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Abstract It is well known that the category KHaus of compact Hausdorff spaces is
dually equivalent to the category KRFrm of compact regular frames. By de Vries
duality, KHaus is also dually equivalent to the category DeV of de Vries algebras,
and so DeV is equivalent to KRFrm, where the latter equivalence can be described
constructively through Booleanization. Our purpose here is to lift this circle of
equivalences and dual equivalences to the setting of stably compact spaces.

The dual equivalence of KHaus and KRFrm has a well-known generalization to a
dual equivalence of the categories StKSp of stably compact spaces and StKFrm of
stably compact frames. Here we give a common generalization of de Vries algebras
and stably compact frames we call proximity frames. For the category PrFrm of
proximity frames we introduce the notion of regularization that extends that of
Booleanization. This yields the category RPrFrm of regular proximity frames. We
show there are equivalences and dual equivalences among PrFrm, its subcategories
StKFrm and RPrFrm, and StKSp.

Restricting to the compact Hausdorff setting, the equivalences and dual equiva-
lences among StKFrm, RPrFrm, and StKSp yield the known ones among KRFrm,
DeV, and KHaus. The restriction of PrFrm to this setting provides a new category
StrInc whose objects are frames with strong inclusions and whose morphisms and
composition are generalizations of those in DeV. Both KRFrm and DeV are subcate-
gories of StrInc that are equivalent to StrInc. For a compact Hausdorff space X, the
category StrInc not only contains both the frame of open sets of X and the de Vries
algebra of regular open sets of X, these two objects are isomorphic in StrInc, with
the second being the regularization of the first. The restrictions of these categories
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are considered also in the setting of spectral spaces, Stone spaces, and extremally
disconnected spaces.

Keywords Point-free topology · Proximity · Stable compactness · Duality theory

Mathematics Subject Classifications (2010) 06D22 · 18B30 · 54D30 · 54D45 · 54E05 ·
06E15 · 54G05

1 Introduction

In extending Smirnov’s characterization of compactifications of completely regular
spaces [21] to the pointfree setting, de Vries introduced a category of structures we
call DeV of de Vries algebras, and showed DeV is dually equivalent to the category
KHaus of compact Hausdorff spaces. Also in the pointfree setting, Isbell [14] (see
also [2, 15]) showed the category KRFrm of compact regular frames is dually equiva-
lent to KHaus. This gives the situation in the diagram below. In [13, Theorem VI-
7.4] Isbell’s duality was extended to one between the categories StKSp of stably
compact spaces and StKFrm of stably compact frames. Our purpose here is to lift
the equivalences and dual equivalences involving DeV to the stably compact setting.
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To briefly review, a de Vries algebra is a complete Boolean algebra equipped with
a binary relation ≺, called a proximity, that satisfies certain conditions. Morphisms
between de Vries algebras are certain order-preserving maps compatible with the
proximities, but are not in general even lattice homomorphisms. Importantly, the
composition ∗ of de Vries morphisms differs from ordinary function composition.
The primary example of a de Vries algebra is the Boolean algebra of regular open
sets of a compact Hausdorff space, with proximity given by U ≺ V if clU ⊆ V. This
provides the regular open functor RO above. The maximal round filters, or ends, of
a de Vries algebra form a compact Hausdorff space, much as in Stone duality, and
this gives the end functor E . The point pt and open set functor ! are standard from
pointfree topology. The functor RI takes the compact regular frame of round ideals
of a de Vries algebra, and B is the usual Booleanization of a compact regular frame
equipped with the proximity given by the restriction of the well inside relation on the
frame [6].

Our first step in lifting DeV to the stably compact setting is to define the category
PrFrm of proximity frames. Objects are frames with an additional relation ≺, called
a proximity, that satisfies some quite general conditions. Examples of proximity
frames include any frame with its partial ordering as its proximity, any stably compact
frame with its way below relation as proximity, any de Vries algebra, and any frame
with a strong inclusion in the sense of Banaschewski [1]. Morphisms in PrFrm are
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modeled after morphisms in DeV. They need not be frame homomorphisms, and
their composition ∗ is not function composition. The round ideals of any proximity
frame form a stably compact frame, providing a functor RI from PrFrm to StKFrm.
This, together with the inclusion functor, provide an equivalence. This counter-
intuitive situation, where any proximity frame is isomorphic to a stably compact
frame, is caused by the fact that the composition ∗ is not function composition,
allowing isomorphisms to be more general than structure-preserving isomorphisms.

While PrFrm is equivalent to StKFrm and containsDeV, it is not the generalization
we seek. The equivalence between PrFrm and StKFrm does not restrict to the one
between DeV and KRFrm, and we have lost touch with the Booleanization and
regular open functors from the compact Hausdorff setting. Using a generalization
of the Booleanization functor we call regularization, we will introduce a full
subcategory RPrFrm of regular proximity frames, and establish the situation in the
diagram below. Thus, it is RPrFrm that serves as our generalization of DeV to the
stably compact setting.
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For L a proximity frame and a ∈ L, set k(a) = ∧{b ∈ L : a ≺ b}, and define
the nucleus j(a) = ∧{(a → k(b)) → k(b) : b ∈ L}. The nucleus j then gives an
endofunctor R on PrFrm much as ¬¬ gives the Booleanization functor B. Proximity
frames where j is the identity are called regular, and the full subcategory RPrFrm of
regular proximity frames serves as our analog of DeV for the stably compact setting.

The inclusions of StKFrm and RPrFrm into PrFrm are equivalences, and in PrFrm
there are isomorphisms between L, its regularization R(L), and its stably compact
frame of round ideals RIL. The restrictions of the round ideal functor RI and
regularization functor R then provide an equivalence between StKFrm and RPrFrm.
The end functor restricts naturally to a functor E from RPrFrm to StKSp, and there
is an analog of the regular open functor RO with E and RO providing a dual
equivalence between StKSp and RPrFrm. Here RO applied to a stably compact
space X takes the regular open sets of X in the sense of those that are the interior in
the topology of X of their closures in the patch topology of X.

We have lifted our original diagram from the setting of compact Hausdorff
spaces to stably compact spaces, but have gained an extra piece in the process, the
category PrFrm of proximity frames. What becomes of this when we restrict back
to the compact Hausdorff setting? It becomes the full subcategory StrInc of PrFrm
whose objects are frames with strong inclusions in the sense of Banaschewski [1].
Both StKFrm and DeV are subcategories of StrInc, and the inclusion functors are
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equivalences. Further, in StrInc, there is an isomorphism between the frame of open
sets and the frame of regular open sets of a compact Hausdorff space.

There is a fairly long history of considering relations akin to proximities on frames
or on more general lattices. Here we mention several papers most closely related
to our work, and direct the reader to [22] for a more thorough account of the
background literature.

Perhaps most closely related to our work is Smyth’s paper [22]. Smyth’s purpose
is to generalize Smirnov’s characterization to the setting of T0-spaces by introducing
stable compactifications of a T0-space X, quasi-proximities on X, and showing that
the two are in bijective correspondence. In his treatment, there are a number of
developments closely related to our work. Smyth’s approximating auxiliary relations
on a topology τ are essentially our proximity frames; he gives a key link between
stably compact spaces and proximities; he develops properties of round ideals; his
notion of strong covers leads to his proximal filters that parallel our prime round
filters or ends; and his strong cover preservation amounts to condition 3.3.3 in
our definition of proximity morphisms. Smyth’s focus is different than ours, and
he does not consider the matter of equivalences and dual equivalences between
stably compact spaces and categories of proximity lattices. Also, the key notion of
regularization, and its topological counterpart, does not appear in his work.

The paper [1] by Banaschewski aims to give a correspondence between the
compactifications of a frame L and the strong inclusions on L. Thus, it extends
Smirnov’s characterization to the pointfree setting, much as does de Vries [10].
But unlike de Vries, who works with proximities on complete Boolean algebras,
Banaschewski works with strong inclusions on frames. For the connection between
the two, see [6] and Section 7 below. Our proximity frames are a direct generalization
of what Banaschewski calls a strong inclusion on a frame; his strongly regular ideals
amount to our round ideals; also his description of maximal strongly regular filters
parallels our treatment of ends. As with Smyth’s paper, Banaschewski’s aim differs
from ours, and does not treat equivalences and dual equivalences between categories
of topological spaces and frames with proximities, nor does it touch on the notion of
regularization. Of course, it is the Booleanization functor treated by Banaschewski
and Pultr [4] that our regularization functor R seeks to extend.

Frith [12] considers Banaschewski’s frames with strong inclusions as the objects of
a category he calls proximal frames, and that we denote here ProxFrm. These also
are the objects of our category StrInc, but Frith’s morphisms are a proper subclass
of our morphisms, being frame homomorphisms preserving strong inclusion, and
taken under regular function composition. Frith shows that ProxFrm is isomorphic
to the coreflective subcategory of the category UniFrm of uniform frames consisting
of totally bounded uniform frames. He also proves that there is a dual adjunction
between UniFrm and the category UniSp of uniform spaces, which restricts to a dual
equivalence between the full subcategory of UniFrm consisting of spatial uniform
frames and the full subcategory of UniSp consisting of separated uniform spaces.
We note that the composite UniSp → UniFrm → ProxFrm ⊆ StrInc → KHaus is the
functor taking a uniform space to its Samuel compactification [3], and that uniform
frames can also be described in terms of Weil entourages [18].

In developing the regularization functor R, the paper [9] by Bruns and Lakser
was one of our motivations. The regularization of the ideal frame of a distributive
lattice D is the frame of distributive ideals of D that Bruns and Lakser use to create
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the injective hull of D in the category of meet semilattices. Roughly, this provides a
version of regularization in the setting of coherent frames, a subcategory of the stably
compact frames.

Finally, the paper of Jung and Sünderhauf [16] shares a similar aim with ours —
that of giving a dual equivalence between the category of stably compact spaces and
a category of lattices with proximities — but their techniques are quite different from
ours. While we associate to a stably compact space X a proximity frame consisting
of regular open sets of X (in a certain sense), they associate to X a strong proximity
lattice whose elements are ordered pairs (U, K) consisting of an open set U and
compact set K containing U ; and while our proximity morphisms are functions under
an altered notion of composition, theirs are relations under relational composition.
So the techniques here differ substantially from those in [16]. Also, the notion of
regularization given here has no counterpart in [16].

This paper is organized in the following way. Section 2 discusses preliminaries.
Section 3 introduces the category PrFrm of proximity frames. Section 4 establishes
equivalences and dual equivalences among StKSp, StKFrm, and PrFrm. Section 5
introduces regularization and the category RPrFrm of regular proximity frames.
Section 6 extends the equivalences and dual equivalences of Section 4 to include
RPrFrm. Section 7 restricts the results of Section 6 to the compact Hausdorff setting.
Section 8 restricts the results of Section 6 to the spectral and Stone settings, and
discusses links to the categories of distributive lattices and Boolean algebra. Section 9
restricts further to the setting of extremally disconnected spaces. Section 10 provides
a summary of the results and a diagram illustrating the connections among the
categories considered.

2 Preliminaries

In this preliminary section we recall a dual equivalence between the categories
of compact Hausdorff spaces and compact regular frames, and its generalization
to a dual equivalence between the categories of stably compact spaces and stably
compact frames. These well-known facts can be found in [13, 15]. We also recall a
dual equivalence between the categories of compact Hausdorff spaces and de Vries
algebras. As a result, we obtain an equivalence between the categories of compact
regular frames and de Vries algebras, which can be described constructively by means
of Booleanization.

To begin, a frame is a complete lattice L satisfying the join infinite distributive law

a ∧
∨

S =
∨

{a ∧ s : s ∈ S}.

