �
Theorem 6.9
The MacNeille completion and reflexive element functors lift to functors ML :MA→zLMDV and
R :zMDV→MA with ML taking a modal algebra to its lower MacNeille completion and R taking
a zero-dimensional MDV-algebra to the modal algebra obtained by restricting � to its reflexive
elements. Further, ML � (−)L ◦Sp and R�Clop◦(−)∗, so ML and R give an equivalence between
MA and zLMDV.

Proof. For a modal algebra B= (B,�) with modal space X, we show the operation �L of MLB

is transferred from XL via the de Vries isomorphism α from the regular open sets of X to B. As we
saw in the proof of Theorem 6.7, this is the case for clopen ϕ(a). For arbitrary U ∈XL, the lower
continuity of XL gives �LU =∨{�LV :V ≺U }. As X is Stone, V ≺U means there is a clopen set
ϕa with V ⊆ϕa⊆U , so �LU =∨{�Lϕa :ϕa≺U }. Then the action of �L on U is the join of its
actions on the ϕa where ϕa⊆U , and by definition the action of �L on αU is the join of its actions
on the αϕa where ϕa⊆U . The result follows.

For the reflexive element functor, let A= (A,≺�) be a zero-dimensional MDV-algebra with A∗ =
(X ,R) its modal space. Then the ϕa with a reflexive are exactly the clopen sets of X . Claim 5.3
shows that if a is reflexive, then ϕ�a=R−1ϕa. This shows that � restricts to an operator on the
reflexive elements of A, and the isomorphism ϕ from these reflexive elements to ClopX is a modal
isomorphism. �
Theorem 6.10
The MacNeille completion functor lifts to a functor MU :MA→zUMDV with MU taking a
modal algebra to its upper MacNeille completion. Further, for R the reflexive element functor of
Theorem 6.9, we have MU � (−)U ◦Sp and R�Clop◦(−)∗, so MU and R give an equivalence
between MA and zUMDV.

Proof. This follows as in the proof of Theorem 6.9, using the upper continuity of XU and the
definition of the modal operator in the upper MacNeille completion as an approximation from above.

�
Corollary 6.11
The category MA is equivalent to each of zLMDV, zUMDV, zMDV, and zMKFrm.

Of course this result follows from Theorem 6.3, but our purpose was to point out the direct
description of the functors realizing these equivalences and especially their connections to ideal and
MacNeille completions.

Corollary 6.12
The equivalence between MA and zMDV, together with the dual equivalence between zMDV and
MS, yields, up to natural isomorphism, the usual duality between MA and MS.
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Proof. Informally, the usual duality between MA and MS is obtained from the duality between
zMDV and MS by restricting to the reflexive elements of a zero-dimensional MDV-algebra. More
formally, for the functors Clop and Sp between MA and MS, the above results show Clop�R◦(−)L

and Sp� (−)∗◦ML (the upper extensions (−)U and MU give similar results). �
Remark 6.13
The ideal and MacNeille completions occur in studies of modal logic [6, 18, 22, 26, 35, 41], but
neither to the extent that the canonical completion (ultrafilter extension) occurs. For the reader
surprised to see the ideal and MacNeille completions take a more prominent role in these studies
than the canonical completion, we comment that the underlying reason is their closer connection to
the topology that underscores our effort.

In the next section, we begin a study of logical properties of MKH-spaces, MKR-frames and
MDV-algebras. This is related to equational properties of various related algebras. We conclude this
section by pointing out the standard result [25] that the ideal completion of any lattice with additional
order-preserving operations satisfies the same equations as the original. This, in particular, applies to
the ideal completion of modal algebras, provided we consider only the operations � and � and not
negation. Equational properties of lower and upper MacNeille completions of modal algebras have
also been studied, we direct the reader to [18, 22, 26, 35, 41].

7 Logical aspects

In this section, we consider the various structures discussed above as models of a positive fragment of
propositional modal logic. Here we consider the set F of formulasϕ built from a set V ={v1,v2,v3,...}
of propositional variables, using the constants �,⊥, connectives ∧,∨, and modal operators �,�.
For such formulas ϕ,ψ , we define below what it means for a model of a certain type to satisfy the
sequent ϕ�ψ .

