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The elements of the truth value algebra of type-2 fuzzy sets are the mappings of the
unit interval into itself, with operations given by various convolutions of the pointwise
operations. This algebra can be specialized and generalized in various interesting ways.
First, we consider the more general case of all mappings of a bounded chain with an
involution into a complete chain, and delimit some of the properties of the resulting
algebra. These include two binary operations each of which give a partial order on the
elements of that algebra. These partial orders and their intersection are the principal
objects of interest. We specialize this situation in two cases: (1) all mappings of the unit
interval into itself, the original version of the truth value algebra of type-2 fuzzy sets
introduced by Zadeh, and (2) all mappings of a finite chain into another finite chain.
Again, each of these two cases yields two partial orders on the elements of the resulting
algebras, and in each case, our principal interest is in these partial orders and their
intersection.
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1. Introduction

The truth value algebra of type-2 fuzzy sets was introduced by Zadeh in Ref. 1,
and has been heavily investigated both as a mathematical object and for use in
applications. Its elements are all the mappings of the unit interval into itself and
its operations are convolutions of operations on the unit interval. Some of its basic
properties are in Ref. 2 for example.

The basic construction of Zadeh is applicable in a very general setting. Suppose
I is a complete lattice and J is an algebra in the sense of universal algebra. For an
n-ary operation ΓJ : Jn → J of J define an n-ary operation ΓIJ

on the set IJ of
all functions f from J to I by setting

(
ΓIJ

(f1, ..., fn)
)
(x) =

∨
{f1(x1) ∧ · · · ∧ fn(xn) : Γ

J (x1, . . . , xn) = x}

This operation ΓIJ
is called the convolution of ΓJ with respect to the meet and
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join of I. Convoluting all operations of J yields an algebra IJ that has the same
type as the algebra J .

Here we stay close to Zadeh’s path and consider the case where I is a complete
chain and J is a bounded chain with involution. In both cases, we denote the bounds
by 0 and 1, the sup and inf by ∨ and ∧, and in J the involution by ′.

Definition 1. Given I and J as described above, consider the set IJ of all func-
tions from J into I furnished with the operations given below: the binary operations
$ and ⊓, the unary operation ′, and the nullary operations 1̄ and 0̄.

(f $ g)(x) =
∨

y∨z=x
(f(y) ∧ g(z))

(f ⊓ g)(x) =
∨

y∧z=x
(f(y) ∧ g(z))

f ′(x) =
∨

y′=x
f(y) =

∨
y=x′

f(y) = f(x′)

0̄(x) =

{
1 if x = 0

0 if x ̸= 0
1̄(x) =

{
0 if x ̸= 1

1 if x = 1

There are two other operations on the functions IJ , namely pointwise max and
min of functions. We also denote these by ∨ and ∧, respectively. One can express
the operations $ and ⊓ in terms of these pointwise operations and two auxiliary
unary operations, making it rather easy to determine some equational properties of
the algebra IJ . Details may be found in Ref. 2 where these results are established
in the case where I and J are the unit interval. They remain valid when J is a
bounded chain and I is a complete chain, and even extend to the situation where
I is a complete lattice satisfying the infinite distributive law x ∧

∨
yi =

∨
(x ∧ yi).

Definition 2. For f ∈ IJ , let fL and fR be the elements defined by

fL(x) =
∨
y≤x

f(y)

fR(x) =
∨
y≥x

f(y)

The operations $ and ⊓ on IJ can be expressed in terms of the pointwise max
and min of functions, as follows.2,4

Theorem 1. The following hold for all f, g ∈ IJ .

(1) f $ g = (f ∧ gL) ∨ (fL ∧ g) = (f ∨ g) ∧ (fL ∧ gL)
(2) f ⊓ g = (f ∧ gR) ∨ (fR ∧ g) = (f ∨ g) ∧ (fR ∧ gR)

It has been shown2,4 that IJ satisfies the following equations.

Proposition 1. Let f, g, h ∈ IJ .

(1) f $ f = f ; f ⊓ f = f
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(2) f $ g = g $ f ; f ⊓ g = g ⊓ f
(3) f $ (g $ h) = (f $ g) $ h; f ⊓ (g ⊓ h) = (f ⊓ g) ⊓ h
(4) f $ (f ⊓ g) = f ⊓ (f $ g)
(5) 1̄ ⊓ f = f ; 0̄ $ f = f
(6) f ′′ = f
(7) (f $ g)′ = f ′ ⊓ g′; (f ⊓ g)′ = f ′ $ g′

A further property of these operations will be needed [2, Proposition 6].

Proposition 2. For f, g ∈ IJ

(1) (f $ g)L = fL $ gL and (f $ g)R = fR $ gR.
(2) (f ⊓ g)L = fL ⊓ gL and (f ⊓ g)R = fR ⊓ gR.

Since each of the operations $ and ⊓ on IJ is idempotent, commutative and
associative, they each induce partial orders as given by the following definition.

Definition 3. f ⊑' g if f $ g = g, and f ⊑⊓ g if f ⊓ g = f .

We often call ⊑' the join order and ⊑⊓ the meet order.

Remark 1. It is easy to see that the operations $ and ⊓ do not give the same
partial orders. For example, f ⊑⊓ 1 since f ⊓ 1 = f , but it is not true that f ⊑' 1
since f $ 1 = (f ∨ 1)∧ fL ∧ 1

L
has an entry fL(1) which may be less than 1. There

are many easy ways to construct such examples.

The inequalities in Definition 3 may be expressed in terms of pointwise order of
functions.2

Theorem 2. For f, g in IJ we have

(1) f ⊑' g if and only if f ∧ gL ≤ g ≤ fL

(2) f ⊑⊓ g if and only if fR ∧ g ≤ f ≤ gR

The following property of these orders (,2 Proposition 15) provides a link be-
tween the algebras IJ and the study of bisemilattices.

Theorem 3. Each partial order ⊑' and ⊑⊓ induces a semilattice. That is, f $ g
is the supremum of the two elements f and g, under the partial order ⊑', and f ⊓g
is the infimum of f and g under the partial order ⊑⊓.

Viewing a partial order on a set A as a subset of A × A that is reflexive, anti-
symmetric, and transitive, it is clear that the intersection of two partial orders on
a set A is again a partial order on A.

Definition 4. Let ⊑ be the intersection of the join ⊑' and meet ⊑⊓ orders. We
call ⊑ the double order.
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From Theorem 2 we get the following.

Theorem 4. f ⊑ g if and only if f ∧ gL ≤ g ≤ fL and fR ∧ g ≤ f ≤ gR.

In this paper, we investigate the join, meet, and double orders in three cases: the
general case where I is a complete chain and J is a bounded chain with involution,
the case I = J = [0, 1], and the case where I and J are finite chains.

The general case is considered in Sec. 2. We show that the set of convex normal
functions is a subalgebra of IJ on which the join, meet, and double orders coincide.
This subalgebra forms a distributive lattice under $ and ⊓. We show there is a
retraction Γ from IJ to this subalgebra of convex normal functions taking a function
f to its convex hull fL∧fR, and that this retraction is order preserving with respect
to the join, meet and double orders. We show also that several other collections of
functions are subalgebras of IJ , such as the increasing functions, and the collection
Sk of functions of given height k. Finally, we show that under the double order, the
poset IJ is the sum of the disjoint posets Sk where k ranges over all possible values
from I.

In Sec. 3 we consider the case where I and J are both the unit interval, the
case encountered most directly in studies of type-2 fuzzy sets. Here we show that
[0, 1][0,1] is not a lattice under either the join or meet order. Results from the general
case show it is not a lattice under the double order. The continuous functions form
a subalgebra of [0, 1][0,1], but again do not form a lattice under the join, meet or
double order.