For a, b ∈ L we say a is way below b , and write a ' b , if b ≤ ∨
T implies there is a

finite subset S ⊆ T with a ≤ ∨
S. We say a is compact if a ' a and L is compact if 1

is compact in L. We say a is well inside b , and write a ≺ b , if ¬a ∨ b = 1 where ¬a is
the pseudocomplement of a.

Definition 2.1 For a frame L we say L is

(1) locally compact if a = ∨{x : x ' a} for each a ∈ L.
(2) regular if a = ∨{x : x ≺ a} for each a ∈ L.
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(3) stable if a ' b , c implies a ' b ∧ c for all a, b , c ∈ L.
(4) stably compact if it is compact, locally compact, and stable.

A frame homomorphism is a map f : L → M between frames L and M that
preserves finite meets (including 1) and infinite joins (including 0). We call a frame
homomorphism f proper if a ' b implies f (a) ' f (b). Our usage of the term is
motivated by [13, Definition VI-6.20, Lemma VI-6.21, and Theorem VI-7.4], where
the notion of a proper continuous map is introduced and it is shown that such maps
between stably compact spaces dually correspond to the frame homomorphisms
between stably compact frames that preserve the way below relation. This should
not be confused with the usage of the term a proper continuous map in [15, p. 104].

Let Frm be the category of frames and frame homomorphisms, KRFrm be the
category of compact regular frames and frame homomorphisms, and StKFrm be
the category of stably compact frames and proper frame homomorphisms. Clearly
StKFrm is a proper subcategory of Frm. Also, since the well inside and way below
relations coincide for compact regular frames, we have that KRFrm is a proper
subcategory of StKFrm. In fact, since each frame homomorphism between compact
regular frames is proper, we have that KRFrm is a full subcategory of StKFrm.

Next we recall the definition of a de Vries algebra. These algebras were first
introduced by de Vries [10] under the name of complete compingent algebras. In
[5] they were called de Vries algebras.

Definition 2.2 A de Vries algebra is a pair consisting of a Boolean frame (that is,
a complete Boolean algebra) B together with a binary relation ≺ on B called a
proximity that satisfies

(1) 1 ≺ 1.
(2) a ≺ b implies a ≤ b .
(3) a ≤ b ≺ c ≤ d implies a ≺ d.
(4) a ≺ b , c implies a ≺ b ∧ c.
(5) a ≺ b implies ¬b ≺ ¬a.
(6) a ≺ b implies there exists c ∈ B such that a ≺ c ≺ b .
(7) a *= 0 implies there exists b *= 0 such that b ≺ a.

A morphism between de Vries algebras A and B is a map ϕ : A → B that (1) pre-
serves bounds, (2) preserves finite meets, and satisfies (3) a ≺ b implies ¬ϕ(¬a) ≺
ϕ(b) and (4) ϕ(a) = ∨{ϕ(b) : b ≺ a}. Note, each de Vries morphism satisfies a ≺ b
implies ϕ(a) ≺ ϕ(b). The usual composition of two de Vries morphisms need not be
a de Vries morphism. However, we have the following [10].

Theorem 2.3 The de Vries algebras and de Vries morphisms form a category DeV
where the composite ψ % ϕ of morphisms ϕ : A → B and ψ : B → C is given by

(ψ % ϕ)(a) =
∨

{ψϕ(b) : b ≺ a}.

A topological space X is locally compact if for each x ∈ X and each open
neighborhood U of x, there exist an open set V and a compact set K such that
x ∈ V ⊆ K ⊆ U . A subset A of X is irreducible if A ⊆ B ∪ C, with B, C closed,
implies A ⊆ B or A ⊆ C, and X is sober if each closed irreducible subset of X is
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the closure of a unique point of X. Clearly each sober space is T0. A subset S of X
is saturated if it is an intersection of open subsets of X. A detailed account of the
following notion can be found in [13].

Definition 2.4 A space X is stably compact if it is compact, locally compact, sober,
and the intersection of any two compact saturated sets is again compact.

With each stably compact space (X, τ ) one associates two more topologies, the co-
compact topology τ k and the patch topology π . The co-compact topology is defined to
have the compact saturated subsets of X as closed sets, and π = τ ∨ τ k is defined to
be the smallest topology containing τ and τ k. It is well known that (X,π) is compact
Hausdorff. A continuous map f : X → Y between stably compact spaces is called
proper if the inverse image of each compact saturated set is compact, meaning that
it is continuous with respect to both the τ and τ k topologies. It follows that it is also
continuous with respect to π . As we already pointed out, we follow the usage of the
term from [13, Definition VI-6.20 and Lemma VI-6.21], and note that it differs from
that in [15, p. 104]. The next proposition is well known.

Proposition 2.5 The category KHaus of compact Hausdorf f spaces and continuous
maps is a full subcategory of StKSp, the stably compact spaces with proper continuous
maps.

For a topological space X, the open sets !X form a frame, and for a continuous
map f : X → Y, we let !f : !Y → !X be the inverse image map !f = f −1. For
a frame L, a frame homomorphism p : L → 2 into the two-element frame is called
a point of L. The collection pt L of all points of L is topologized by {ϕ(a) : a ∈ L},
where ϕ(a) = {p : p(a) = 1}. For a frame homomorphism f : L → M we define pt f :
pt M → pt L by setting pt f (p) = p ◦ f . Then !, pt are contravariant functors giving
an adjunction between Frm and the category Top of topological spaces. We further
have the following key results (see [13, Theorem VI-7.4] and [15, Chapter III.1.10]).

Theorem 2.6 The contravariant functors !, pt restrict to a dual equivalence between
StKSp and StKFrm, as well as to a dual equivalence between KHaus and KRFrm.

For a compact Hausdorff space X, the collection ROX of regular open subsets
of X forms a Boolean frame. Defining U ≺ V if cl U ⊆ V gives a de Vries algebra.
For f : X → Y continuous, define RO f : ROY → ROX by setting RO f (U) =
int cl f −1[U]. For a de Vries algebra B, call a filter F of B round if for each a ∈ F
there is some b ∈ F with b ≺ a, and call a maximal round filter an end. The set EB
of ends of B is topologized by the basis {ε(a) : a ∈ B}, where ε(a) = {F : a ∈ F}. For
a de Vries morphism ϕ : A → B, let Eϕ : EB → EA be given by Eϕ(F) = {a : b ≺
a for some b ∈ ϕ−1[F]}. We then have the following theorem of de Vries [10].

Theorem 2.7 There is a dual equivalence between KHaus and DeV given by RO
and E .

It follows from Theorems 2.6 and 2.7 that KRFrm is equivalent to DeV. This
can be seen directly. For a frame L, the fixed points of the nucleus ¬¬ on L
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form a Boolean frame BL called the Booleanization of L [4]. If L is compact
and regular, the restriction of the well inside relation ≺ on L turns BL into a de
Vries algebra. If f : L → M is a frame homomorphism, let B f : BL → BM be
given by B f (a) = ¬¬ f (a) for each a ∈ BL. For a de Vries algebra B, the round
ideals RIB are a compact regular frame. For a de Vries morphism ϕ : A → B,
define RIϕ : RIA → RIB by setting RIϕ(I) = {b : b ≺ a for some a ∈ ϕ[I]}. We
then have the following [6].

Theorem 2.8 There is an equivalence between DeV and KRFrm given by RI and B.

Let A and B be arbitrary categories. We recall [17, p. 91] that functors F :
A → B and G : B → A together with natural transformations η : 1A → G ◦ F and
ε : F ◦ G → 1B give an adjoint equivalence provided (F, G, η, ε) is an adjunction in
which both η and ε are natural isomorphisms. The following well-known fact [17,
Proposition IV.4.2] will be of use.

Lemma 2.9 SupposeA is a full subcategory ofB and i : A → B is the inclusion functor.
If for each object B in B there is an object FB of A and mutually inverse isomorphisms
µB : B → FB and νB : FB → B, then

(1) F extends to a functor where f : B → B′ is sent to F f = µB′ ◦ f ◦ νB.
(2) (F, i, µ, ν) is an adjoint equivalence.

3 Proximity Frames

In this section we define the category PrFrm of proximity frames.

Definition 3.1 A proximity on a frame L is a binary relation ≺ on L satisfying

(1) 0 ≺ 0 and 1 ≺ 1.
(2) a ≺ b implies a ≤ b .
(3) a ≤ b ≺ c ≤ d implies a ≺ d.
(4) a, b ≺ c implies a ∨ b ≺ c.
(5) a ≺ b , c implies a ≺ b ∧ c.
(6) a ≺ b implies there exists c ∈ L with a ≺ c ≺ b .
(7) a = ∨{b ∈ L : b ≺ a}.
If ≺ is a proximity on L, we call the pair (L,≺) a proximity frame, but refer to it
as L.

Example 3.2 Some examples of proximity frames are the following. (1) Any de Vries
algebra is a proximity frame. (2) The partial ordering of any frame is a proximity. (3)
A strong inclusion ! on a frame [1] is a proximity. (4) The way below relation on
a stably compact frame is a proximity. (5) The well inside relation on any regular
frame is a proximity. (6) The really inside relation on any completely regular frame
[15, Chapter IV.1] is a proximity. One further example dispels some possible spots
for confusion. Let B be the power set of the natural numbers ω. Then B is a Boolean
frame. Define ≺ on B by setting a ≺ b iff a is finite and a ⊆ b or b = ω. This yields a
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proximity frame whose underlying frame is a Boolean frame, but it is not a de Vries
algebra. This also shows that there are frames L such that strong inclusions on L are
properly contained in proximities on L.

Definition 3.3 For proximity frames L and M, a map ϕ : L → M is a proximity
morphism if it satisfies

(1) ϕ(0) = 0 and ϕ(1) = 1.
(2) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b).
(3) a1 ≺ b 1 and a2 ≺ b 2 imply ϕ(a1 ∨ a2) ≺ ϕ(b 1) ∨ ϕ(b 2).
(4) ϕ(a) = ∨{ϕ(b) : b ≺ a}.

Remark 3.4 It is easily seen from Definition 3.3.2 that a proximity morphism ϕ is
order-preserving, and from Definition 3.3.3 that a ≺ b implies ϕ(a) ≺ ϕ(b). An easy
inductive argument shows that Definition 3.3.3 applies to an arbitrary finite n, not
just to n = 2. We note that a proximity morphism need not preserve even finite
joins, but for maps ϕ that do preserve finite joins, 3.3.3 is equivalent to a ≺ b ⇒
ϕ(a) ≺ ϕ(b). Finally, we remark that this key condition 3.3.3 amounts to Smyth’s
preservation of strong covers [22, p. 327].

Example 3.5 As mentioned above, proximity morphisms need not be frame homo-
morphisms, and this allows for some unexpected features. Primary among these is
the fact that function composition of proximity morphisms need not be a proximity
morphism. To see this, let L = [0, 1] be the unit interval with a ≺ b iff a < b or
a = b = 0 or a = b = 1; and let 2 be the two-element frame with ≤ as its proximity.
Define maps ϕ : L → L and ψ : L → 2 by ϕ(a) = max{2a, 1}, and ψ(a) = 0 if a <

1 and ψ(1) = 1. Then ψϕ( 1
2 ) violates the fourth condition of the definition of a

proximity morphism.

Proposition 3.6 The proximity frames and proximity morphisms form a category
PrFrmwhere the composite ψ % ϕ of morphisms ϕ : A → B and ψ : B → C is given by

(ψ % ϕ)(a) =
∨

{ψϕ(b) : b ≺ a}.