For each basic type of structure, an MKR-frame L= (L,�,�), an MDV-algebra A= (A,≺,�),
and an MKH-space X= (X ,τ,R), we have an associated algebraic structure with underlying lattice,
top and bottom, and two unary operations �,�. For L this is simply the structure itself, for A we use
the structure A but define �=¬�¬, and for X we use the structure �X= (�X ,�,�).

Definition 7.1
Let L be an MKR-frame, A be an MDV-algebra, X be an MKH-space, and let ϕ(�v) be a formula
whose variables are among �v=v1,...,vn.

(1) For �a in Ln let ϕL(�a) be the result of substituting �a for �v in the term ϕ over L.
(2) For �a in An let ϕA(�a) be the result of substituting �a for �v in the term ϕ over A.
(3) For �U in �(X )n let ϕ�X( �U ) be the result of substituting �U for �v in the term ϕ over �X.

We often simply write ϕ(�a) or ϕ( �U ) with the algebra clear from the context.

For sequences of elements �a=a1,...,an and �b=b1,...,bn in an MKR-frame L or an MDV-algebra
A, we write �a≺�b if ai ≺bi for each i=1,...,n.

Definition 7.2
Let L be an MKR-frame, A be an MDV-algebra, X be an MKH-space, and ϕ,ψ be formulas whose
variables are among �v=v1,...,vn. Define
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(1) L |=ϕ�ψ iff ϕ(�a)≤ψ(�a) for each �a∈Ln.
(2) A |=ϕ�ψ iff ϕ(�a)≺ψ(�b) for each �a≺�b∈An.
(3) X |=ϕ�ψ iff ϕ( �U )⊆ψ( �U ) for each �U ∈�(X )n.

Before proceeding, we recall a few basics about pseudocomplements and the well inside relation
in compact regular frames (see Definition 3.3). In any frame, we have a≤¬¬a and ¬a=¬¬¬a. So
a≺b implies ¬b≺¬a and ¬¬a≺b. An element a∈L is called regular if a=¬¬a. If L is the frame
of open sets of a space X , then pseudocomplement in L is the interior of set-theoretic complement,
so the regular elements of L are exactly the regular open sets of X , hence the name. In a compact
regular frame L, the well inside relation has the interpolation property: if a≺b, then there is c with
a≺c≺b, and from the remarks above this c can be chosen regular. Thus, if L is compact regular and
b∈L we have b=∨{a :a is regular and a≺b}.
Lemma 7.3
Let A be an MDV-algebra, L be an MKR-frame, and ϕ(�v) be a formula. Then

(1) If �a≺�b in An, then ϕA(�a)≺ϕA(�b).
(2) If �a≺�b in Ln, then ϕL(�a)≺ϕL(�b).
(3) For any �b∈Ln, we have ϕL(�b)=∨{ϕL(�a) : �a is regular and �a≺�b}.

Proof. (1) In any de Vries algebra, x1 ≺y1 and x2 ≺y2 imply x1 ∧x2 ≺y1 ∧y2 and x1 ∨x2 ≺y1 ∨y2
and x≺y implies ¬y≺¬x. Proposition 4.8 gives x≺y implies �x≺�y, hence ¬�¬x≺¬�¬y,
so �x≺�y. Then as 0≺x and x≺1 for each x, the result follows by an induction on the
complexity of ϕ.

(2) In any compact regular frame, x1 ≺y1 and x2 ≺y2 imply x1 ∧x2 ≺y1 ∧y2 and x1 ∨x2 ≺y1 ∨y2,
and in an MKR-frame, Lemma 3.6 shows a≺b implies �a≺�b and �a≺�b. Again, the result
follows by induction.