In Sec. 4 we give a detailed study of the case when I and J are finite chains
m and n. In general, IJ is a bounded meet semilattice in the order ⊑⊓ with finite
meets given by ⊓. Since m and n are finite, this meet semilattice mn is a lattice
with the join of two elements given by the meet of their upper bounds. Similarly
mn is a join semilattice in the order ⊑' with finite joins given by $, and meets
given by the join of a set of lower bounds. We show that the set of convex functions
is a sublattice of mn under both the join order and the meet order, as is the set of
normal functions. The intersection of these sets, the set of convex normal functions,
is shown to be a distributive sublattice of mn under the join order and under the
meet order. This is the content of Subsecs. 4.1 and 4.2.

In Subsec. 4.3 we provide an efficient algorithm to compute directly from ele-
ments f and g in mn, the meet of f and g in the join order. The argument above
giving the existence of this meet as the join of the finite set of lower bounds re-
quires searching through all mn elements to be implemented. The algorithm in this
subsection computes this meet directly from f and g and is of order n.

In Subsec. 4.4 we show that the functions Sk in mn of some given height k form
a sublattice of mn under the double order. Frankly, we have no idea why this result
should be true past the quite complex algorithm that efficiently yields joins and
meets. We further show that the convolution of the (unique) involution of the finite
chain m gives an involution on the lattice Sk. So this construction yields a rather
interesting source of generally non-distributive involutive lattices. In Subsec. 4.5 we
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give a surprisingly simple algorithm to generate covers of an element f of mn in
the double order.

The paper concludes with Sec. 5. Here we state several open problems, and
provide diagrams of several examples of the lattices mn under the join, meet and
double orders.

We hope these results contribute to a basic understanding of the algebra [0, 1][0,1]

used as the truth value algebra for type-2 fuzzy sets. Also, as many practical appli-
cations involve only a limited range of values for the domain and range of functions,
results on the algebras mn are applicable here. Our study of the double order is
motivated by our desire to place type-2 fuzzy sets in a categorical setting as in
Ref. 3. Finally, the ordered structures arising in this paper seem to be of inde-
pendent interest. Finite chains mn under the double order produce an interesting
and non-trivial family of finite involutive lattices, when there seems absolutely no
rational reason for them to do so.

2. The General Case

Here we discuss properties of the algebras IJ in the case where I is a complete chain
and J is a bounded chain with involution. So we consider ⊓,$,′ , 0, 1 to be basic
operations of IJ as in Definition 1. We note that results not explicitly involving this
involution are valid for any bounded chain J . We will consider several subalgebras
of these algebras, or their reducts, and relate these to the join, meet, and double
orders. Of course, these results are applicable to the more specialized situations we
consider later.

Definition 5. For f ∈ IJ , the height of f is
∨
x∈J

f(x). The elements of maximal

height are called normal.

The following is established in Ref. 2.

Proposition 3. The collection of normal elements is a subalgebra of IJ .

In the following, we use a definition of convex function common in fuzzy set
theory (based on α-sets being convex). We note that this differs from the definition
often used in analysis.

Definition 6. A function f ∈ IJ is convex if for all x ≤ y ≤ z in J , f(y) ≥
f(x) ∧ f(z). Equivalently, f = fL ∧ fR.

The fact that convexity of f is equivalent to the condition f = fL ∧ fR may be
found in Refs. 2 and 4. The proof of the following is found in Ref. 2.

Proposition 4. The convex elements are a subalgebra of IJ .

As an intersection of subalgebras is a subalgebra, the set of convex normal
functions forms a subalgebra of IJ . This subalgebra is very well behaved, and
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perhaps forms a natural setting to consider Zadeh’s algebra of truth values. We
collect below several results about this subalgebra, established in Refs. 2 and 4.

Theorem 5. The set of convex normal functions is a subalgebra of IJ . On this
subalgebra, the join and meet orders ⊑' and ⊑⊓ coincide. This subalgebra forms a
bounded distributive lattice under the operations ⊓ and $, and a DeMorgan algebra
with its negation ′.

If I and J are both the unit interval, the lattice of convex normal functions is
complete. It further has a natural quotient that is not only complete but completely
distributive. These facts are discussed in Refs. 5 and 6. We next consider how the
subalgebra of convex functions sits inside the poset IJ . The following result is
substantially contained in Ref. 7.

Theorem 6. There is a retraction Γ from the algebra IJ to its subalgebra of convex
functions given by

Γf = fL ∧ fR

Further, f ⊑' Γf ⊑⊓ f for each f .

Proof. It follows from Definition 6 that Γf is convex, and if f is convex, then
f = Γf . So Γ is idempotent and its image is the set of convex functions. Clearly
Γ fixes the constants 0 and 1, and as f ′(x) = f(x′), it is easily seen that Γ is
compatible with the involution. To show Γ is a retraction, it remains to show that
it preserves $ and ⊓.

Note that

(fL ∧ fR)L = fL and (fL ∧ fR)R = fR. (1)

This follows since f ≤ fL ∧ fR ≤ fL, so fL ≤ (fL ∧ fR)L ≤ fLL = fL, and
symmetrically for the other statement.

Using this observation, Theorem 2, and Proposition 2 we have

Γ(f $ g) = (f $ g)L ∧ (f $ g)R

= (fL $ gL) ∧ (fR $ gR)

= [(fL ∨ gL) ∧ fLL ∧ gLL] ∧ [(fR ∨ gR) ∧ fRL ∧ gRL]

= fL ∧ gL ∧ (fR ∨ gR)

Γf $ Γg = (fL ∧ fR) $ (gL ∧ gR)

= [fL ∧ fR ∧ (gL ∧ gR)L] ∨ [(fL ∧ fR)L ∧ gL ∧ gR]

= (fL ∧ fR ∧ gL) ∨ (fL ∧ gL ∧ gR)

= fL ∧ gL ∧ (fR ∨ gR)
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This shows that Γ preserves $. The argument that it preserves ⊓ is nearly identical.
Further, Theorem 2 and equation (1) provide f $ Γf = (f ∧ (fL ∧ fR)L) ∨ (fL ∧
fL ∧ fR) = f ∨ (fL ∧ fR) = fL ∧ fR = Γf . The argument that f ⊓ Γf = Γf is
similar.

The result above shows that Γ is order preserving with respect to the join and
meet orders, hence also with respect to the double order. We consider next a further
property of convex elements with respect to these orders.

Proposition 5. If f is convex and g has height at least that of f , then

f ⊓ g ⊑ f ⊑ f $ g

Proof. We show f ⊑ f$g. The argument for f⊓g ⊑ f is similar. Since f$(f$g) =
(f $ g), we have f is less than f $ g in the join order. It remains to show that f is
less than f $ g in the meet order.

f ⊓ (f $ g) = [f ∨ (f $ g)] ∧ fR ∧ (f $ g)R

= [f ∨ ((f ∨ g) ∧ fL ∧ gL)] ∧ fR ∧ (fR $ gR)

= [f ∨ ((f ∨ g) ∧ fL ∧ gL)] ∧ fR ∧ (fR ∨ gR) ∧ fRL ∧ gRL

= [f ∨ ((f ∨ g) ∧ fL ∧ gL)] ∧ fR

= (f ∧ fR) ∨ [((f ∨ g) ∧ fL ∧ gL) ∧ fR]

= f ∨ [(f ∨ g) ∧ fL ∧ gL ∧ fR]

= f ∨ [(f ∨ g) ∧ f ∧ gL]

= f

This concludes the proof.

We next turn our attention to several other subalgebras of (reducts of) IJ .