Further, for χ : C → D, we have (χ % ψ % ϕ)(a) = ∨{χψϕ(b) : b ≺ a}.

Proof Clearly the composite ψ % ϕ preserves bounds. To see it preserves finite meets,
observe {c : c ≺ a ∧ b} = {d ∧ e : d ≺ a, e ≺ b} and use Definition 3.3.2 for ϕ and
ψ and the frame condition that infinite joins distribute over finite meets. For the
third condition, suppose a1 ≺ b 1 and a2 ≺ b 2. Then there are a1 ≺ x1 ≺ y1 ≺ b 1 and
a2 ≺ x2 ≺ y2 ≺ b 2. Therefore, (ψ % ϕ)(a1 ∨ a2) ≤ ψϕ(a1 ∨ a2) ≺ ψ(ϕ(x1) ∨ ϕ(x2)) ≺
ψϕ(y1) ∨ ψϕ(y2) ≤ (ψ % ϕ)(b 1) ∨ (ψ % ϕ)(b 2). For the final condition, suppose b ≺
a. Then there is some x with b ≺ x ≺ a. From the definition of % we have ψϕ(b) ≤
(ψ % ϕ)(x), so (ψ % ϕ)(a) ≤ ∨{(ψ % ϕ)(x) : x ≺ a}, hence equality. So ψ % ϕ is a prox-
imity morphism.

To show associativity, for any proximity morphisms α and β observe that (i) (α %

β)(a) ≤ αβ(a) and (ii) b ≺ a implies αβ(b) ≤ (α % β)(a). Let x = ∨{(χ % ψ)ϕ(b) :
b ≺ a}, y = ∨{χ(ψ % ϕ)(b) : b ≺ a}, and z = ∨{χψϕ(c) : c ≺ a}. Property (i) shows
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x, y ≤ z. If c ≺ a, then c ≺ b ≺ a for some b , giving ϕ(c) ≺ ϕ(b), and by (ii) χψϕ(c) ≤
(χ % ψ)ϕ(b). So z ≤ x. Similarly, property (ii) gives ψϕ(c) ≤ (ψ % ϕ)(b), so χψϕ(c) ≤
χ(ψ % ϕ)(b), showing z ≤ y. As x = ((χ % ψ) % ϕ)(a) and y = (χ % (ψ % ϕ))(a), asso-
ciativity of % follows. Consequently, (χ % ψ % ϕ)(a) = ∨{χψϕ(b) : b ≺ a}. Finally, for
any proximity frame L, the identity map idL on L is easily seen to be a proximity
morphism. That ϕ % idL = ϕ and idM % ϕ = ϕ is trivial, implying that PrFrm forms a
category. 01

We conclude this section with an easily proved observation that will be of use.
Here we use ◦ for usual set-theoretic composition of functions.

Lemma 3.7 If ϕ,ψ are proximity morphisms and ψ preserves joins, then ψ % ϕ=ψ ◦ ϕ.

4 The Basic Equivalences and Dual Equivalences

In this section we establish the following equivalences and dual equivalences using
the inclusion functor i.
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Before beginning, we direct the reader to the definition of a stably compact frame,
and the category StKFrm of stably compact frames and proper frame homomor-
phisms. The following result is immediate from the definition of ' and is noted
already in Example 3.2.4.

Proposition 4.1 If L is a stably compact frame, then ' is a proximity on L.

With a slight abuse, we consider the objects of StKFrm to be objects of PrFrm.

Proposition 4.2 StKFrm is a full subcategory of PrFrm.

Proof A proper frame homomorphism between stably compact frames is easily seen
to be a proximity morphism. Further, as frame homomorphisms preserve arbitrary
joins, by Lemma 3.7 we have f % g = f ◦ g for proper frame homomorphisms f, g. So
StKFrm is a subcategory of PrFrm. For fullness, suppose ϕ : L → M is a proximity
morphism between stably compact frames. By definition, ϕ preserves the bounds,
finite meets, and satisfies a ' b implies ϕ(a) ' ϕ(b), so to show it is a proper frame
homomorphism it remains to show ϕ preserves arbitrary joins.
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Let a = ∨
S. Clearly ϕ(a) ≥ ∨{ϕ(s) : s ∈ S} as ϕ is order-preserving. For the

other inequality, as ϕ is a proximity morphism, ϕ(a) = ∨{ϕ(b) : b ' a}. Suppose
b ' a. By interpolation, there is c with b ' c ' a. As a = ∨

S, by definition of
the way below relation, there are s1, . . . , sn ∈ S with b ' c ≤ s1 ∨ · · · ∨ sn. Each si
is the updirected join of the elements way below it, and as b ' s1 ∨ · · · ∨ sn, there
are t1 ' s1, . . . , tn ' sn with b ≤ t1 ∨ · · · ∨ tn. So by the definition of a proximity
morphism, we then have ϕ(b) ≤ ϕ(t1 ∨ · · · ∨ tn) ' ϕ(s1) ∨ · · · ∨ ϕ(sn). Thus, ϕ(b) ≤∨{ϕ(s) : s ∈ S}, and so ϕ(a) ≤ ∨{ϕ(s) : s ∈ S}. 01

We will show that each object of PrFrm is isomorphic in this category to some
object from StKFrm. To do this, we will need to produce from each proximity frame
a stably compact frame. The key will be the notion of a round ideal of a proximity
frame, which generalizes the notion of a round ideal of a de Vries algebra and a
strongly regular ideal of [1].

Definition 4.3 For a proximity frame L and S ⊆ L define

(1) S = {a ∈ L : a ≺ s for some s ∈ S}
(2) S = {a ∈ L : s ≺ a for some s ∈ S}.

For a ∈ L we write a and a for {a} and {a}, respectively.

Definition 4.4 Let L be a proximity frame.

(1) We say an ideal I of L is a round ideal if for each a ∈ I there is b ∈ I with a ≺ b .
(2) We say a filter F of L is a round filter if for each a ∈ F there is b ∈ F with b ≺ a.

The following is easily seen.

Lemma 4.5 Suppose L is a proximity frame.

(1) For any ideal I of L, I = ⋃{ a : a ∈ I} is the largest round ideal contained in I.

(2) For any f ilter F of L, F = ⋃{ a : a ∈ F} is the largest round f ilter contained
in F.

In particular, for a ∈ L, we have a is a round ideal and a is a round f ilter.

We recall that the collection IL of ideals of a frame L is a frame, and the way
below relation on IL is given by I ' J iff I is contained in the principal ideal ↓a for
some a ∈ J. We give an analogous result for the collection RIL of round ideals of a
proximity frame L.

Proposition 4.6 Let L be a proximity frame.

(1) RIL is a subframe of IL.
(2) For round ideals I, J we have I ' J in RIL if f I ⊆ a for some a ∈ J.

(3) For a, b ∈ L, a ' b in RIL if f a ≺ b.
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Proof

(1) Let I = ∨
Iα be the join in the ideal lattice of a family of round ideals. We

show I is round. If a ∈ I, then a = a1 ∨ · · · ∨ an for some ai ∈ Iαi . As each Iα

is round, there are a1 ≺ b 1, . . . , an ≺ b n with bi ∈ Iαi . Therefore, a1 ∨ · · · ∨ an ≺
b 1 ∨ · · · ∨ b n ∈ I. So I is round. Suppose I, J are round ideals. If d ∈ I ∩ J then
d ≺ a for some a ∈ I and d ≺ b for some b ∈ J, so d ≺ a ∧ b ∈ I ∩ J. Thus, I ∩ J
is round.

(2) Suppose I ' J. As J is round, J = ⋃{ a : a ∈ J}. As this is a directed join in

RIL, the definition of the way below relation gives I ≤ a for some a ∈ J.

Conversely, suppose I ⊆ a for some a ∈ J and that J ⊆ ∨{Jα : α ∈ κ} for some
directed family of round ideals Jα . As RIL is a subframe of IL, this directed join
is a union. So J ⊆ ⋃{Jα : α ∈ κ}. Then as a ∈ J, we have a ∈ Jα for some α ∈ κ ,
so I ⊆ a ⊆ Jα . Thus, I ' J.

(3) If a ' b , then by (2), a ⊆ c for some c ≺ b . This gives a = ∨
a ≤

∨
c = c, so a ≤ c ≺ b , showing a ≺ b . Conversely, if a ≺ b , then a ≺ c ≺ b for

some c, so a ⊆ c for some c ∈ b , and by (2), a ' b .
01

Remark 4.7 The map · : IL → RIL sending an ideal I to the round ideal I is
not a retraction. In the final example given in Example 3.2, the principal ideals I, J
generated by the odds and evens have (I ∨ J) *= I ∨ J.

Proposition 4.8 For L a proximity frame, RIL is a stably compact frame.

Proof Suppose I is round. Then I = ⋃{ a : a ∈ I}, and by Proposition 4.6.2, a ' I
for each a ∈ I, so I = ∨{J : J ' I}. Therefore, RIL is locally compact. As 1 ≺ 1, it
follows from Proposition 4.6.3 that 1 ' 1, so RIL is compact. Suppose I, J, K

are round ideals with I ' J, K. Then I ⊆ a, b for some a ∈ J and b ∈ K. Then

I ⊆ a ∩ b = (a ∧ b) and a ∧ b ∈ J ∩ K. So I ' J ∩ K, showing RIL is stable.
01

Proposition 4.6.1 has an analogue in [1, Lemma 2] and Proposition 4.8 has
analogues in [1, Lemma 2] and [22, Theorem 1].

Proposition 4.9 For a proximity frame L, the map ( ·)L : L → RIL, sending a to

a, and the map (
∨ ·)L : RIL → L, sending I to

∨
I, are mutually inverse proximity

frame isomorphisms.

Proof Clearly · preserves bounds and as (a ∧ b) = a ∩ b , it preserves finite

meets. Suppose a1 ≺ b 1 and a2 ≺ b 2. Then a1 ∈ b 1 and a2 ∈ b 2, so a1 ∨ a2 ∈
b 1 ∨ b 2, and so by Proposition 4.6.2, (a1 ∨ a2) ' b 1 ∨ b 2. Finally,

a = {b : b ≺ a} =
⋃

{ b : b ≺ a} =
∨

{ b : b ≺ a}.
So · is a proximity morphism.
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As
∨

0 = 0 and
∨

1 = 1,
∨ · preserves bounds, and basic properties of frames

show
∨ · preserves finite meets. Suppose I1 ' J1 and I2 ' J2. By Proposition 4.6.2,

I1 ⊆ a1 and I2 ⊆ a2 for some a1 ∈ J1, a2 ∈ J2. As J1, J2 are round, there ex-
ist b 1 ∈ J1, b 2 ∈ J2 with a1 ≺ b 1, a2 ≺ b 2. Then

∨
(I1 ∨ I2) ≤ a1 ∨ a2 ≺ b 1 ∨ b 2 ≤∨

J1 ∨ ∨
J2. Finally, for a round ideal I we have

∨
I = ∨{∨ a : a ∈ I}, so it follows

from Proposition 4.6.2 that
∨

I = ∨{∨ J : J ' I}. Therefore,
∨ · is a proximity

morphism.
For a round ideal I we have (( ·) % (

∨ ·))(I) = ∨{ ∨
J : J ' I}. By Proposi-

tion 4.6.2, this equals
∨{ ∨

a : a ∈ I}, which is
∨{ a : a ∈ I}, hence equal to I.