(3) By (2) we have
∨{ϕ(�a) : �a is regular and �a≺�b}≤ϕ(�b). To show equality induct on the

complexity of ϕ. For constants this is trivial, and in any compact regular frame b=∨{a :a is
regular and a≺b}. By the infinite distributive law and inductive hypothesis, ϕ1(�b)∧ϕ2(�b) equals∨{ϕ1(�c)∧ϕ2(�d ) : �c,�d are regular and �c,�d ≺�b}. For any �c,�d ≺�b there is regular �a with �c,�d ≺�a≺�b,
giving ϕ1(�b)∧ϕ2(�b)≤∨{ϕ1(�a)∧ϕ2(�a) : �a is regular and �a≺�b}, hence equality. The argument for
ϕ1(�b)∨ϕ2(�b) is similar. The cases for the modal operators �ϕ(�b) and �ϕ(�b) follow as � and � by
definition preserve directed joins in any MKR-frame. �

For convenience, we recall some earlier definitions. Suppose X= (X ,R) is an MKH-space with
L=�X, L=XL, and U=XU its associated MKR-frame and lower and upper continuous MDV-
algebras. Then L= (�X ,�,�) where �S =−R−1 −S and �S =R−1S, L= (RO(X ),≺,�L) where
�LS =ICR−1S, and U= (RO(X ),≺,�U ) where �U S =IR−1CS. The derived operations on L and
U respectively, are given by �L =¬�L¬ and �U =¬�U ¬. The relation ≺ on L is given by S ≺T
iff CS ⊆T , and the restriction of this relation to the regular open sets is the proximity on each of L

and U.

Lemma 7.4
Let X= (X ,R) be an MKH-space with L=�X, L=XL, and U=XU . For a formula ϕ(�v), if �S, �T are
regular open and �S ≺ �T , then

ϕL(�S),ϕU(�S),ϕL(�S) ≺ ϕL(�T ),ϕU(�T ),ϕL(�T ).
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Proof. We first show that if S,T are regular open with S ≺T , then �LS,�U S,�S ≺�LT ,�U T ,�T .
Indeed, the definitions show �S ≤�LS ≤�U S, so it is enough to show �U S ≺�T . But S ≺T implies
CS ⊆T , so C�U S =CIR−1CS ⊆CR−1CS =R−1CS ⊆R−1T =�T , implying that �U S ≺�T .

We next show �LS,�U S,�S ≺�LT ,�U T ,�T . The above definitions, together with ¬=I−,
give �U S =¬�¬S. So �S ≤¬¬�¬¬S =�U S, and as �LS ≤�U S we have �U S ≤�LS. So it is
enough to show �LS ≺�T . As IC=¬¬ we have �LS =¬¬¬R−1¬S =I−R−1I−S. Then S ≺T
gives CS ⊆T , hence −T ⊆I−S. So R−1 −T ⊆R−1I−S. Therefore, −R−1I−S ⊆−R−1 −T , which
implies CI−R−1I−S ⊆−R−1 −T . Thus, C�LS ⊆�T , yielding �LS ≺�T . The result then follows
by induction on the complexity of ϕ as in the proof of Lemma 7.3. �
Theorem 7.5
Let X be an MKH-space, L=�X its associated MKR-frame, L=XL its associated lower continuous
MDV-algebra, and U=XU its associated upper continuous MDV-algebra. For formulas ϕ,ψ these
are equivalent.

(1) X |=ϕ�ψ .
(2) L |=ϕ�ψ .
(3) L |=ϕ�ψ .
(4) U |=ϕ�ψ .