Proposition 6. For I and J bounded chains with bounds 0, 1, and I complete, set

S = {f ∈ IJ : f(0) = 1}

Then S is a subalgebra of the algebra (IJ ,$,⊓). Further, S forms a lattice under
the join order with joins given by $ and meets given by pointwise meet ∧.

Proof. That S is a subalgebra of (IJ ,$,⊓) follows easily from Theorem 1. Suppose
that f, g, h are in S. Then by Theorem 2 we have h is a lower bound of f, g under
the join order if and only if

h ∧ fL ≤ f ≤ hL

h ∧ gL ≤ g ≤ hL

Since fL, gL, hL are the constant function 1, these conditions are equivalent to
having h ≤ f, g in the pointwise order. Let k be the pointwise meet f ∧ g and note
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that k belongs to S and is a lower bound of f, g under ⊑'. If h is another such
lower bound of f, g, then h ≤ k, so

h ∧ kL ≤ k ≤ hL

Thus h ⊑' k, showing k is the greatest lower bound of f, g under ⊑'.

Proposition 7. For I a complete chain and J a bounded chain, set

T = {f ∈ IJ : f is monotone increasing}

Then T is a subalgebra of the algebra (IJ ,$,⊓). Further, T forms a lattice under
the join order with joins given by $ and meets given by pointwise join ∨.

Proof. That T is a subalgebra again follows from Theorem 1. Suppose that f, g, h
are monotone increasing. Then h is a lower bound of f and g under the join order
if and only if

h ∧ fL ≤ f ≤ hL

h ∧ gL ≤ g ≤ hL

Since f = fL, g = gL and h = hL, these conditions are equivalent to having f, g ≤ h
in the pointwise order. Let k be the pointwise join f∨g and note that k is monotone
increasing and is a lower bound of f and g under ⊑'. If h is another such lower
bound of f and g, then k ≤ h, so

h ∧ kL ≤ k ≤ hL

Thus h ⊑' k, showing that k is the greatest lower bound of f and g under ⊑'.

To conclude this section, we make some basic observations about the double
order in the general setting.

Proposition 8. If two elements f and g in IJ are comparable in the double order
⊑, then they have the same height.

Proof. By Theorem 4, if f ⊑ g, then g ≤ fL and f ≤ gR. Since fLR = fRL is the
height of f , it follows that f and g have the same height.

Proposition 9. For I a complete chain, J a bounded chain, and k ∈ I, set

Sk = {f ∈ IJ : f has height k}

Then Sk is a subalgebra of the algebra (IJ ,$,⊓). The least element of Sk is the
function u given by u(0) = k and u(i) = 0 otherwise. The greatest element is the
function v given by v(1) = k and v(i) = 0 otherwise.
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Proof. That Sk is closed under the operations $ and ⊓ follows from the facts that
(f $g)L = fL$gL, (f $g)R = fR$gR, (f ⊓g)L = fL⊓gL, and (f ⊓g)R = fR⊓gR,
established in Ref. 2 , and that the height of f is given by fLR. That the indicated
elements are bounds follows from a simple computation using Theorem 1.

Corollary 1. The partially ordered set (IJ ,⊑) is the disjoint union of its incom-
parable bounded subposets (Sk,⊑), k ∈ I; that is

(IJ ,⊑) =
⊕

k∈I

Sk

where
⊕

denotes disjoint union. In the special case I = J = [0, 1], these subposets
are each isomorphic to the subposet of normal functions.

3. The Case When I and J are the Unit Interval

In this section, we consider the algebra [0, 1][0,1]. In the previous section, we men-
tioned several results on the subalgebra of this algebra consisting of convex normal
functions5,6 that took full advantage of the completeness and topological proper-
ties of the unit interval. Our purpose here is to provide several counterexamples
showing poor behavior of this algebra when moving outside the setting of convex
normal functions. These will contrast with results of the Sec. 4 where both I and
J are finite chains.

Theorem 7. [0, 1][0,1] is not a lattice under the join or meet order.

Proof. Let f and g be the elements of [0, 1][0,1] given by

f(x) =

{
0.5 if x ∈ [0, 1)
0 if x = 1

and g(x) =

{
0 if x ∈ [0, 1)
1 if x = 1

0.5

0

1

f
0.5

0

1

g

By Theorem 2, a function h is a lower bound of f and g in the ⊑' order if and only
if the following inequalities hold in the pointwise order.

h ∧ fL ≤ f ≤ hL (2)

h ∧ gL ≤ g ≤ hL (3)

Similarly, h ⊑' k if and only if

h ∧ kL ≤ k ≤ hL (4)
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Noting that g = gL and that h(0) = hL(0), the only conditions that the inequalities
(2) and (3) impose on h are these:

h(1) = 0 (5)

hL(1) = 1 (6)

h(0) ≥ 0.5 (7)

So any function that satisfies these conditions is a lower bound of f and g. To
find a bigger lower bound, we must find a function k different from h that satisfies
the conditions on h in (5), (6) and (7), and satisfies the conditions in (4).

To find such a k, we consider two cases. First, suppose it is not the case that
h = hL on [0, 1). Then let k = hL on [0, 1) and let k(1) = 0 = h(1). It is easy to
check that (5), (6), and (7) hold for k and (4) holds. Now suppose that h = hL on
[0, 1), so h is monotone increasing on [0, 1). If h(0) > 0.5, then let k(0) = 0.5, and
k = h elsewhere. If h(0) = 0.5, then there exists an x0 such that 0 < x0 < 1 and
h(x0) > 0.5. In this case, let

k(x) =

{
0.5 if x ∈ [0, x0]
h(x) if x ∈ (x0, 1]

Using the fact that h = hL on [0, 1), we see (5), (6), and (7) hold for k and that
(4) holds. Here, a key point in establishing that (6) holds for k is that (x0, 1] is
non-empty, which follows from basic properties of the unit interval.

Therefore the elements f and g have no greatest lower bound in the ⊑' order,
and so the algebra is not a lattice under the join order. That it fails also to be a lat-
tice under the meet order comes from the fact that negation ′ is a dual isomorphism
from this set under the join order to this set under the meet order.

Theorem 8. The continuous functions form a subalgebra of ([0, 1][0,1],$,⊓). How-
ever, the continuous functions do not form a lattice under either the join or meet
order.

Proof. That the continuous functions are closed under $ and ⊓ follows easily from
Theorem 1. Let f and g be the elements of [0, 1][0,1] given by setting f(x) = 0.5−0.5x
and g(x) = x.

0.5

0

1

f

g

If h is a lower bound of f, g in the join order, then by Theorem 2

h ∧ fL ≤ f ≤ hL ,

h ∧ gL ≤ g ≤ hL .
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On (0, 1], h ≤ f since h ∧ fL ≤ f and f < fL on (0, 1], yet g ≤ hL. The latter
implies that h(0) = 1. Such a continuous function does not exist. So the continuous
functions are not a lattice in the join order, and by a similar argument, are not a
lattice in the meet order either.

Remark 2. In the theorem above, we have proved that two continuous functions
do not necessarily have any continuous lower bound in the join order, let alone an
infimum. However, the example above suggests the possibility that the subalgebra
of upper semi-continuous functions might be a lattice in the join and meet orders.
We do not know the answer to that question.

4. The Case Where I and J are Finite Chains

Here we consider lattice properties of the algebra IJ where I and J are finite chains.
Other properties of these algebras have been considered in Refs. 8 and 9. We first
settle on notation.

Definition 7. For a natural number n let n be the chain {1, 2, . . . , n} with the
natural ordering. As with every finite chain, n has a unique involution ′.

Let m and n be natural numbers. Taking the chains m and n, the algebra of
interest is mn, the set of all functions f from {1, . . . , n} to {1, . . . ,m} equipped
with the operations from Definition 1. We will often represent such functions f as
n-tuples or strings of elements in m of length n. To be more intuitive, we change
the notation of the constants as follows.