For a ∈ L we have ((
∨ ·) % ( ·))(a) = ∨{∨ b : b ≺ a} = ∨{b : b ≺ a} = a. 01

Remark 4.10 The isomorphisms produced in the above result are isomorphisms in
the category of proximity frames, but are in general not bijections. For instance,
any frame L is a proximity frame with its partial ordering ≤ as its proximity. In this
case all ideals of L are round, so RIL is simply the ideal lattice IL, and surely the
above maps between L and IL are not bijections. This somewhat counter-intuitive
behavior occurs as composition in our category is given by % rather than by usual
composition of functions.

As StKFrm is a full subcategory of PrFrm, the above result, in the context
of Lemma 2.9, leads us to consider the functor RI : PrFrm → StKFrm taking a
proximity frame L to its round ideals RIL, and a proximity morphism ϕ : L → M
to RIϕ = ( ·)M % ϕ % (

∨ ·)L. Then for i : StKFrm → PrFrm the inclusion functor,
Propositions 4.2, 4.9 and Lemma 2.9 give the following.

Theorem 4.11 (RI, i,
∨ ·, ·) is an adjoint equivalence between PrFrm and StKFrm.

The functor RI will play a key role, and its description can be simplified.

Proposition 4.12 For ϕ a proximity morphism, RIϕ = ϕ[·].

Proof By Proposition 3.6 we have (( ·)M % ϕ % (
∨ ·)L)(I) = ∨{ ϕ

∨
J : J ' I}. By

Proposition 4.6.2, this is equal to
∨{ ϕ

∨
a : a ∈ I}, and hence to

∨{ ϕ(a) : a ∈ I}.
01

We turn our attention to the dual equivalence between PrFrm and StKSp. Recall
(see Proposition 4.6.1) that the collection RIL of round ideals of a proximity frame
forms a subframe of the frame IL of all ideals of L. The same proof shows that
the collection RFL of round filters, partially ordered again by set inclusion, forms
a subframe of the frame FL of all filters of L. We recall that an element p of a
distributive lattice is meet-prime if a ∧ b ≤ p implies either a ≤ p or b ≤ p.

Definition 4.13 Let L be a proximity frame.

(1) We call a round ideal of L prime if it is a meet-prime element of RIL.
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(2) We call a round filter of L prime if it is a meet-prime element of RFL.
(3) Let PL be the set of all prime round ideals of L.
(4) Let EL be the set of all prime round filters of L.

Following common terminology from the studies of compactifications and de
Vries algebras, we call prime round filters of a proximity frame ends, so EL is the
set of ends of L.

Lemma 4.14 For a proximity frame L, there is a bijection αL from the points of RIL
to the set EL of ends of L given by αL(p) = Fp where Fp = {a ∈ L : p( a) = 1}.

Proof Clearly Fp is an upset, and as a ∩ b = (a ∧ b) it is a filter of L. Suppose

a ∈ Fp. As a = ∨{ b : b ≺ a} and p preserves arbitrary joins, there is b ≺ a with

p( b) = 1. So Fp is a round filter. Suppose G, H are round filters with neither
contained in Fp. Then there are a ∈ G − Fp and b ∈ H − Fp. Therefore, there are
x ∈ G with x ≺ a and y ∈ H with y ≺ b , and we have (x ∨ y) ⊆ a ∨ b since x ∨ y

belongs to the join of the ideals a and b . As p( a) = 0 and p( b) = 0, we have

p( (x ∨ y)) = 0, giving x ∨ y belongs to G ∩ H but not to Fp. So Fp is a prime round
filter.

Given a prime round filter F, define pF : RIL → 2 by setting

pF(I) =
{

0 if I ∩ F = ∅
1 if I ∩ F *= ∅

Clearly pF preserves the bounds. Suppose I, J are round ideals with pF(I) = 1
and pF(J) = 1. Then there are a, b ∈ F with a ∈ I and b ∈ J. Then a ∧ b ∈ I ∩ J,
showing pF(I ∩ J) = 1. It follows that pF preserves finite meets.

Claim pF( a1 ∨ · · · ∨ an) = pF( a1) ∨ · · · ∨ pF( an) for each a1, . . . , an ∈ L.

Proof of Claim Say pF( a1 ∨ · · · ∨ an) = 1. Then there is a ∈ F with a ∈ a1 ∨
· · · ∨ an. So there are b 1, . . . , b n with bi ≺ ai for i ≤ n with a = b 1 ∨ · · · ∨ b n. Then

b 1 ∩ · · · ∩ b n = a ⊆ F. As F is meet-prime in the lattice of round filters, there is

i ≤ n with bi ⊆ F. Use interpolation to find xi with bi ≺ xi ≺ ai. Then xi ∈ ai ∩ F,

so pF( ai) = 1.

To see pF preserves joins, suppose Iα (α ∈ κ) is a family of round ideals with
pF(

∨
κ Iα) = 1. Then there is a ∈ F with a ∈ ∨

κ Iα . So there are b 1, . . . , b n with bi ∈
Iαi and a = b 1 ∨ · · · ∨ b n. As the Iα are round, there are xi ∈ Iαi with bi ≺ xi for i ≤
n. Then a ∈ x1 ∨ · · · ∨ xn, showing pF( x1 ∨ · · · ∨ xn) = 1. By the above claim

pF( xi) = 1 for some i ≤ n, hence
∨

κ pF(Iα) = 1. This shows pF preserves joins, so
is a point of RIL. It is routine to see FpF = F and pFp = p, providing the bijective
correspondence. 01
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We next use this bijection to lift the topology from the points to the prime round
filters. We recall that for a proximity frame L, the open sets of the space pt RIL are
the sets of the form ϕ(I) for a round ideal I, where ϕ(I) = {p ∈ pt RIL : p(I) = 1}.

Proposition 4.15 For a proximity frame L and a ∈ L, set

p(a) = {F ∈ EL : a ∈ F}.

Then αL[ϕ( a)] = p(a) for each a ∈ L. Therefore, the collection of sets {p(a) : a ∈ L}
is a basis for a topology on EL, and with this topology αL is a homeomorphism.

Proof Note ϕ( (a ∧ b)) = ϕ( a) ∩ ϕ( b) and ϕ(I) = ⋃{ϕ( a) : a ∈ I} for any

round ideal I. So {ϕ( a) : a ∈ L} is a basis for the topology on pt RIL. Noting that

p( a) = 1 iff a ∈ Fp gives αL[ϕ( a)] = p(a). The rest is immediate. 01

We next use the bijections αL to deal with morphisms.

Lemma 4.16 For ϕ : L → M a proximity morphism, αL ◦ (pt RIϕ) ◦ α−1
M = ϕ−1[·].

Proof Let G ∈ EM. Then G = Gq for some point q of RIM. Applying αL ◦
(pt RIϕ) ◦ α−1

M to Gq gives the end Fq◦ f , where f = RIϕ. By Proposition 4.12,
Fq◦ f = {a ∈ L : q( ϕ[ a]) = 1}. Noting ϕ[ a] = ∨{ ϕ(c) : c ≺ a} and using the

fact that q is a point then gives that Fq◦ f = {a ∈ L : q( ϕ(c)) = 1 for some c ≺ a},
so Fq◦ f = ϕ−1[Gq]. 01

The following is now immediate.

Theorem 4.17 There is a contravariant functor E : PrFrm → StKSp taking a prox-
imity frame L to its space EL of ends and a proximity morphism ϕ : L → M to

ϕ−1[·]. Further, this functor is naturally equivalent to the composite pt ◦ RI via α,
and therefore E and ! provide a dual equivalence.

We summarize our results below.

Theorem 4.18 There is a circle of equivalences and dual equivalences among StKFrm,
StKSp, and PrFrm given by pt, !, E , RI, and i where

(1) pt takes L to its space of points and f to (·) ◦ f .
(2) ! takes X to its frame of opens and f to f −1[·].
(3) E takes L to its space of ends and ϕ to ϕ−1[·].
(4) RI takes L to its frame of round ideals and ϕ to ϕ[·].
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(5) i is the inclusion functor from StKFrm to PrFrm.
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We conclude this section with a few further observations.

Remark 4.19 For a stably compact space X, we consider its open sets !X as a
proximity frame whose proximity is the way below relation '. It follows from [13,
Proposition I-1.4] that for U, V ∈ !X we have U ' V iff there exists a compact
saturated K such that U ⊆ K ⊆ V. Note this gives U ' V iff clπU ⊆ V. Then each
open set V is the union of ones of the form int clπ (U) where U ' V. So open sets
of the form int clπ (U) give a basis for the topology on X. These sets will play a
prominent role later in the paper.

Remark 4.20 We have seen there is a bijection between points p of RIL and prime
round filters F of L. By basic principles there is a bijection between points and the
meet-prime elements of RIL, and these are the prime round ideals I of L. These are
given by

p " Fp where Fp = {a : p( a) = 1}

p " Ip where Ip =
∨

{ a : p( a) = 0}.

So there is a bijection between the prime round ideals and the prime round filters
of L. These correspondences can be found using the inverse of p " Fp given in the
proof of Lemma 4.14 and the well-known correspondence between points and meet-
prime elements. We obtain

F " IF where IF = {a : a *⊆ F}

I " FI where FI = {a : a *⊆ I}.

Noting that ϕ( a) = {p : p( a) = 1} corresponds to χ(a) = {I : a *⊆ I} we obtain
{χ(a) : a ∈ L} is a basis for a topology on the prime round ideals making this space
homeomorphic to the space of ends of L.

Remark 4.21 As the stably compact frames are a full subcategory of the proximity
frames, the points of RIL are exactly the proximity morphisms into the two-element
proximity frame 2. As L is isomorphic to its frame of round ideals, the points of RIL
are in bijective correspondence with the proximity morphisms from L to 2, which we
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call the proximity points of L. We could then topologize the set pptL of proximity
points to obtain another space homeomorphic to the space of prime round filters,
and extend this to yet another functor providing a duality. The details are left to the
reader.

Remark 4.22 We have shown the frame RIL of round ideals of L is isomorphic to
the frame of open sets of the stably compact space EL. The round filters of L also
play a natural role. It is not a difficult exercise to show that there are mutually inverse
frame isomorphisms / : RFL → RF(RIL) and 0 : RF(RIL) → RFL given by

/(F) = {I : I ∩ F *= ∅}
0(F) = {

∨
I : I ∈ F}.

It then follows from the Hofmann–Mislove Theorem [13, Theorem II-1.20] that the
frame of round filters of L is isomorphic to the frame of closed sets of the co-compact
topology of EL (equivalently, of compact saturated sets of EL) ordered by reverse
inclusion.

5 Regular Proximity Frames

We show each proximity frame carries a special nucleus j; use this nucleus to define
regular proximity frames; and show j gives a functor R, much as ¬¬ gives the
Booleanization functor B, providing an equivalence between PrFrm and its full
subcategory RPrFrm of regular proximity frames. We begin with a few basics [15,
Chapter II.2].

Definition 5.1 A nucleus on a frame L is a map j : L → L that satisfies

(1) j(a ∧ b) = j(a) ∧ j(b).
(2) a ≤ j(a).
(3) jj(a) ≤ j(a).

If in addition j(0) = 0, then j is called a dense nucleus.

Let L j denote the fixed points of a nucleus j. It is well known that L j is a frame,
although not necessarily a subframe of L, and that j : L → L j is an onto frame
homomorphism. It is also well known that for any element c of a frame L, the
map wc : L → L defined by wc(a) = (a → c) → c is a nucleus, where → is the usual
Heyting implication of a frame, and that the pointwise meet of nuclei is a nucleus.

Definition 5.2 Let L be a proximity frame. Define maps k and j from L to L by

(1) k(a) = ∧
a.

(2) j(a) = ∧{wk(b)(a) : b ∈ L}.
We let Lk be the fixed points of k and L j be the fixed points of j.