Proof. The equivalence of (1) and (2) is obvious. For (2) implies (3) suppose �S and �T are regular with
�S ≺ �T . By interpolation there is a regular �V with �S ≺ �V ≺ �T . Then by Lemma 7.4 and the assumption
L |=ϕ�ψ we have ϕL(�S)≺ϕL( �V )≤ψL( �V )≺ψL(�T ), showing L |=ϕ�ψ . The argument that (2)
implies (4) is nearly identical. To see (3) implies (2) suppose �T ∈Ln. If �S is regular and �S ≺ �T , then
by interpolation there are regular �U , �V with �S ≺ �U ≺ �V ≺ �T . Then by Lemma 7.4 and the assumption
L |=ϕ�ψ we have ϕL(�S)≺ϕL( �U )≺ψL( �V )≺ψL(�T ). In particular ϕL(�S)≤ψL(�T ) for each regular
�S ≺ �T , and it follows from Lemma 7.3.3 that ϕL(�T )≤ψL(�T ). Showing (4) implies (2) is nearly
identical. �
Remark 7.6
Isomorphisms for MKR-frames and MKH-spaces are structure-preserving bijections, thus isomor-
phic MKR-frames and isomorphic MKH-spaces satisfy the same sequents ϕ�ψ . An isomorphism α
between MDV-algebras A and A′ is a bijection preserving the de Vries structure, but not necessarily
the modal structure. It need only satisfy a≺b implies �α(a)≺α(�b) and α(�a)≺�α(b). But it is
a simple matter to use this condition to see A |=ϕ�ψ iff A′ |=ϕ�ψ . This lends explanation to the
result of Theorem 7.5 that the lower and upper MDV-algebras L and U associated with X satisfy
the same sequents ϕ�ψ .

This result is striking when considered in the context of a modal space X. Here, as seen in
Section 6, the lower and upper MDV-algebras associated with X are the lower and upper MacNeille
completions of the modal algebra corresponding to X. The upper MacNeile completion of a modal
algebra is always a modal algebra [26, Theorem 3.5], but the lower MacNeille completion need not
be [26, Theorem 3.3]. However, when we consider these lower and upper MacNeille completions as
MDV-algebras, they are isomorphic and satisfy exactly the same sequents ϕ�ψ . But of course, they
do not satisfy the same modal equations.

Definition 7.7
For an MKH-space X= (X ,R) let MX= (P(X ),�,�) be the modal algebra, where P(X ) is the power
set of X , �A=−R−1 −A, and �A=R−1A for any A⊆X . Then for formulas ϕ,ψ whose variables
are among �v define MX |=ϕ�ψ iff ϕ( �U )⊆ψ( �U ) for each �U ∈P(X )n.
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Lemma 7.8
For X= (X ,R) an MKH-space, ϕ(�v) a formula, and �F closed in X n,

(1) ϕ(�F)=⋂{ϕ( �U ) : �F ⊆ �U open}.
(2) ϕ(�F)=⋂{ϕ(C �U ) : �F ⊆ �U open}.

Here C �U is the termwise closure of �U , and all formulas are interpreted in the modal algebra MX.

Proof. As intersection, union, and the modal operations �=−R−1− and �=R−1 are
order-preserving, �U ⊆ �V implies ϕ( �U )⊆ϕ( �V ). So ϕ(�F)⊆⋂{ϕ( �U ) : �F ⊆ �U open}⊆⋂{ϕ(C �U ) : �F ⊆
�U open}. We show equality by induction on the complexity of ϕ.

For constants this is trivial, and for a variable v this is the well-known fact that for F a closed set
in a compact Hausdorff space, that F =⋂{U :F ⊆U open}=⋂{CU :F ⊆U open}. For ϕ1 ∧ϕ2, we
must show

⋂{ϕ1(C �U )∩ϕ2(C �U ) : �F ⊆ �U open} is contained in ϕ1(�F)∩ϕ2(�F), which follows from
the inductive hypothesis. For ϕ1 ∨ϕ2, using the inductive hypothesis and the infinite distributive
law, we must show

⋂{ϕ1(C �U )∪ϕ2(C �U ) : �F ⊆ �U open} is contained in
⋂{ϕ1(C �V )∪ϕ2(C �W ) : �F ⊆

�V , �W open}. For �F ⊆ �V , �W open, set �U = �V ∩ �W . Then �F ⊆ �U open, and ϕ1(C �U )∪ϕ2(C �U ) is
contained in ϕ1(C �V )∪ϕ2(C �W ).