1 (i) =

{
m if i = 1
1 if i ̸= 1

and m (i) =

{
m if i = n
1 if i ̸= n

Note that under the join order, the smallest element is 1 and the largest is m.

4.1. The join and meet orders in the finite case

Recall from Theorem 3 that for any chains I and J the poset IJ under the join order
is a join semilattice with join given by $, and IJ under the meet order is a meet
semilattice with meet given by ⊓. These semilattices are dual via the negation ′. In
contrast to Theorem 7 we have the following.

Theorem 9. For m and n natural numbers, mn is a lattice under the join order
and also under the meet order.

Proof. The supremum of f and g in the join order is f $ g. The inf of f and g is
the supremum of all elements below both. Such a supremum exists because mn is
finite and there is at least one element below both, namely the element 1. Thus mn

is a lattice in the join order. The result for the meet order follows from the dual
isomorphism ′.
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Figure 1 shows 23 under the join and meet orders. Each is a lattice, and the
negation ′ that takes the string xyz to its inverse zyx is a dual isomorphism between
these lattices.

211

212

222

122

112

111

221

121

111

211

221

222

212

112

121

122

Fig. 1. 23 under the join order (left) and meet order (right).

Remark 3. The proof of Theorem 9 can be easily modified to show that any
subalgebra of (mn,$, 1) is a lattice under the join order. However, such a subalgebra
is not necessarily a sublattice of the lattice mn under the join order. Joins in the
two lattices will agree, but meets may differ.

4.2. Normal and convex elements

Two important subalgebras of (mn,$), are the subalgebra of normal elements and
the subalgebra of convex elements. As noted in Remark 3 they are both lattices
under the join order. To get them to be sublattices of the lattice mn under the join
order, we need more.

Lemma 1. In mn, if f is normal, then any element g below f in the join order
is normal.

Proof. Suppose that f is normal and f $ g = f . We need that g is normal.

f = f $ g = (f ∨ g) ∧ fL ∧ gL

Since f assumes the value m, so does gL, whence g is normal.

Theorem 10. The set of normal functions of mn is sublattice of the lattice mn

under the join order, and a sublattice of the lattice mn under the meet order.

Proof. The least upper bound of two elements f and g in (mn,⊑') is f $ g. So
by Proposition 3 the normal elements are closed under supremums in this poset.
The infimum of f and g in this poset is the supremum of all their lower bounds
in the join order. If f and g are normal, Lemma 1 shows these lower bounds are
normal, hence their supremum is again normal. This shows the normal elements
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are a sublattice of the lattice mn under the join order, and the proof for the meet
order follows via the dual isomorphism ′.

A similar situation holds for the set of convex elements of mn, but is a bit
more delicate. For example, it is not true that elements below convex elements are
convex, as illustrated by Fig. 1 where the non-convex element 212 is below the
convex element 222.

Theorem 11. The set of convex functions of mn is a sublattice of the lattice mn

under the join order, and a sublattice of the lattice mn under the meet order.

Proof. We give the proof for the join order. By Proposition 4, the convex elements
are closed under $, and as $ provides the supremum in the join order, the convex
elements are closed under supremums in (mn,⊑'). The infimum of two elements in
(mn,⊑') is the supremum of their common lower bounds in the join order. Suppose
f and g are convex. Then for any lower bound h of f and g in the join order,
Theorem 6 shows Γh is a convex element that lies above h. Also by Theorem 6, Γ
preserves $, so is order preserving with respect to the join order. Theorem 6 gives
Γ is idempotent, so Γh is a convex lower bound of f and g, and Γh lies above h.
Thus the infimum of f and g is the supremum of convex elements that are common
lower bounds, hence is convex.

Corollary 2. The set of convex normal functions of mn is a distributive sublattice
of the lattice mn under the join order. It is also a distributive sublattice of mn under
the meet order.

Proof. That the convex normal functions are a sublattice follows directly from
Theorems 10 and 11 since the intersection of sublattices is a sublattice. That this
lattice is distributive follows from Theorem 5.

Inspection of Fig. 3 at the end of the paper shows that neither the lattice of
convex functions, nor the lattice of normal functions, of mn need be distributive.

4.3. A description of meet in the join order

For finite chains m and n, we know mn is a lattice under the join order where the
join of f and g is given by f $ g. The meet of two elements in this lattice, which
we denote f ⊙ g, is described only as the join of all their common lower bounds.
In this section we give an algorithm, polynomial in n, that computes f ⊙ g directly
from the functions f and g.

Remark 4. It would be desirable to have a simple description of f ⊙ g as a term
operation using l,r,∧,∨ as was done with $ and ⊓. This is not possible. Consider
the elements f = (2, 2, 1) and g = (3, 3, 3) in 33 under the join order. Their meet
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Fig. 2. The normal functions in 24 under the double order. The solid circles and darker lines
indicate the convex normal functions.

f⊙g is (3, 3, 1) as can be seen by the results in this section, or from Fig. 2. However,
the closure of {f, g} under the operations l,r,∧,∨ is (2, 2, 1), (2, 2, 2) and (3, 3, 3).

Throughout this subsection, let m and n be natural numbers and consider the
chains m = {1, . . . ,m} and n = {1, . . . , n}.

Proposition 10. Given f and g, there is a unique number l and for each 1 ≤ i ≤ l
unique ai and bi in {1, . . . , n} such that

(1) a1 = 1,
(2) ai ≤ bi and bi < aj for each i < j ≤ l,
(3) f = fL and g = gL on each interval [ai, bi],
(4) the intervals [ai, bi] are maximal intervals having the property in (3).

We then define (for technical convenience) al+1 = n+ 1.

Proof. Let S be the set of all elements s in {1, . . . , n} with f(s) = fL(s) and
g(s) = gL(s), and note that 1 ∈ S. Find the family F of all intervals of {1, . . . , n}
that are contained in S. Then the maximal members of F are pairwise disjoint,
and their union is S. Suppose the number of these intervals is l. Then there are
unique elements ai, bi for each i ≤ l with ai ≤ bi and bi < aj for each i < j so that
these maximal intervals are exactly the [ai, bi] for i ≤ l. In effect, we have simply
expressed S in the following manner

S = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [al, bl]

We note that it may occur that ai = bi for some i since some of these intervals may
be singletons. Finally a1 = 1 since 1 ∈ S.
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Remark 5. In Proposition 10, {1, . . . , n} is partitioned into disjoint intervals

{1, . . . , n} = [a1, b1] ∪ (b1, a2) ∪ [a2, b2] ∪ · · · ∪ [al, bl] ∪ (bl, al+1)

It may be that the last interval (bl, al+1) is empty, depending on whether or not
bl equals n. If bl does equal n, the interval (bl, al+1) is empty, and if bl ̸= n this
interval is (bl, n]. This is a somewhat artificial technical device that we use to avoid
having to separate the cases where bl does and does not equal n.

Definition 8. Given the partition ai, bi of f and g, we call the [ai, bi] type-A
intervals, and the (bi, ai+1) type-B intervals. Note that an element belongs to a
type-A interval if and only if fL = f and gL = g at that element.

Before giving our construction of f ⊙ g, we require one further definition.

Definition 9. Define f̂ by setting

f̂(x) =

{
f(x) if f(x) < fL(x)
m if f(x) = fL(x)

Proposition 11. The meet in the join order is given by

(f ⊙ g)(x) =

⎧
⎨

⎩

(f ∨ g)(x) if x ∈ [ai, bi) for some i
sup{(f ∨ g)(y) : bi ≤ y < ai+1} if x = bi for some i

(f̂ ∧ ĝ)(x) otherwise

Proof. Call the function defined above k. We will first show that k is a lower
bound of f, g in the join order. For this, we must show

fL ∧ k ≤ f ≤ kL (8)

gL ∧ k ≤ g ≤ kL (9)

By symmetry, it is enough to show the statement involving f .