Proposition 5.3 For a proximity frame L and a ∈ L,

(1) a ≤ j(a) ≤ k(a).
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(2) a = j(a) = k(a).
(3) k is a closure operator on L with k(0) = 0.
(4) j is a dense nucleus on L.

Proof (1) As j is the pointwise meet of nuclei, it is a nucleus, so a ≤ j(a). As a ≤∧
a = k(a), the definition of j gives j(a) ≤ wk(a)(a) = (a → k(a)) → k(a) = k(a).

(2) As a ≤ j(a) ≤ k(a) we have k(a) ⊆ j(a) ⊆ a. If b ∈ a, then a ≺ b , so there is

c with a ≺ c ≺ b . Then k(a) ≤ c ≺ b , showing k(a) ≺ b , so b ∈ k(a). (3) Surely k is

order-preserving, a ≤ k(a), and by the second part kk(a) = ∧
k(a) = ∧

a = k(a).
So k is a closure operator, and 0 ≺ 0 gives k(0) = 0. (4) As j(0) ≤ k(0) = 0, the
nucleus j is dense. 01

Remark 5.4 The above shows the fixed points of k are fixed by j, so Lk ⊆ L j. Both
Lk and L j are complete lattices with meets agreeing with those in L, and joins given
by applying either k or j to the join taken in L. In general neither Lk nor L j is a
sublattice of L. The lattice Lk need not be distributive, but L j forms a frame.

We come to our key definition.

Definition 5.5 For a proximity frame L, call a ∈ L regular if it is a fixed point of j.
We say the proximity frame L is regular if each element of L is regular. Let RPrFrm
be the full subcategory of PrFrm whose objects are the regular proximity frames.

Example 5.6 We give an example of a proximity frame that is not regular. Let L =
ω + 2. For a, b ∈ L with a *= ω, set a ≺ b iff a ≤ b , and set ω ≺ ω + 1. It is easy to
verify that L is a proximity frame such that a ≺ a for each a ∈ L − {ω}, so ω is the
only element of L that is not reflexive. Note that k(a) = a for each a ∈ L − {ω} and
k(ω) = ω + 1. Therefore, wk(a)(ω) = ω + 1 for each a ∈ L, so j(ω) = ω + 1. Thus, ω

is not a regular element of L, and so L is not a regular frame. Other examples will be
given in Sections 6 and 7.

We now give the key results of this section.

Proposition 5.7 For a proximity frame L, the restriction ≺ j of ≺ to L j is a proximity.

Proof The first three conditions of Definition 3.1 are clear. (4) If a, b , c ∈ L j and
a, b ≺ j c, then a, b ≺ c, so a ∨ b ≺ c, and by Proposition 5.3.2 we have j(a ∨ b) ≺ c.
Then as j(a ∨ b) is the join of a, b in L j, the result follows. (5) This follows as meets
in L j agree with those in L. (6) Suppose a, b ∈ L j with a ≺ j b . Then a ≺ b so there is
c ∈ L with a ≺ c ≺ b . Then by Proposition 5.3.2, a ≺ j(c) ≺ b . (7) Let a ∈ L j. Then a
is the join in L of {b ∈ L : b ≺ a}. But for any b ≺ a we have j(b) ∈ L j and j(b) ≺ a.
So a is the join in L of {b ∈ L j : b ≺ a}, hence a is the join in L j of {b ∈ L j : b ≺ j a}.
So ≺ j is a proximity on L j. 01

In the following we have need to consider several proximity frames in the same
argument. We shall often use kL, →L, jL,

∧
L,

∨
L to indicate the operations

Author's personal copy



Proximity Frames and Regularization

belonging to the proximity frame L. In particular, jL j is the nucleus in the derived
frame L j.

Lemma 5.8 For a proximity frame L and a, b ∈ L j,

(1) kL j(a) = kL(a).
(2) a →L j b = a →L b.
(3) jL j(a) = jL(a).

Proof (1) Note first that meets in L j agree with those in L. We have kL(a) = ∧{c ∈
L : a ≺ c}. But if a ≺ c, there is some d ∈ L with a ≺ d ≺ c, so by Proposition 5.3.2
we have a ≺ jL(d) ≺ c. It follows that

∧{c ∈ L : a ≺ c} = ∧{d ∈ L j : a ≺ j d}, so
kL(a) = kL j(a). (2) This is well known; see, e.g., [7, Proposition 7]. (3) By definition,
jL(a) = ∧{(a →L kL(c)) →L kL(c) : c ∈ L}. For any c ∈ L we have kL(c) ∈ L j. It
then follows from part (1) that {kL(c) : c ∈ L} equals {kL j(b) : b ∈ L j}. So jL(a) =∧{(a →L j kL j(b)) →L j kL j(b) : b ∈ L j}, hence is equal to jL j(a). 01

The following is now trivial.

Proposition 5.9 For a proximity frame L, the proximity frame L j is regular.

Lemma 5.10 For a proximity frame L, consider the map j : L → L j and let i : L j →
L be the identical embedding. Then

(1) j is both an onto frame homomorphism and a proximity morphism.
(2) i is a one-one proximity morphism.
(3) j % i = j ◦ i = 1L j

(4) i % j = 1L.

Proof (1) As j is a nucleus, j : L → L j is an onto frame homomorphism. As j
is a dense nucleus, it preserves 0, 1, so the first condition in the definition of a
proximity morphism is satisfied. As j : L → L j preserves finite joins and meets
the second and third conditions follow. For the fourth condition, as j : L → L j
preserves joins, j(a) = j(

∨
L{b : b ≺ a}) = ∨

L j
{ j(b) : b ≺ a}. (2) Surely i preserves

0, 1, and as meets in L j agree with those in L it preserves finite meets as well.
If a1 ≺ b 1 and a2 ≺ b 2, then a1 ∨ a2 ≺ b 1 ∨ b 2, so by Proposition 5.3.2 j(a1 ∨ a2) ≺
b 1 ∨ b 2. As the join a1 ∨L j a2 of a1, a2 in L j is j(a1 ∨ a2), we have i(a1 ∨L j a2) ≺
i(b 1) ∨ i(b 2) ≤ i(b 1) ∨L j i(b 2). Finally, for a ∈ L j, Proposition 5.3.2 shows a is the
join in L of {b ∈ L j : b ≺ j a}. (3) As the map j : L → L j preserves arbitrary joins,
by Lemma 3.7 j % i is given by ordinary function composition and clearly j ◦ i = 1L j .
(4) By definition, (i % j)(a) = ∨

L{i j(b) : b ≺ a}, and again, by Proposition 5.3.2, we
have a = ∨

L{ j(b) : b ≺ a}. 01

Lemmas 2.9 and 5.10 provide the following.

Theorem 5.11 There is a functor R : PrFrm → RPrFrm, called the regularization
functor, that takes a proximity frame L to its frame L j of regular elements, and a
proximity morphism ϕ : L → M to R(ϕ) = jM % ϕ % iL. Further, this functor and the
inclusion functor give an adjoint equivalence between PrFrm and RPrFrm.
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6 Equivalences and Dual Equivalences via Regularization

The equivalences and dual equivalences of Section 4, with the equivalence of the
previous section, provide the circle of equivalences and dual equivalences shown
below. Here we consider further aspects of these, and in particular, show R ◦ ! has
a topological description in terms of sets that are regular open in a certain sense.
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For a stably compact space X with topology τ we use int for interior with respect
to τ , clk for closure with respect to the co-compact topology τ k and clπ for closure
with respect to the patch topology π . For a stably compact frame L, we recall the
points pt L are a stably compact space with {ϕ(a) : a ∈ L} as a topology.

Proposition 6.1 For L a stably compact frame with X = pt L and a ∈ L,

(1) ϕ(k(a)) = int clk ϕ(a).
(2) ϕ( j(a)) = int clπ ϕ(a).

Proof

(1) The round filters of L are exactly the Scott open filters of L in the sense of [13,
p. 139]. So the Hofmann–Mislove Theorem [13, Theorem II-1.20] gives a frame
isomorphism from the frame of round filters of L to the frame of closed subsets
of τ k partially ordered by reverse set inclusion. Here a round filter F is taken
to

⋂{ϕ(a) : a ∈ F}, which we denote ϕ(F). Clearly ϕ(b) ⊆ ϕ(F) iff b ≤ ∧
F. It

follows that clk ϕ(a) is given by the largest round filter contained in ↑a, so by a.

Then as k(a) = ∧
a, we have ϕ(k(a)) = int clkϕ(a).

(2) As every round filter is the join of ones of the form c, the ϕ( c) where c ∈ L

are a basis for the closed sets of τ k. Since π = τ ∨ τ k, the sets ϕ( c) ∪ −ϕ(d)

where c, d ∈ L are a basis for the closed sets of π . So for b ∈ L, having ϕ(b)

contained in clπ ϕ(a) is equivalent to ϕ(b) ⊆ ϕ( c) ∪ −ϕ(d) for each c, d ∈ L

with ϕ(a) ⊆ ϕ( c) ∪ −ϕ(d). This is equivalent to b ∧ d ≤ k(c) for each c, d ∈ L
with a ∧ d ≤ k(c). For any c ∈ L, d = a → k(c) is the largest element whose
meet with a is beneath k(c). So ϕ(b) ⊆ clπ ϕ(a) is equivalent to b ∧ (a → k(c)) ≤
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k(c) for each c ∈ L, hence to b ≤ (a → k(c)) → k(c) for each c ∈ L. As j(a) =∧{(a → k(c)) → k(c) : c ∈ L} it follows that ϕ( j(a)) = int clπ ϕ(a). 01

The above result shows that for a stably compact space X, the nucleus j on
!X is given by j(U) = int clπ U . So the fixed points of j are those U that are
regular open in the sense that U = int clπ U . For these reasons, we often call R the
regularization functor, and the fixed points of j regular elements. From the discussion
in Remark 4.19 the following is now immediate.

Theorem 6.2 Using RO for R ◦ ! we have RO takes a stably compact space X
to its frame of regular open sets ROX, in the above sense, with proximity U ≺ V
if clπ U ⊆ V; and for f : X → Y a proper continuous map, RO f : ROY → ROX
takes a regular open set U to int clπ f −1[U].

The functor R from StKFrm to RPrFrm is the restriction of the functor R given
in the previous section. For ϕ : L → M a morphism between stably compact frames,
we then have R(ϕ) : L j → Mj is given by R(ϕ) = jM % ϕ % iL. But in this setting both
jM and ϕ preserve arbitrary joins, so reduces to jM ◦ ϕ ◦ iL, hence to jM ◦ ϕ. We now
have the following.

Theorem 6.3 There is a circle of equivalences and dual equivalences among StKSp,
StKFrm, PrFrm, and RPrFrm given by pt, !, RI, R, RO, and E , where

(1) pt takes L to its space of points and f to (·) ◦ f .
(2) ! takes X to its frame of opens and f to f −1[·].
(3) RI takes L to its frame of round ideals and ϕ to ϕ[·].
(4) R : PrFrm → RPrFrm takes L to its f ixed points L j and f to j ∗ f ∗ i.
(5) R : StKFrm → RPrFrm takes L to its f ixed points L j and f to j ◦ f .
(6) RO takes X to {U : U = int clπ U} and f to int clπ f −1[·].
(7) E takes L to its space of ends and ϕ to ϕ−1[·].
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The equivalences and dual equivalences described above have a counter-intuitive
aspect, due to the fact that isomorphisms in the category PrFrm are not what one
would expect. For instance, each proximity frame is isomorphic to its frame of
round ideals and to its regularization. Also, for each stably compact space, the
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proximity frames of its open and regular open sets are isomorphic. Of course, these
isomorphisms are not bijections, and this occurs because composition is given by %

rather than function composition. While composition is still given by % in RPrFrm,
we will show isomorphisms are well behaved.