Finally, we consider the cases for the modal operators. Note first that � and � applied to a closed
set yield a closed set as in an MKH-space R−1 of an open set is open and R−1 of a closed set is
closed. So for any formula ψ and sequence of closed subsets �F , a simple induction shows ψ(�F) is
closed. By definition, �ϕ(�F) is given by R−1ϕ(�F), and the inductive hypothesis gives ϕ(�F) is equal
to the down-directed intersection of closed sets

⋂{ϕ(C �U ) : �F ⊆ �U open}. So Esakia’s Lemma gives
R−1[ϕ(�F)] is equal to

⋂{R−[ϕ(C �U )] : �F ⊆ �U open}. Matters for � are simpler, and follow from the
basic fact that R−1 commutes with infinite unions for any relation R. �

Following [9], we next define analogues of Sahlqvist formulas (Definition 7.9) and Sahlqvist
sequents (Definition 7.12) for the positive modal language.

Definition 7.9
Define �0v=v, and �n+1v=�(�nv) for each n≥0. A formula ϕ is called a basic Sahlqvist formula
if it is of the form �n�, �n⊥ or �nv, for some variable v and n≥0. A Sahlqvist formula is one
obtained from basic Sahlqvist formulas by applying ∧ and �.

Lemma 7.10
Let X= (X ,R) be an MKH-space.

(1) For x∈X and S ⊆X , we have x∈�nS iff Rn[x]⊆S.
(2) For F ⊆X closed, Rn[F] is closed.

Proof. (1) Note x∈�S iff x∈−R−1 −S iff R[x]⊆S. So x∈�n+1S iff R[x]⊆�nS. This is equivalent
to saying xRy implies Rn[y]⊆S, hence that Rn+1[x]⊆S.

(2) It is enough to show F closed implies R[F] is closed. Note that as X is compact Hausdorff,
closed sets are the same as compact sets. Suppose A is a collection of open sets that is closed under
finite unions, and R[F]⊆⋃

A. Then for each x∈F , since R[x] is closed, hence compact, there is
Ux ∈A with R[x]⊆Ux. Thus by (1), x∈�Ux which we have previously noted is open. Then as F
is compact, there is a finite A′ ⊆A so that each x∈F belongs to �U for some U ∈A′. Then, again
by (2), we have R[F]⊆⋃

A′. So R[F] is compact, hence closed. �
The following is an adaptation of the well-known technique of minimal closed assignments (see, e.g.
[7–10]).
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Lemma 7.11
Suppose X= (X ,R) is an MKH-space, ϕ(�v) is a Sahlqvist formula, and �S is any sequence of subsets
of X . Then for any x∈ϕ(�S) there is a closed �F with �F ⊆ �S and x∈ϕ(�F).

Proof. The proof is by induction on the number of applications of ∧ and � to obtain ϕ from basic
Sahlqvist formulas. If ϕ is a basic Sahlqvist formula of the form �n� or �n⊥ this is trivial. If ϕ is of
the form �nv, then Lemma 7.10 states x∈ϕ(S) iff Rn[x]⊆S and that Rn[x] is closed. So we may use
Rn[x] for F . Having established the result for basic Sahlqvist formulas, suppose ϕ(�v)=ϕ1(�v)∧ϕ2(�v)
where ϕ1 and ϕ2 are Sahlqvist. Then x∈ϕ(�S) implies x∈ϕ1(�S) and x∈ϕ2(�S), so by the inductive
hypothesis, there are closed �G, �H ⊆ �S with x∈ϕ1( �G) and x∈ϕ2( �H ). Set �F = �G∪ �H . Finally, suppose
ϕ=�ϕ1. Then x∈�ϕ(�S) means x∈R−1ϕ1(�S), so there is some y∈ϕ1(�S) with xRy. By the inductive
hypothesis, there is closed �F ⊆ �S with y∈ϕ1(�F), hence x∈�ϕ1(�F). �
Definition 7.12
We say ϕ�ψ is a Sahlqvist sequent if ϕ is Sahlqvist.

Theorem 7.13
For X= (X ,R) an MKH-space and ϕ�ψ a Sahlqvist sequent, these are equivalent.