Claim 1. fL ∧ k ≤ f .

Proof of Claim. If fL(x) = f(x), clearly fL ∧ k ≤ f at x. This includes the case
where x belongs to an interval of type-A, so to some [ai, bi]. Suppose f(x) < fL(x).
Then we are in the third case of the definition of k(x) and have f̂(x) = f(x). Then
k(x) = (f̂ ∧ ĝ)(x) ≤ f(x).

Claim 2. f ≤ kL.

Proof of Claim. If x is in an interval of type-A, then the definition of k(x) shows
that f(x) ≤ k(x). In the second case, x is in the set over which the supremum is
taken. So f(x) ≤ kL(x). Suppose x belongs to an interval of type-B. Then there is
a largest i with bi < x. Then the definition of k(bi) gives f(x) ≤ k(bi). Then, since
bi < x, we have f(x) ≤ k(bi) ≤ kL(x).
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We have shown k is a lower bound of f and g. Suppose h is another. Then

fL ∧ h ≤ f ≤ hL (10)

gL ∧ h ≤ g ≤ hL (11)

We must show h ⊑' k, so we must show

kL ∧ h ≤ k ≤ hL (12)

Claim 3. k = kL on [a1, b1] ∪ · · · ∪ [al, bl].

Proof of Claim. Clearly fL and gL are increasing functions. On intervals of
type-A we have that f and g agree with fL and gL. It follows that the restriction
of k to [a1, b1)∪ · · ·∪ [al, bl) is increasing when we consider the natural order on this
restricted domain since on this domain we have k = f ∨ g = fL ∨ gL. Further, the
definition of k(bi) (the second case) gives (f ∨ g)(bi) ≤ k(bi), hence k is increasing
on each interval [ai, bi]. For i < l we note k(bi) ≤ k(ai+1). Indeed, if bi ≤ y < ai+1

we have (f ∨ g)(y) ≤ (fL ∨ gL)(ai+1) = k(ai+1). Thus we have k is increasing
on [a1, b1] ∪ · · · ∪ [al, bl]. If y is an element in some interval of type-B, then there
is a largest i with bi < y, and the definition of k(bi) gives (f ∨ g)(y) ≤ k(bi).
But k(y) = (f̂ ∧ ĝ)(y), and as y is in an interval of type-B, either f(y) < fL(y)
or g(y) < gL(y), giving either f̂(y) = f(y) or ĝ(y) = g(y), and in either case
k(y) = (f̂ ∧ ĝ)(y) ≤ (f ∨ g)(y) ≤ k(bi).

Claim 4. kL ∧ h ≤ k.

Proof of Claim. This is obvious from the claim above if x belongs to an interval of
type-A. Suppose x is in an interval of type-B. Then by definition of these intervals,
we have either f(x) < fL(x) or g(x) < gL(x), or perhaps both. If f(x) < fL(x),
then Equation (10) gives fL∧h ≤ f , hence h(x) ≤ f(x) = f̂(x), and if f(x) = fL(x),
then f̂(x) = m, so surely h(x) ≤ f̂(x). Similarly h(x) ≤ ĝ(x). So h(x) ≤ (f̂∧ĝ)(x) =
k(x).

Claim 5. If x is in an interval of type-B, then h(x) < hL(x).

Proof of Claim. By definition of an interval of type-B, either f(x) < fL(x)
or g(x) < gL(x). Without loss of generality, assume f(x) < fL(x), so there is
y < x with f(x) < f(y). By Equation (10) we have h(x) ≤ f(x) < f(y) and
f(y) ≤ hL(y) ≤ hL(x).

Claim 6. k ≤ hL.

Proof of Claim. Equations (10) and (11) give f ≤ hL and g ≤ hL, hence f ∨ g ≤
hL. Then the definition of k gives k ≤ hL on [a1, b1) ∪ · · · ∪ [al, bl). Also, if x
belongs to an interval of type-B, then by an argument we have used several times
k(x) = (f̂ ∧ ĝ)(x) ≤ (f ∨ g)(x), so again we have k ≤ hL. It remains only to show
k(bi) ≤ hL(bi) for each i ≤ l. Our definition has k(bi) = sup{(f ∨ g)(y) : bi ≤ y <
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ai+1}. Our argument above shows that (f ∨ g)(bi) ≤ hL(bi), so we must only show
that if bi < y < ai+1 then (f ∨ g)(y) ≤ hL(bi). Claim 5 shows that hL(y) ≤ hL(bi).
If not, the first x in (bi, ai+1) with hL(x) > hL(bi) would have h(x) = hL(x). Since
we know (f ∨ g)(y) ≤ hL(y), it follows that (f ∨ g)(y) ≤ hL(bi).

This concludes the proof of the proposition.

4.4. The double order

Corollary 1 states that for bounded chains I and J , the poset IJ under the double
order is the disjoint sum

⊕
k∈I of the subalgebras Sk of all functions of height k.

It is our purpose in this subsection to show that for natural numbers m,n, each of
these subalgebras Sk of mn for k ≤ m is a lattice under the double order.

Proposition 12. For natural numbers m and n, and k ∈ m, the subalgebra Sk of
mn of functions of height k is isomorphic as an algebra, and as a poset under the
double order, to the subalgebra of kn consisting of normal functions.

Proof. This is immediate from Theorem 1 and Theorem 4.

So it suffices to show that the normal functions Sm of mn form a lattice under
the double order, and since this is a bounded poset with bounds 1 and m, it suffices
to show that any two elements of Sm have an infimum under the double order.
Throughout, we assume f and g are normal functions in mn. Immediate from
Theorem 4 is the following.

Proposition 13. h ⊑ f, g if and only if the following conditions hold.

fL ∧ h ≤ f ≤ hL (13)

gL ∧ h ≤ g ≤ hL (14)

hR ∧ f ≤ h ≤ fR (15)

hR ∧ g ≤ h ≤ gR (16)

In the following definition, the meet in the chain m of the empty set is m.

Definition 10. With f and g given, define p1, p2, p and q as follows.

p1(y) =
∧

{f(x) : x ≤ y, fL(x) > f(x) < g(x)}

p2(y) =
∧

{g(x) : x ≤ y, gL(x) > g(x) < f(x)}

p(y) = p1(y) ∧ p2(y)

q(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(f ∨ g)(x) if f = fL and g = gL

f(x) if f ̸= fL and g = gL

g(x) if f = fL and g ̸= gL

(f ∧ g)(x) if f ̸= fL and g ̸= gL
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We use [[f = fL]] for {x : f(x) = fL(x)}, with similar usages obvious.

Proposition 14. If h is a lower bound of f and g in the double order, then

(1) h ≤ p.
(2) h ≤ q on [[f ̸= fL]] ∪ [[g ̸= gL]].

Proof. 1. We show h(y) ≤ p2(y), and a similar argument shows that h(y) ≤ p1(y),
hence h(y) ≤ p(y). Suppose x ≤ y and gL(x) > g(x) < f(x). From this and (14), we
have h(x) ≤ g(x). By (15) we have hR(x)∧f(x) ≤ h(x), and as h(x) ≤ g(x) < f(x),
we must have h(x) = hR(x). This implies h(y) ≤ h(x) and we had h(x) ≤ g(x), so
h(y) ≤ g(x). So h(y) lies under all the terms whose meet we take to form p2(y),
hence h(y) ≤ p2(y).

2. If f(x) ̸= fL(x), then (13) gives h(x) ≤ f(x), and if g(x) ̸= gL(x), (14) gives
h(x) ≤ g(x). The statement follows from the definition of q in Definition 10.