Lemma 6.4 For a proximity frame L, in RIL we have

(1) k(I) = k(
∨

I).

(2) j(I) = j(
∨

I).

Proof

(1) By definition, k(I) = ∧{J : I ' J}. If I ' J, it follows from Proposition 4.6.2
and roundness that I ' b for some b ⊆ J. Proposition 4.6 also shows I '

b iff
∨

I ≺ b . For any S ⊆ L, we have
∧{ s : s ∈ S} = ∧

S, giving k(I) =
∧{ b : I ' b} = k(

∨
I).

(2) Let I be a round ideal and a ∈ L. If b ∈ I ∩ (
∨

I → a), then b ≤ ∨
I ∧ (

∨
I →

a) ≤ a, so by roundness I ∩ (
∨

I → a) ⊆ a. Suppose J is round and I ∩ J ⊆
a. If b ∈ J, then b ∧ c ≤ a for all c ∈ I, hence b ∧ ∨

I ≤ a, showing b ≤ ∨
I →

a. Again by roundness, J ⊆ (
∨

I → a). This shows I → a = (
∨

I → a). We
then have

j(I) =
∧

{(I → k(J)) → k(J) : J ∈ RIL}

=
∧

{(I → ka) → ka : a ∈ L}

=
∧

{ (
∨

I → ka) → ka : a ∈ L}

=
∧

{ ((
∨

I → ka) → ka) : a ∈ L}

Using again the fact that for any S ⊆ L we have
∧{ s : s ∈ S} = ∧

S, the result
follows.

01

So in any regular proximity frame L, the fixed points in RIL of j are exactly
the a where a ∈ L. So for L regular, there are structure-preserving bijections

between L and (RIL) j sending a to a and conversely. As j : RIL → (RIL) j and
∨ · : RIL → L preserve joins, j % ( ·) = j ◦ ( ·) and (

∨ ·) % i = (
∨ ·) ◦ i, so these are

the isomorphisms giving the described structure-preserving bijections. We extend
this with the following.

Proposition 6.5 Isomorphisms in RPrFrm are structure-preserving bijections.

Proof Let ϕ : L → M be an isomorphism between regular proximity frames. The
previous result shows that the fixed points under j in RIL are the a where a ∈ L,
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and the fixed points under j in RIM are the b where b ∈ M. By general consider-
ations of functors, RIϕ is an isomorphism between RIL and RIM, and by Proposi-
tion 4.8 we have RIL and RIM are stably compact frames. By Proposition 4.2
morphisms between stably compact frames are proper frame homomorphisms
under ordinary composition, so RIϕ is a structure-preserving bijection. There-
fore, RIϕ( a) is a fixed point of j in RIM. So by the description of RIϕ

in Theorem 6.3 and Lemma 6.4.2, we have RIϕ( a) = ϕ[ a] = j( ϕ[ a]) =
j(
∨

ϕ[ a]) = jϕ(a) = ϕ(a). It follows that ϕ equals the usual composite of

functions (
∨ ·)M ◦ (RIϕ) ◦ ( ·). As we noticed in the discussion prior to this result,

for regular proximity frames the maps
∨ · and · are structure-preserving bijections,

so as ϕ is the usual composite of structure-preserving bijections, it is a structure-
preserving bijection. 01

7 Restricting to the Compact Hausdorff Setting

Having established a circle of equivalences and dual equivalences among the cate-
gories StKSp, StKFrm, PrFrm, and RPrFrm for the stably compact setting, we show
these restrict to, and expand upon, those we began with in the compact Hausdorff
setting. We first define a full subcategory StrInc of PrFrm we call the category
of frames with strong inclusions that will serve as a counterpart for PrFrm in the
compact Hausdorff setting. We then show KHaus, KRFrm, StrInc, and DeV are
full subcategories of StKSp, StKFrm, PrFrm, and RPrFrm respectively, and that the
functors providing equivalences and dual equivalences in the stably compact setting
restrict to the compact Hausdorff setting, and that these restrictions include the
original equivalences and dual equivalences we considered in the compact Hausdorff
setting. The situation is shown below.
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Definition 7.1 A strong inclusion on a frame L is a proximity ≺ on L that satisfies

(1) ≺ is a subset of the well inside relation on L.
(2) a ≺ b implies ¬b ≺ ¬a.

We let StrInc be the full subcategory of PrFrm whose objects are frames with strong
inclusions.
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Remark 7.2 Strong inclusions were introduced by Banaschewski [1] in his pointfree
treatment of compactifications. He did not consider frames with strong inclusions as a
category. Frith [12] did consider frames with strong inclusions as a category, but with
different morphisms than we use. Frith’s morphisms were frame homomorphisms
compatible with the strong inclusions. Frith called his category that of proximal
frames, which we denote ProxFrm, and showed it was isomorphic to the full subcate-
gory of the category UniFrm of uniform frames consisting of totally bounded uniform
frames. Clearly ProxFrm is a non-full subcategory of StrInc. Fletcher and Hunsaker
[11] also considered Frith’s category ProxFrm, but under the name proximity frames.
We have kept the name proximity frame for our more general notion, preferring to
use the term strong inclusion for the more restrictive notion.

Lemma 7.3 Suppose ≺ is a strong inclusion on a frame L and a, b ∈ L.

(1) a ≺ b ⇒ ¬¬a ≤ b.
(2) a ≺ ¬b ⇔ b ≺ ¬a.

Proof (1) If a ≺ b , then by Definition 7.1.1 a is well inside b , and this implies ¬¬a ≤
b . (2) If a ≺ ¬b , then by Definition 7.1.2 ¬¬b ≺ ¬a, hence b ≺ ¬a. The converse
follows by symmetry. 01

By definition,StrInc is a full subcategory ofPrFrm. It is well known thatKHaus is a
full subcategory of StKSp and KRFrm is a full subcategory of StKFrm, but it is easy to
see these directly as well. From basic topology, a compact Hausdorff space is locally
compact, irreducible sets are singletons, each subset is saturated, and compact sets
are closed sets, so it is stably compact. Further, the topology, co-compact topology,
and patch topology all agree, so continuous maps between compact Hausdorff spaces
are proper. For a compact regular frame, the way below relation ' and well inside
relation ≺ agree, so each compact regular frame is stably compact, and as frame
homomorphisms preserve the well inside relation, frame homomorphisms between
compact regular frames are proper.

Proposition 7.4 The category DeV is a full subcategory of RPrFrm.

Proof One easily sees every de Vries algebra is a proximity frame. In fact, de Vries
algebras are exactly the proximity frames L where L is Boolean and a ≺ b implies
¬b ≺ ¬a. In a de Vries algebra, we see a = ∧{b : a ≺ b}, showing k(a) = a, hence
j(a) = a. So every de Vries algebra is regular.

To see every de Vries morphism ϕ is a proximity morphism, we need only show
a1 ≺ b 1 and a2 ≺ b 2 imply ϕ(a1 ∨ a2) ≺ ϕ(b 1) ∨ ϕ(b 2). But this follows from [6,
Lemma 2.2]. Conversely, if ϕ is a proximity morphism between de Vries algebras,
then for a ≺ b we must show ¬ϕ(¬a) ≺ ϕ(b). Choose c, d with a ≺ c ≺ d ≺ b . Then
¬c ≺ ¬a and c ≺ d, so 1 = ϕ(¬c ∨ c) ≺ ϕ(¬a) ∨ ϕ(d), showing ¬ϕ(¬a) ≤ ϕ(d) ≺
ϕ(b). So the proximity morphisms between de Vries algebras are exactly the de Vries
morphisms, and as the definitions of composition ∗ agree, our result follows. 01

Clearly the functors ! and pt between KHaus and KRFrm are the restrictions of
! and pt between StKSp and StKFrm. We show the corresponding results hold for
the restrictions of the other functors from the stably compact setting.
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Proposition 7.5 The functors RO and E between DeV and KHaus are the restrictions
of the functors RO and E between RPrFrm and StKSp of Section 6.

Proof To begin, compare the definitions of the functors given at the start of this
section with Theorem 6.3. The situation for RO is obvious from the fact that clπ and
cl agree for any compact Hausdorff space. To settle matters for E , we have only to
show the prime round filters of a de Vries algebra are exactly the maximal round
filters; then the notions of ends for de Vries algebras and for proximity frames agree,
the way in which the space of ends is topologized is by definition identical, and the
action of the functors on morphisms agree.

Suppose F is a round filter of a de Vries algebra. Surely if F is maximal among
round filters it is prime in the lattice of round filters. Suppose F is prime in the lattice
of round filters and F is properly contained in the round filter G. By roundness, there
are a ≺ b ≺ c all belonging to G − F. Then ¬c ≺ ¬b ≺ ¬a. As b ∩ ¬b = 1 ⊆ F

and c *∈ F, primeness then gives ¬b ⊆ F ⊆ G. Then ¬a and a belong to G, so F is
maximal among round filters. 01

Proposition 7.6 The inclusion and round ideal functor RI between StKFrm and
PrFrm restrict to functors between KRFrm and StrInc.

Proof To show the inclusion functor restricts to a functor from KRFrm to StrInc,
we need only that the well inside relation on a compact regular frame is a strong
inclusion. This was given in [1, p. 108, Example (2)]. To see that RI restricts to a
functor from StrInc to KRFrm we need that the round ideals of a frame with strong
inclusion form a compact regular frame. This was established in [1, Lemma 2] where
round ideals were called strongly regular. 01

Proposition 7.7 The inclusion and regularization functor R between PrFrm and
RPrFrm restrict to functors between StrInc and DeV. Further, R takes a frame with
strong inclusion to its Booleanization equipped with the restriction of the strong
inclusion.

Proof That the proximity of a de Vries algebra is a strong inclusion is given in [6,
Lemma 2.4], so the inclusion functor restricts as described.

Suppose (L,≺) is a frame with strong inclusion and a ∈ L. Then ¬a = ∨{b :
b ≺ ¬a}. Using the behavior of pseudocomplement in a frame, we have ¬¬a =∧{¬b : b ≺ ¬a}. Therefore, by Lemma 7.3.2, ¬¬a = ∧{¬b : a ≺ ¬b}. As k(a) =∧{c : a ≺ c}, this shows k(a) ≤ ¬¬a. Lemma 7.3.1 provides a ≺ c implies ¬¬a ≤
c. So the definition of k(a) provides ¬¬a ≤ k(a). Thus, k(a) = ¬¬a in any
frame with a strong inclusion. So in L, j(a) = ∧{(a → ¬¬b) → ¬¬b : b ∈ L}.
For b ∈ L, general properties of pseudocomplement on a frame [19, p. 60] give
a → ¬¬b = a → (¬b → 0) = ¬b → (a → 0) = ¬b → ¬a. So ¬¬a ∧ (a → ¬¬b) =
(¬b → ¬a) ∧ (¬a → 0) ≤ ¬b → 0 = ¬¬b . This shows ¬¬a ≤ (a → ¬¬b) → ¬¬b
for each b ∈ L, hence ¬¬a ≤ j(a). By Proposition 5.3.1 j(a) ≤ k(a) always holds,
and as k(a) = ¬¬a, we have j(a) = ¬¬a.

Thus, RL is the Booleanization of L with proximity ≺ being the restriction of the
strong inclusion on L. This Booleanization is a complete Boolean algebra, and this
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restriction ≺ is a proximity that satisfies a ≺ b ⇒ ¬b ≺ ¬a, hence gives a de Vries
algebra. 01

As an immediate corollary, we have the following.