(1) ϕ(�S)⊆ψ(�S) for any sequence �S of subsets of X .
(2) ϕ( �U )⊆ψ( �U ) for any sequence �U of open subsets of X .

Proof. (1) implies (2) is trivial. Suppose (1) does not hold. Then there is a sequence �S of sets and
x∈X with x∈ϕ(�S) and x �∈ψ(�S). Then by Lemma 7.11, there is a closed �F with �F ⊆ �S and x∈ϕ(�F).
Note, �F ⊆ �S impliesψ(�F)⊆ψ(�S), so x �∈ψ(�F). Then, by Lemma 7.8.1, there is an open �U with �F ⊆ �U
and x �∈ψ( �U ). Since �F ⊆ �U implies ϕ(�F)⊆ϕ( �U ), we have x∈ϕ( �U ). So x∈ϕ( �U ) and x �∈ψ( �U ), so (2)
does not hold. �
Corollary 7.14
If X is an MKH-space, then X and MX satisfy exactly the same Sahlqvist sequents ϕ�ψ .

It is well known from modal logic [8, 10] that for any Sahlqvist sequent ϕ�ψ , there is a
corresponding first-order formula� in the language having a single binary relation symbol R, so that
for a relational structure (X ,R), the modal algebra (P(X ),�,�) satisfies ϕ�ψ iff (X ,R) satisfies�.
Then from the above result and Theorem 7.5, the following is immediate.

Corollary 7.15
For ϕ�ψ a Sahlqvist sequent, there is a first-order sentence � in the language with a single binary
relation symbol, so that for an MKH-space X= (X ,R), its associated MKR-frame L=�X, its
associated lower continuous MDV-algebra L=XL, and its associated upper continuous MDV-algebra
U=XU , these are equivalent.

(1) (X ,R) satisfies �.
(2) X |=ϕ�ψ .
(3) L |=ϕ�ψ .
(4) L |=ϕ�ψ .
(5) U |=ϕ�ψ .

For generalizations of Sahlqvist correspondence in different contexts see [7, 9, 19, 23].
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Remark 7.16
The above results may be combined with standard results from modal logic. For example, let B be
a modal algebra with dual space X= (X ,R). Then a≤�a holds in B iff R is reflexive, ��a≤�a
holds in B iff R is transitive, and a≤��a holds in B iff R is symmetric [8, 10]. As all these are
Sahlqvist, it follows that if L is an MKR-frame and X is its dual MKH-space, then a≤�a holds
in L iff R is reflexive, ��a≤�a holds in L iff R is transitive, and a≤��a holds in L iff R is
symmetric. So reflexive and transitive MKH-spaces correspond to MKR-frames satisfying a≤�a
and ��a≤�a, and MKH-spaces whose relations are equivalence relations correspond to MKR-
frames satisfying a≤�a, ��a≤�a, and a≤��a. Similar versions of these results can be stated
in terms of MDV-algebras.

For an MKH-space X= (X ,R), the above results show X and MX satisfy the same Sahlqvist
sequents. As �X is a subalgebra of MX, any sequent satisfied by MX is satisfied by X, but for
sequents that are not Sahlqvist, we do not know if the converse holds.

8 Concluding remarks

There are a number of avenues for further consideration. The dualities here were based on Isbell
and de Vries dualities for compact Hausdorff spaces. When modalities were incorporated, interesting
algebraic structures arose. It may be worthwhile to see if incorporation of modalities into the other
dualities mentioned in the introduction, such as Gelfand-Stone or Kakutani-Yosida duality, would
yield interesting results.

The Vietoris functor naturally generalizes to categories of spaces more general than compact
Hausdorff spaces. One might consider algebraic counterparts of coalgebras in this setting, much as
we have done here for the Vietoris functor on KHaus.

Finally, there are many logical questions to further the work begun in the previous section. Among
many questions are ones related to Sahlqvist completeness, finite model property, and decidability.
One might also develop matters in more general languages than our positive fragment of modal logic.
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