Proposition 15. For r = p ∧ q we have (using r in place of h),

(1) r satisfies the first inequalities in (13) and (14).
(2) r satisfies the first inequalities in (15) and (16).
(3) r satisfies the second inequalities in (15) and (16).

Proof. 1. The first inequality in (13) is trivial when f = fL. When f ̸= fL the
definition of q gives q(x) ≤ f(x), hence r(x) ≤ f(x). The argument for (14) is the
same.

2. We show the first inequality in (15), that rR ∧ f ≤ r. The argument for
(16) is similar. The definition of p shows that it is decreasing, so p = pR. Since
(p ∧ q)R ≤ pR, qR, we have rR = (p ∧ q)R ≤ pR ∧ qR = p ∧ qR. Suppose x is such
that f(x) ≤ q(x). Then (rR ∧ f)(x) ≤ (p ∧ qR ∧ f)(x) ≤ (p ∧ q)(x) = r(x). If x is
such that q(x) < f(x), then we must be in the third or fourth case of the definition
of q, with q(x) = g(x), and we must have gL(x) > g(x) < f(x). Then the definition
of p gives p(y) ≤ g(x) for all x ≤ y. Thus, since r = p ∧ q, we have r(y) ≤ g(x) for
all x ≤ y, hence rR(x) ≤ g(x) = q(x). Clearly, since r = p∧q, we have rR ≤ pR = p,
so rR(x) ≤ (p ∧ q)(x) = r(x). Thus (rR ∧ f)(x) ≤ r(x).

3. We show the second inequality in (15), that r ≤ fR. The argument for (16) is
similar. Suppose x is such that f(x) ̸= fL(x). Then we are in the second or fourth
case of the definition of q, so q(x) ≤ f(x). Then r(x) ≤ q(x) ≤ f(x) ≤ fR(x).
Suppose x is such that f(x) = fL(x). Then fR(x) = fLR(x) is the maximum of f ,
which we have assumed is m. So r(x) ≤ fR(x).

As with any subset of {1, . . . , n}, the set [[f = fL]] ∩ [[g = gL]] is comprised of
disjoint closed intervals. We assume these intervals are X1, . . . , Xl read left to right,
and use Xi = [ai, bi] for i = 1, . . . , l.

Proposition 16. Let X1, . . . , Xl be the intervals described above.
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(1) On X1 we have p is constantly m.
(2) If p is constantly m on Xi then r = f ∨ g on Xi.
(3) If p is not constantly m on Xi, then r = p on Xi and is constant.

Proof. 1. The intervalX1 begins at 1 and continues until there is an element where
f ̸= fL or g ̸= gL. If y belongs to X1 there is no x ≤ y with f ̸= fL or g ̸= gL, so
there is nothing to take the meet of when forming p. Therefore p is constantly m
on this interval.

2. If p is constantly m on Xi, then r = p ∧ q implies r = q on Xi. On Xi this is
case one of the definition of q, so r = q = f ∨ g on this interval.

3. Suppose y belongs to [ai, bi] and p(y) < m. Then there is some x ≤ y with
fL(x) > f(x) < g(x) or gL(x) > g(x) < f(x). In either case, the element x cannot
be in one of our closed intervals, so x < ai. So all points in [ai, bi] have their value
of p computed from the meet of the same sets of terms, so p is constant on Xi.
Suppose it was x ≤ y with fL(x) > f(x) < g(x). Then p(y) ≤ f(x) ≤ fL(y) = f(y)
and as q(y) = (f ∨ g)(y), we have p(y) ≤ q(y) for all y ∈ Xi. So r = p on Xi.

Definition 11. Let X1, . . . , Xk be the intervals where p is constant m.

Proposition 17. If p(y) = m, then r(x) = (f ∨ g)(x) for all x ≤ y.

Proof. Since r = p ∧ q, and the definition of q gives q ≤ f ∨ g always, r ≤ f ∨ g
always. Since p is decreasing, if p(y) = m, then p(x) = m for all x ≤ y, so r = q
for all x ≤ y. So it is enough to show that q = f ∨ g for all x ≤ y, hence enough to
show that f ≤ q and g ≤ q for all x ≤ y. We show that f(x) ≤ q(x) for all x ≤ y.
This is obvious in the first two cases of the definition of q. In either of the last two
cases gL(x) > g(x). Since p(y) = m, there are no terms in the meets used to define
p, so we cannot have g(x) < f(x), hence f(x) ≤ g(x). So in the last two cases of
the definition of q we have f(x) ≤ q(x).

Proposition 18. The function r attains its largest value at bk, where bk is the
right endpoint of the last interval Xk where p is constant m.

Proof. Since p(bk) = m, the previous result shows that r = f ∨ g to the left of bk.
Since f = fL and g = gL at bk, it follows that r(x) ≤ r(bk) for all x ≤ bk.

Consider the open interval (bk, ak+1) of all elements up to the next element
where f = fL and g = gL. Enumerate the elements of this interval as y1, . . . , yj .
At each of these yi’s we have either f ̸= fL or g ̸= gL, or both.

Claim 7. For each i ≤ j either

(i) (f ∨ g)(yi) ≤ r(bk), or
(ii) p(yi) ≤ r(bk).
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Proof of Claim. Our proof is by induction on i. We note that if case (ii) ever
applies, then since p is decreasing, case (ii) will apply for all further values of i and
we are done.

For the base case i = 1 we must have either f ̸= fL or g ̸= gL at y1. Say
fL(yi) > f(yi). Then since fL(bk) = f(bk) we must have f(y1) < f(bk) ≤ r(bk). If
g(y1) ≤ f(y1), then case (i) applies at y1. If f(y1) < g(y1), then the definition of p
gives p(y1) ≤ f(y1) ≤ r(bk), so case (ii) applies at y1.

For the inductive case, suppose our claim holds up to yi and consider yi+1. We
can assume case (ii) never applied before, so case (i) applied for all yu where u ≤ i.
This means (f ∨ g)(yu) ≤ r(bk) for all u ≤ i, and since r = f ∨ g to the left of bk,
that (f ∨ g)(x) ≤ r(bk) for all x ≤ yi. Again, either f ̸= fL or g ̸= gL at yi+1.
Say f(yi+1) < fL(yi+1). Then f(yi+1) < f(x) for some x ≤ yi, and it follows that
f(yi+1) < r(bk). If g(yi+1) ≤ f(yi+1) we have case (i) at yi+1. Otherwise we have
fL(yi+1) > f(yi+1) < g(yi+1), and the definition of p gives p(yi+1) ≤ f(yi+1) ≤
r(bk). Thus case (ii) applies at yi+1. This concludes the inductive proof of our claim.

The inductive proof has shown that ((f ∨ g) ∧ p)(yi) ≤ r(bk) for i ≤ j. Since
r = p ∧ q and q ≤ f ∨ g, this shows that r(yi) ≤ r(bk) for y1, . . . , yj . We already
knew r(x) ≤ r(bk) for all x ≤ bk, so r(x) ≤ r(bk) for all x ≤ yj .

The element following yj (if there is one) is ak+1. By definition, bk is the last
element in the intervals X1, . . . , Xl where p takes value m. So p(ak+1) < m. Thus
there is x ≤ ak+1 with fL(x) > f(x) < g(x) or gL(x) > g(x) < f(x). As f = fL

and g = gL at ak+1 we must have x < ak+1, and as p = m at bk, this x must be
one of y1, . . . , yj . From the choice of x, we have p(x) ≤ f(x) or p(x) ≤ g(x). So
p(x) ≤ (f ∨ g)(x), and Claim 7 then gives p(x) ≤ r(bk). Since r = p ∧ q and p is
decreasing, we then have r(z) ≤ p(z) ≤ p(x) ≤ r(bk) for all z ≥ x. From the earlier
comments, r(z) ≤ r(bk) for all z.