Corollary 7.8 The functors RI and B between DeV and KRFrm are the restrictions of
the functors RI and R between RPrFrm and StKFrm.

Remark 7.9 That j agrees with ¬¬ for compact regular frames has a simple inter-
pretation when viewed topologically. In the compact regular frame of open sets of
a compact Hausdorff space, we have ¬¬U = int cl U , and in Section 6 we have seen
j(U) = int clπ U . As the patch topology and given topology agree for any compact
Hausdorff space, the result is clear.

We have established the following.

Theorem 7.10 The functors from Section 6 giving equivalences and dual equivalences
among StKSp, StKFrm, PrFrm, and RPrFrm restrict to those giving equivalences and
dual equivalences among KHaus, KRFrm, StrInc, and DeV shown at the beginning of
this section.

Remark 7.11 Extra information has been added to the compact Hausdorff setting.
As the category StrInc contains both KRFrm and DeV as full subcategories, it
provides a common generalization of both. This provides an interesting link between
these point-free versions of compact Hausdorff spaces. In fact, for a compact
Hausdorff space X, Lemma 5.10 and the above result that j = ¬¬ for compact
regular frames, shows that the Booleanization map ¬¬ is an isomorphism in StrInc
from the open sets of X to the regular open sets of X. Thus, these are literally
isomorphic ways to treat the space X.

Remark 7.12 As we pointed out in Remark 7.2, Frith’s categoryProxFrm of proximal
frames also has frames with strong inclusions as objects, but morphisms are frame ho-
momorphisms preserving strong inclusions. Frith showed that ProxFrm is isomorphic
to the coreflective subcategory of the category UniFrm of uniform frames consisting
of totally bounded uniform frames. He also proved that there is a dual adjunction
between UniFrm and the category UniSp of uniform spaces, which restricts to a dual
equivalence between the full subcategory of UniFrm consisting of spatial uniform
frames and the full subcategory of UniSp consisting of separated uniform spaces.
It is natural to consider the composite UnifSp → UniFrm → ProxFrm ⊆ StrInc →
KHaus. As expected, this is the Samuel compactification [3].

8 The Spectral and Stone Settings

In this section we restrict the equivalences and dual equivalences from the stably
compact setting to the setting of spectral and Stone spaces, the Stone duals of
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bounded distributive lattices and Boolean algebras. We begin by recalling the
familiar Stone duality between the categories of bounded distributive lattices and
spectral spaces, and their point-free version, the category of coherent frames.
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Here DL is the category of bounded distributive lattices and bound preserving
lattice homomorphisms, and Spec is that of spectral spaces and spectral maps.
These are compact sober spaces where compact open sets are closed under finite
intersections and form a basis, and continuous maps where the inverse image of
a compact open set is compact. A frame is coherent if its compact elements are a
bounded sublattice and each element is a join of compact elements. In any coherent
frame, a ' b iff there is a compact k with a ≤ k ≤ b . The category CohFrm has
coherent frames as objects, and frame homomorphisms that map compact elements
to compact elements as its morphisms. The following is well known [15, Chapter II.3].

Theorem 8.1 Let I be the functor taking a bounded distributive lattice to its ideal
lattice and a lattice homomorphism f to ↓ f [·]; and K be the functor taking a coherent
frame to its lattice of compact elements and a coherent frame homomorphism f to its
restriction to the compact elements. Then I,K, together with pt,! and the functors
from Stone duality provide a circle of equivalences and dual equivalences among DL,
CohFrm, and Spec.

We next provide the proximity frame counterparts to these categories.

Definition 8.2 An element r of a proximity frame is reflexive if r ≺ r, and a proximity
frame is defined to be coherent if a ≺ b implies there is a reflexive r with a ≺ r ≺ b .
CohPrFrm is the category of coherent proximity frames and the proximity morphisms
between them.

Definition 8.3 The category CohRPrFrm of coherent regular proximity frames is the
full subcategory of RPrFrm whose objects are additionally coherent.

As the compact saturated subsets of a spectral space are exactly the intersections
of compact open sets, it follows that any spectral space is stably compact, and that
the spectral maps between spectral spaces are exactly the proper continuous maps.
In a coherent frame, we have a ' b iff there is a compact k with a ≤ k ≤ b , and
it follows that each coherent frame is stably compact, and that the coherent frame
homomorphisms are exactly the proper frame homomorphisms between coherent
frames. We then have the following.
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Proposition 8.4 The categories Spec, CohFrm, CohPrFrm, and CohRPrFrm are re-
spectively full subcategories of StKSp, StKFrm, PrFrm, and RPrFrm.

Our aim is to show the equivalences and dual equivalences from Section 6 restrict
to give the equivalences and dual equivalences shown below.
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Proposition 8.5 Suppose L is a coherent proximity frame and M is a coherent frame.

(1) The regularization RL is a coherent frame.
(2) The frame RIL of round ideals of L is coherent.
(3) With its way below relation ' as proximity, M is a coherent proximity frame.

Proof

(1) If r ∈ L is reflexive, then as k(r) = ∧{b : r ≺ b} we have k(r) = r, and as r ≤
j(r) ≤ k(r), it follows that r = j(r), hence is regular. For any regular a, b in L,
there is a reflexive r ∈ L with a ≺ r ≺ b , and then a ≺ r ≺ b in L j as well.

(2) Proposition 4.8 shows that RIL is a stably compact frame. By Proposition 4.6.2
we have I ' J in RIL iff I ⊆ a for some a ∈ J, and it follows that the compact

elements of RIL are exactly the r where r is reflexive in L. (Note, r = ↓r for r
reflexive.) Suppose I is a round ideal of L and a ∈ I. By roundness there is b ∈ I
with a ≺ b , and as L is coherent, there is a reflexive r with a ≺ r ≺ b . This shows
I = ⋃{ r : r is reflexive and r ∈ I}. So each element of RIL is a join of compact
elements. As the meet of reflexive elements is reflexive, the above description of
compact elements as the ↓r for r reflexive shows the compact elements of RIL
are a sublattice. Thus, RIL is a coherent frame.

(3) An element of M is reflexive under ' iff it is compact. Suppose a ' b in M. As
M is coherent, b is a join of compact elements, and as a ' b there is a compact
element c with a ≤ c ≤ b . Then c ' c and a ' c ' b .

01

Theorem 8.6 The equivalences and dual equivalences from Section 6 among the
categories StKSp, StKFrm, PrFrm, and RPrFrm restrict to give equivalences and dual
equivalences among the categories Spec, CohFrm, CohPrFrm, and CohRPrFrm.
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Proof It is known [15, Section II.3] that ! and pt restrict to a dual equivalence
between CohFrm and Spec. Proposition 8.5.3 shows the inclusion functor restricts to
a functor from CohFrm to CohPrFrm, and Proposition 8.5.2 shows RI restricts to a
functor fromCohPrFrm toCohFrm. As these are full subcategories, these restrictions
give an equivalence. Clearly inclusion is a functor from CohRPrFrm to CohPrFrm,
and Proposition 8.5.1 shows regularization restricts to a functor from CohPrFrm
to CohRPrFrm. Thus, these restrictions give an equivalence. By definition, RO =
R ◦ !, hence restricts to a functor from Spec to CohRPrFrm. For a proximity frame
L, Proposition 4.15 shows the space EL of ends of L is homeomorphic to pt RIL, so
by the above, EL is a spectral space. Thus, RO and E restrict to a dual equivalence
between CohRPrFrm and Spec. From these results R and RI restrict to functors
between CohFrm and CohRPrFrm, hence provide an equivalence. 01

We next restrict further to the setting of Stone spaces.
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Here BA is the category of Boolean algebras and their homomorphisms. A Stone
space is a compact Hausdorff space having a basis of clopen sets, and Stone is the
category of Stone spaces and continuous maps between them. A frame is zero-
dimensional if each element is a join of complemented elements, and zKFrm is
the category of zero-dimensional compact frames and the frame homomorphisms
between them. It is known that BA, Stone, and zKFrm are full subcategories of
DL, Spec, and CohFrm, and that the equivalences and dual equivalences among
DL, Spec, and CohFrm restrict to ones among BA, Stone and zKFrm [15]. We next
provide proximity frame counterparts of these categories.

Definition 8.7 A strong inclusion ≺ on a frame L is zero-dimensional if for each
a ≺ b there is a reflexive r with a ≺ r ≺ b . We let zStrInc be the full subcategory of
StrInc whose objects are frames with zero-dimensional strong inclusions.

Definition 8.8 Let zDeV be the full subcategory of DeV whose objects are de Vries
algebras whose proximity is a zero-dimensional strong inclusion.

Proposition 8.9

(1) Stone = KHaus ∩ Spec.
(2) zKFrm = KRFrm ∩ CohFrm.
(3) zStrInc = StrInc ∩ CohPrFrm.
(4) zDeV = DeV ∩ CohRPrFrm.

Proof (1) A spectral space has a basis of compact open sets, and if it is a Hausdorff
space these will be closed, hence clopen. Conversely, any Stone space is clearly
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Hausdorff and spectral. (2) It is well known that each zero-dimensional compact
frame is regular. Conversely, in a compact regular frame, the compact elements are
exactly the complemented elements, hence if it is coherent, it is zero-dimensional.
(3) This is direct from the definition. (4) A zero-dimensional de Vries algebra is
defined to be a de Vries algebra that is a coherent proximity frame. The result follows
as we have shown every de Vries algebra is a regular proximity frame. 01

The results from the spectral setting and the compact Hausdorff setting then
immediately give the following.

Theorem 8.10 The equivalences and dual equivalences from Section 6 among the
categories StKSp, StKFrm, PrFrm, and RPrFrm restrict to give equivalences and dual
equivalences among the categories Stone, zKFrm, zStrInc, and zDeV.
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Before concluding this section, we consider the relationship of the categories DL
and BA to categories of regular proximity frames. In the distributive lattice setting,
this situation is shown below.

!" !" CohRPrFrmDL CohFrm
I

K

R

RI

The equivalence between DL and CohRPrFrm is given by R ◦ I and K ◦ RI. It is
worthwhile to describe these functors directly. For L a coherent regular proximity
frame, we saw in the proof of Proposition 8.5 that the compact elements of RIL are
exactly the a = ↓a where a is reflexive in L. So up to isomorphism, K ◦ RI takes
L to the distributive lattice of its reflexive elements, and a proximity morphism ϕ to
its restriction to the reflexive elements. We let X = K ◦ RI and call this the ref lexive
element functor. To consider the composite R ◦ I we need the following.

Definition 8.11 For a bounded distributive lattice L we say M ⊆ L is admissible if

(1)
∨

M exists.
(2) For each a ∈ L,

∨{a ∧ m : m ∈ M} exists and equals a ∧ ∨
M.

An ideal I of L is called a D-ideal if for each M ⊆ I with M admissible we have∨
M ∈ I.
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These D-ideals were introduced by Bruns and Lakser in [9] in the setting of
semilattices, rather than just for distributive lattices as suits our need here. They
showed the set IDS of D-ideals of a semilattice S is the injective hull of S in the
category of semilattices, and characterized this as the unique join-dense extension of
S preserving joins of admissible sets.

Proposition 8.12 For a bounded distributive lattice L, the f ixed points under k in the
ideal frame IL are the normal ideals of L, and the f ixed points under j are the D-ideals
of L.

Proof In IL we have I ' J iff I ⊆ ↓a for some a ∈ J. So k(I) is the intersection
of the principal ideals containing I, hence is the smallest normal ideal containing
I. It follows that j(I) = ⋂{(I → N) → N : N is a normal ideal of L}. Use D(I) for
the smallest D-ideal containing I and note [9, Lemma 3] shows D(I) = {∨ M : M ⊆
I and M is admissible}. We will show j(I) = D(I).