Remark 6. At this point r is close to being a greatest lower bound of f, g in
the double order. It does not satisfy all inequalities in (13) through (16), we must
modify r to get f ≤ rL and g ≤ rL so that it is a lower bound. To do so, we
must make r larger, making sure we do not destroy the other inequalities we have.
Proposition 14 says we cannot make r larger on [[f ̸= fL]] ∪ [[g ̸= gL]] and have a
lower bound. So we can only increase r on the intervals X1, . . . , Xl, and we cannot
increase it above p. Proposition 16 then says we can only increase r on some Xi

where p = m, or in other words on some Xi with i ≤ k.

Definition 12. Let s equal r everywhere except possibly at bk. Define s(bk) to be
the least above r(bk) so that f ≤ sL and g ≤ sL to the right of bk.

Proposition 19. The function s is a lower bound of f and g in the double order.

Proof. For (13) and (14), the first two inequalities in these equations hold because
they held for r and we only modified r at an element where f = fL and g = gL

where they trivially hold. For the second two inequalities of (13) and (14), note



April 7, 2015 13:27 118-ijufks S0218488515500087 page 213

Partial Orders on Fuzzy Truth Value Algebras 213

that Proposition 17 gives r = f ∨ g to the left of bk, so f ≤ r ≤ s ≤ sL and
g ≤ r ≤ s ≤ sL to the left of bk, and s(bk) was specifically chosen to that f ≤ sL

and g ≤ sL to the right of bk.
For (15) and (16), consider the second inequalities. By Proposition 15 they held

for r and we only modified r at an element where f = fL and g = gL. So at this
element, fR = fLR and gR = gLR, which is the maximum m. So these inequalities
hold also for s. For the first inequalities in (15) and (16), we must show sR ∧ f ≤ s
and sR ∧ g ≤ s. By Proposition 15, these were valid for r, and we only modified r
at bk, so they must hold at all x > bk. By Proposition 18, r attains its maximum
value at bk, so s must attain its maximum value at bk. This gives s(bk) = sR(bk),
so these inequalities hold at bk. By Proposition 17, we have f, g ≤ r to the left of
bk, so f ≤ s and g ≤ s to the left of bk, giving our result.

Proposition 20. s(bk) = m.

Proof. We have seen that r attains its maximum at bk. So if r is anywhere equal
to m it is equal to m at bk. We have r ≤ s, and that s is comparable to f and g
implies by Proposition 8 that s has the same height m as f and g. It must therefore
be that s(bk) = m.

Remark 7. This result shows that we could define s to be constructed from r by
changing the value of r at bk to be m. However, the definition above will have its
technical advantage later.

Proposition 21. If h is a lower bound of f, g in the double order then

(1) sL ∧ h ≤ s
(2) s ≤ hL

(3) hR ∧ s ≤ h
(4) h ≤ sR

That is, s is the greatest lower bound of f and g in the double order.

Proof. 1. Proposition 14 shows h ≤ p everywhere and h ≤ q on the set [[f ̸=
fL]] ∪ [[g ̸= gL]]. Proposition 16 says r = p on Xk+1, . . . , Xl. Thus h ≤ r except
possibly onX1, . . . , Xk. Proposition 17 says r = f∨g to the left of bk, so rL = fL∨gL
to the left of bk, so r = rL on X1, . . . , Xk. As we only alter r at bk to form s, strictly
to the left of bk we have sL = rL = r = s, and as we only increase r at bk we have
sL = s at bk as well. Thus sL ∧ h ≤ s to the left of bk. As h ≤ r ≤ s strictly to the
right of bk, the inequality holds there as well.

2. Since h is a lower bound of f, g, the second inequalities in (13) and (14) give
f ∨ g ≤ hL. Since r = p ∧ q, and the definition of q gives q ≤ f ∨ g everywhere,
we have r ≤ hL. Since s = r everywhere except possibly at bk, we have only to
check that s(bk) ≤ hL(bk). Now s(bk) was chosen to be the larger of r(bk) and the
smallest value needed to get f ∨ g ≤ sL from bk onward. Call this quantity t. The



April 7, 2015 13:27 118-ijufks S0218488515500087 page 214

214 J. Harding, C. Walker & E. Walker

argument from the first part has shown that h ≤ r strictly to the right of bk, hence
h ≤ s strictly to the right of bk. So as h is a lower bound of f and g, there must
be some x occurring at bk or before that allows f ∨ g ≤ hL to the right of bk. This
means there is some x ≤ bk with h(x) ≥ t. But this then gives s(bk) ≤ hL(bk).

3. Since h is a lower bound of f and g, the first equalities in (15) and (16) give
hR ∧ f ≤ h and hR ∧ g ≤ h. Thus hR ∧ (f ∨ g) ≤ h. Since r ≤ f ∨ g everywhere, it
follows that hR ∧ r ≤ h. Since s agrees with r except possibly at bk, we need only
show (hR ∧ s)(bk) ≤ h(bk). We will obtain this by showing hR(bk) = h(bk). Indeed,
if hR(bk) > h(bk), then, since hR ∧ r ≤ h, we would have r(bk) ≤ h(bk). But h ≤ r
strictly to the right of bk and r attains its maximum at bk. Thus h(x) ≤ r(bk) for
all x > bk. Then since r(bk) ≤ h(bk) we must have hR(bk) = h(bk), a contradiction.

4. We have seen that h ≤ r except possibly on X1, . . . , Xk. As bk is the right
endpoint of Xk, all of X1, . . . , Xk lies to the left of bk. We have seen s(bk) = m, so
sR is identically m everywhere to the left of bk.

Theorem 12. The collection of normal functions in mn forms an involutive lattice
under the double order.

Proof. That this poset is a lattice follows from Proposition 21. Surely ′, which
reverses the listing of a string, restricts to an operation on the normal functions.
Proposition 1 (6) shows that ′ is of period two. Since f ⊑ g if and only if f $ g = g
and f ⊓ g = f , Proposition 1 (7) shows that ′ is order inverting.

Remark 8. It would be nice to have a simple term description of meet in the dou-
ble order involving only l,r,∧,∨. There is none. In 34 the functions f = (3, 3, 1, 2)
and g = (3, 3, 2, 3) have meet (3, 3, 1, 1) in the double order, and this can not be
expressed by applying these operations to f and g.

Proposition 22. The convex normal functions are a sub-involutive lattice of the
involutive lattice of normal functions of mn under the double order. Further, these
convex normal functions form a De Morgan algebra.

Proof. Suppose f and g are convex normal functions. Note that Theorem 5 shows
that the join order, meet order, and double order on the convex normal functions
all agree, and that meet and join in the lattice of convex normal functions are given
by ⊓ and $. We show that if h is a lower bound of f and g in the double order, then
h ⊑ f ⊓ g. This shows that meet in the lattice of convex normal functions agrees
with the meet of convex normal functions in the lattice of normal functions under
the double order. A similar proof establishes the corresponding result for joins.

Assume h is a lower bound of f and g in the double order. This implies that
(a) f ⊓ h = h, (b) g ⊓ h = h, (c) f $ h = f , and (d) g $ h = g. From the
first two items and the associativity of ⊓ we obtain (f ⊓ g) ⊓ h = h, hence h lies
beneath f ⊓ g in the meet order. For the join order, we use the first item to obtain
(f ⊓ g) $ h = (f ⊓ g) $ (f ⊓ h). By [2, Theorem 36] we may distribute to obtain
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(f ⊓ g) $ (f ⊓ h) = f ⊓ (g $ h). Using the fourth item this becomes f ⊓ g. Thus
(f ⊓ g) $ h = f ⊓ g, showing h lies beneath f ⊓ g in the join order as well.

4.5. An algorithm for covers in the double order

In this subsection, for natural numbers m,n, we give a simple algorithm to compute
covers in the lattice of normal functions ofmn under the double order. Throughout,
we assume f and g are elements ofmn. We shall consider these functions as n-tuples,
with f given by (x1, . . . , xn).

Proposition 23. Let g be constructed from f by one of the following rules:

(1) For some xi where j < i ⇒ xj < xi, change xi to xi − 1.
(2) For some xi where i < j ⇒ xi ≥ xj, change xi to xi + 1.

Then, if the resulting g is normal, it is a cover of f in the double order.

Remark 9. In this proposition, the requirement that g be normal means it takes
values in {1, . . . ,m} and achieves the value m. In particular, for the first rule to
apply, we must have xi > 1 and there must be some k > i with xk = m so the
resulting function attains value m. For the second rule to apply, we must have
xi < m. This means there must be k < i with xk = m.

Proof. By Theorem 4, f ⊑ g if and only if

f ∧ gL ≤ g ≤ fL and fR ∧ g ≤ f ≤ gR.

Claim 8. f ⊑ g.

Proof of Claim. Say g is produced by the first rule. The first inequality above
holds since f = g except at i and gL(i) = g(i). The second inequality holds since
g ≤ f ≤ fL. The third inequality holds since g ≤ f . For the fourth inequality, we
have f = g except at i, and gR(i) = m since g(k) = m for some k > i because g is
normal. Suppose g is produced by the second rule. The first inequality holds since
f ≤ g. For the second inequality, g = f except at i, and fL(i) = m since there
is k < i with f(k) = m. The third inequality holds since g = f except at i and
fR(i) = f(i). The fourth inequality holds since f ≤ g ≤ gR.

We turn now to the matter of g being a cover of f . Suppose g is built from f by
one of the above rules, and that h is normal and satisfies f ⊑ h ⊑ g. We must show
that h is equal to either f or g. By Theorem 4, the following inequalities hold. We
have numbered these to allow easy reference.

f ∧ gL ≤1 g ≤2 fL fR ∧ g ≤3 f ≤4 gR

f ∧ hL ≤5 h ≤6 fL fR ∧ h ≤7 f ≤8 hR

h ∧ gL ≤9 g ≤10 hL hR ∧ g ≤11 h ≤12 gR
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Suppose g is built by rule 1. In this case we have g ≤ f and fR = gR. So
g ≤10 hL implies that g = g ∧ hL ≤ f ∧ hL ≤5 h, and h ≤12 gR = fR implies that
h = fR ∧ h ≤7 f . So g ≤ h ≤ f . Since f covers g in the pointwise order, it follows
that h is equal to either f or g. Suppose g is built by rule 2. In this case we have
f ≤ g and fL = gL. So f ≤8 hR implies that f = f ∧ hR ≤ g ∧ hR ≤11 h, and
h ≤6 fL = gL implies that h = h∧ gL ≤9 g. In this case g covers f in the pointwise
order, so h is equal to either f or g.

Having shown that each g produced from f by one of the above rules produces
a cover of f in the double order, we turn to the matter of showing there are no
other covers.

Proposition 24. If g covers f in the double order and g(i) < f(i) at some i, then
g is built from f by rule 1.

Proof. Let i be largest with g(i) < f(i), and define h to agree with g everywhere
except at i, and set h(i) = g(i) + 1. We consider the 12 inequalities listed in the
above proof that amount to the conditions f ⊑ h ⊑ g. These are labelled ≤1

through ≤12. We note that our assumption that g covered f provides ≤1 through
≤4. We will establish the others.

Since g ≤ h we have ≤10 and ≤11 are true. Also, since h = g except at i and
h(i) ≤ f(i) ≤4 gR(i), we have h ≤ gR, hence ≤12 is always true. At i we have
g(i) < f(i) and since f ∧ gL ≤1 g at i, we must have gL(i) = g(i). It follows that
h∧ gL ≤ g at i, and since h = g everywhere but i, we have h∧ gL ≤9 g everywhere.
Thus ≤9 holds.

Since g ≤2 fL and g = h except at i, we have h ≤ fL everywhere but i. But
h(i) ≤ f(i). So h ≤ fL everywhere, showing that ≤6 holds. Since g ≤ h we have
gR ≤ hR. Since f ≤4 gR it follows that f ≤ hR, so ≤8 holds. Also, fR ∧ g ≤3 f ,
and since g = h everywhere but i, we have fR ∧ h ≤ f except at i. At i we have
h(i) ≤ f(i) so fR ∧ h ≤ f everywhere, so ≤7 holds.

It remains to consider ≤5. We know gL(i) = g(i), and since h = g except h(i) is
one bigger than g(i), we must have hL = gL to the left of i and hL = h at i. Since
f ∧ gL ≤1 g and g ≤ h, we must have f ∧ hL ≤ g ≤ h to the left of i and since
hL = h at i we have f ∧ hL ≤ h at i.

From the preceding paragraph, a failure of ≤5 means there is a j > i where it
fails. At this j we must have h(j) < f(j), and since g = h except at i, we must
have that g(j) = h(j) < f(j). This contradicts our choice of i as the largest with
g(i) < f(i). So ≤5 holds as well.

We have shown f ⊑ h ⊑ g. As g covers h in the double order, and h ̸= g, we
must have h = f . Viewing the construction of h from a different perspective, we
see that g is constructed from h = f by decreasing the value at i by one. Above
we have shown gL(i) = g(i). Then since f = h and h = g except that h(i) is one
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bigger than g(i), it follows that j < i implies thatf(j) < f(i). Thus rule 1 may be
applied to f at i, and the result is g. So g is constructed from f by rule 1.

To consider the other case for covers, we use the involution ′ on the lattice of
normal functions. We recall that f ′ is defined by setting f ′(j) = f(j′) where in this
context ′ is the negation on the chain n given by j′ = n+ 1− j.

Proposition 25. If g covers f in the double order and g(k) > f(k) at some k,
then g is built from f by rule 2.

Proof. The assumptions on f and g yield that f ′ covers g′ and f ′ < g′ at some
element. Then Proposition 24 gives that f ′ is built from g′ by applying rule 1 to g′

at some i. This means

j < i ⇒ g′(j) < g′(i)

Further, f ′(i) = g′(i)− 1 and f ′ agrees with g′ otherwise. Let u = i′. Note f(u) =
f(i′) = f ′(i) = g′(i) − 1 = g(u) − 1. Also, u < v implies v′ < u′ = i, hence
g′(v′) < g′(i), and therefore giving g(v) < g(u). So

u < v ⇒ f(v) = g(v) < g(u) = f(u) + 1.

So u < v implies that f(v) ≤ f(u). So we may apply rule 2 to f at u, with the result
being g. So g is obtained from f by an application of rule 2.

The considerations above give the desired algorithm.

Theorem 13. In the lattice of normal functions of mn under the double order, f
is covered by g if and only if g is obtained from f by an application of one of the
rules in Proposition 23.

5. Some Open Problems and Examples

In this section we list some open problems and provide several figures that illustrate
lattices obtained frommn under the join order or double order for some small values
of m and n.

Problem 1. For natural numbersm and n, give a algorithmic description of covers
in the lattice mn under the join order similar to that given in Theorem 13 for the
double order.

Problem 2. Give necessary and sufficient conditions on chains I and J for IJ to
be a chain under the join order.
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Fig. 3. The lattice 33 under the join order. The solid circles and darker lines indicate the convex
normal functions.
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Fig. 4. The normal functions in 34 under the double order. The solid circles and darker lines
indicate the convex normal functions.
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