Let M ⊆ I be admissible, N be a normal ideal, and note I → N = {a : a ∧ b ∈
N for all b ∈ I}. So if a ∈ I → N we have a ∧ m ∈ N for all m ∈ M. As normal ideals
are closed under joins, the admissibility of M gives a ∧ ∨

M = ∨{a ∧ m : m ∈ M} ∈
N. So

∨
M ∈ (I → N) → N. This shows D(I) ⊆ j(I).

For a ∈ L let Ma = {a ∧ b : b ∈ I}. We first show that a ∈ j(I) implies a = ∨
Ma.

Take any upper bound u of Ma and note a ∈ I → ↓u. If a ∈ j(I) we have a ∈
(I → ↓u) → ↓u, so a ∧ a ≤ u. Thus, a = ∨

Ma. We next show a ∈ j(I) implies Ma
is admissible. So for c ∈ L we must show c ∧ ∨

Ma = ∨{c ∧ m : m ∈ Ma}. But this
follows trivially as a ∧ c ∈ j(I) and Ma∧c = {c ∧ m : m ∈ Ma}. So, by [9, Lemma 3]
j(I) ⊆ D(I). 01

So, making use of the least distributive ideal operation D(·), we have the following.

Theorem 8.13 Use D for the composite R ◦ I. Then D takes a bounded distributive
lattice to its frame IDL of D-ideals where I ≺ J if f I ⊆ ↓a ⊆ J for some a ∈ L; and D
takes a bounded lattice homomorphism f to D( f [·]).

Collecting the above results gives the following.

Theorem 8.14 There is an equivalence between DL and CohRPrFrm given by the
ref lexive element functor X and the D-ideal functor D.

Remark 8.15 Our results from the Stone setting show X and D restrict to an
equivalence between BA and zDeV. Using the fact that the distributive ideals of a
Boolean algebra are exactly the normal ideals, in the Boolean setting, the description
of the functor D can be simplified. For a Boolean algebra B, DB is the de Vries
algebra of normal ideals of B where I ≺ J if there is a ∈ B with I ⊆ ↓a ⊆ J, and for
a homomorphism f , D( f ) is the de Vries morphism LU( f [·]), the function taking a
normal ideal to the normal ideal generated by its image under f . The functor X takes
a zero-dimensional de Vries algebra to its Boolean algebra of reflexive elements.
Thus, we arrive at the situation described in [5].
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9 The Extremally Disconnected Setting

Recall that a compact Hausdorff space is extremally disconnected if the closure of
each open set is clopen. The category of extremally disconnected compact Hausdorff
spaces and continuous maps is known to be dually equivalent to the category of
complete Boolean algebras and the Boolean homomorphisms between them [23].
Here we consider categories of proximity frames related to the notion of extremal
disconnectedness.

Definition 9.1 A proximity frame is extremally disconnected if its regular and
reflexive elements coincide. A stably compact frame is extremally disconnected if
it is extremally disconnected as a proximity frame with its way below relation as its
proximity. A stably compact space is extremally disconnected if its frame of open sets
is extremally disconnected.

Definition 9.2 Let ePrFrm be the full subcategory of PrFrm whose members are
extremally disconnected, and use eStKFrm, eKRFrm, eRPrFrm, eDeV, eStKSp, and
eKHauswith similar meanings. Let frm be the full subcategory ofDLwhose members
are frames, and cBA be the full subcategory of BA whose members are complete
Boolean algebras.

These definitions have a number of equivalents.

Proposition 9.3 A proximity frame L is extremally disconnected if f the proximity of
its regularization L j is its partial ordering. So a regular proximity frame is extremally
disconnected if f its proximity is its partial ordering.

Proof If L is extremally disconnected, then each regular element is reflexive, so the
proximity on L j must be the partial ordering ≤. Conversely, if the proximity on L j is
its partial ordering, then each regular element is reflexive; and if a is reflexive, then
j(a) = a, so a is regular. Thus, L is extremally disconnected. It follows that a regular
proximity frame is extremally disconnected iff its proximity is its partial ordering. 01

Proposition 9.4 A stably compact frame is extremally disconnected if f its regular
elements under the way below proximity ' are exactly its compact elements.

Proof Reflexive elements under ' are exactly compact elements. 01

Proposition 9.5 A stably compact space is extremally disconnected if f the closure in
the patch topology of any open set is open.

Proof Suppose X is a stably compact space. By Theorem 6.2 and the comments that
precede it, the nucleus j on !(X) is given by U = int clπ U where clπ is closure in
the patch topology. Suppose !(X) is extremally disconnected and U is open in X.
Then int clπ U is regular, hence compact. This means it is compact open, so closed in
the co-compact topology, hence also closed in the patch topology. As U ⊆ int clπ U
and this is a patch closed set, clπ U ⊆ int clπ U , showing clπ U is open. Conversely,
suppose the patch closure of any open set of X is open. To show !(X) is extremally
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disconnected, we must show its regular and reflexive elements coincide. As reflexive
elements are always regular, and reflexive coincides with compact, we must show that
if U = int clπ U , then U is compact. But we assumed the patch closure of each open
set is open, so U = clπ U . So U is closed in the patch topology, which is Hausdorff,
hence U is compact in the patch topology. As the patch topology is finier than the
original, U is compact in the original topology as well. 01

The following result shows extremally disconnected proximity frames are coher-
ent, with similar results for the other categories. So ePrFrm could equally have been
called eCohPrFrm, and so forth. Choice of name aside, the point is that our discussion
is framed entirely within the spectral space setting.

Proposition 9.6 The categories ePrFrm, eRPrFrm, eStKFrm, and eStKSp are full
subcategories of CohPrFrm, CohRPrFrm, CohFrm, and Spec respectively.

Proof Suppose L is a proximity frame. Proposition 5.3.2 gives a ≺ b ⇒ j(a) ≺ b .
So if L is extremally disconnected a ≺ j(a) ≺ j(a) ≺ b , showing L is coherent.
Suppose L is a stably compact frame. Then 1 is regular, a finite meet of regular
elements is regular, and each element of L is a join of regular elements, since this
is true of regular elements in any proximity frame. Therefore, if L is extremally
disconnected, by Proposition 9.4, these are true of its compact elements. Since a
finite join of compact elements is always compact, L is a coherent frame. Finally,
for an extremally disconnected stably compact space X, by definition !(X) is an
extremally disconnected stably compact frame, hence is coherent. This shows X is
a spectral space. That each of these subcategories is a full subcategory follows from
Section 8. 01

The following basic lemma will simplify our discussion. Its proof is obvious.

Lemma 9.7 Suppose F, G are an equivalence between categories C and D and C′ and
D′ are full subcategories of C and D that are closed under isomorphisms. Then if for
all A ∈ C we have A ∈ C′ if f F(A) ∈ D′, then F, G restrict to an equivalence between
C′ and D′.

We use this to show the results of Section 6 restrict to the extremally disconnected
setting.

Theorem 9.8 The functors of Section 6 restrict to equivalences and dual equivalences
among eStKSp, eStKFrm, ePrFrm, and eRPrFrm. Also the equivalence of DL and
CohFrm of Section 8 restricts to an equivalence of frm and eStKFrm.

Proof The form of Definition 9.1 is exactly suited to apply Lemma 9.7. We first
show the subcategory ePrFrm of PrFrm is closed under isomorphisms. Suppose L
and M are isomorphic proximity frames and L is extremally disconnected. Then the
regularizations L j and Mj are isomorphic and the definition of extremally discon-
nected gives the proximity of L j is its ordering. As isomorphisms between regular
proximity frames are structural, the proximity on Mj is also its partial ordering, and
this shows M is extremally disconnected. As isomorphisms in RPrFrm, StKFrm, and
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StKSp are structural, the subcategories eRPrFrm, eStKFrm, and eStKSp are closed
under isomorphisms as well.

The inclusion functor i and round ideal functor RI give an equivalence between
StKFrm and PrFrm. By Definition 9.1, L ∈ eStKFrm iff i(L) ∈ ePrFrm. Thus, RI
and i restrict to an equivalence between eStKFrm and ePrFrm. Identical arguments
show pt and ! restrict to a dual equivalence between eStKSp and eStKFrm, and
that inclusion and regularization R restrict to an equivalence between eStKSp and
eRPrFrm. The remainder of the equivalences follow as the equivalences in Section 6
commute up to natural isomorphism.

Surely frm and eStKFrm are full subcategories of DL and CohFrm that are closed
under isomorphisms. The ideal functor I and compact element functor K give an
equivalence between DL and CohFrm. Suppose L is a frame and I is an ideal of L.
By Proposition 8.12 we have I is regular iff I is a D-ideal of L. In a frame every
subset is admissible, so the D-ideals of L are the principal ideals, which are the
compact elements of IL. This shows IL is extremally disconnected. Suppose M is
an extremally disconnected stably compact frame. Then regular elements of M are
exactly the compact elements of M, so KM is a frame. Thus, I and K restrict to an
equivalence between frm and eStKFrm.
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Remark 9.9 Consider directly the functors RO, E , and the reflexive element and
distributive ideal functors X, D from Theorem 8.14, in this restricted setting. For an
extremally disconnected regular proximity frame M each filter is round, so EM is
the usual spectral space of M. Also, as each element of M is reflexive, XM is the
frame M with the proximity forgotten. For a frame L, the D-ideals of L are exactly
the principal ideals, so DL is the frame of principal ideals with set containment as
proximity. Finally, for an extremally disconnected stably compact space X and U
an open subset of X, we have clπ U is open. So U is regular open, meaning U =
int clπ U , iff U = clπ U , which occurs iff U is compact open. Therefore, ROX is the
distributive lattice (frame in this case) of compact open sets. So essentially, X and D
are trivial, while RO and E become restrictions of the functors from Stone duality
for bounded distributive lattices.

Finally, we restrict further to the Stone setting. The following is trivial from the
definitions.
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Proposition 9.10

(1) eStrInc = ePrFrm ∩ StrInc.
(2) eKRFrm = eStKFrm ∩ KRFrm.
(3) eDeV = eRPrFrm ∩ DeV.
(4) eKHaus = eStKSp ∩ KHaus.
(5) cBA = frm ∩ BA.

The following is immediate from results of Section 7 for the compact Hausdorff
setting, and the earlier results of this section for the extremally disconnected setting.
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Theorem 9.11 The functors of Section 6 restrict to equivalences and dual equivalences
among eKHaus, eKRFrm, eStrInc, and eDeV. Also the equivalence of BA and zKFrm
of Section 8 restricts to an equivalence of cBA and eKRFrm.

10 Conclusion

We summarize in the following diagram the equivalences and dual equivalences
among the categories we have considered. The arrows ↪→ mean is a full subcategory
of, and the arrows ↔ indicate equivalence or dual equivalence. Horizontal rows
correspond to equivalent situations, and going vertically from top to bottom gives
more special situations.
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The results obtained here have application to Smyth’s theory [22] of stable
compactifications of T0-spaces. We plan to address this in a forthcoming paper [8]. In
this forthcoming paper we will present a theory of stable compactifications of frames
that generalizes Banaschewski’s theory of compactifications of frames [1], and we
will connect this to the theory of biframe compactifications given in [20].

Acknowledgement We are very thankful to the referee for a number of useful comments that have
improved the presentation of the paper. In particular, the referee drew our attention to [12]. This led
us to consider the category StrInc, which serves as an analogue of PrFrm in the compact Hausdorff
setting.
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