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Abstract. In a classic paper, Smirnov [14] characterized the poset of compactifications
of a completely regular space in terms of the proximities on the space. Later, Smyth [15]
introduced the notion of a stable compactification of a T0-space and described them in
terms of quasi-proximities on the space. Banaschewski [1] formulated Smirnov’s results
in the pointfree setting, defining a compactification of a completely regular frame, and
characterizing these in terms of the strong inclusions on the frame.

We provide an alternate description of stable compactifications of T0-spaces as embed-
dings into stably compact spaces that are dense with respect to the patch topology, and
relate such stable compactifications to ordered spaces. Each stable compactification of a
T0-space induces a companion topology on the space, and we show the companion topology
induced by the largest stable compactification is the topology τ∗ studied by Salbani [11, 12].

In the pointfree setting, we introduce a notion of a stable compactification of a frame that
extends Smyth’s stable compactification of a T0-space, and Banaschewski’s compactification
of a frame. We characterize the poset of stable compactifications of a frame in terms of
proximities on the frame, and in terms of stably compact subframes of its ideal frame.
These results are then specialized to coherent compactifications of frames, and related to
Smyth’s spectral compactifications of a T0-space.

1. Introduction

A classic result of Smirnov [14] shows that the poset of compactifications of a completely
regular space X is isomorphic to the poset of proximities on X that are compatible with the
topology on X. Banaschewski [1] generalized Smirnov’s theorem to the pointfree setting by
introducing the concept of a compactification of a frame. He also generalized the concept
of a proximity on a space to that of a strong inclusion on a frame, and proved that the
poset of compactifications of a frame L is isomorphic to the poset of strong inclusions on L.
In particular, if L is the frame of open sets of a completely regular space, then Smirnov’s
theorem follows.

Smyth [15] generalized the theory of compactifications of completely regular spaces to that
of stable compactifications of T0-spaces. He also generalized the concept of proximity to that
of quasi-proximity and proved that the poset of stable compactifications of a T0-space X is
isomorphic to the poset of quasi-proximities on X that are compatible with the topology on
X. Restricting to completely regular spaces and proximities then yields Smirnov’s theorem.

In this paper, we provide an alternate description of Smyth’s stable compactification of
a T0-space X as an embedding of X into a stably compact space Y whose image is dense
in the patch topology of Y . We then relate such stable compactifications to ordered spaces.
Each stable compactification of a T0-space X induces an ordered space structure on X whose
open upsets are the given topology on X, and under which the stable compactification can be
naturally viewed as an order-compactification. So each stable compactification of X yields a
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companion topology to the original, the topology of open downsets of the associated ordered
space. We show the companion topology associated with the largest stable compactification
of X is the topology τ∗ studied by Salbani [11, 12].

We then extend Smyth’s theory of stable compactifications to the pointfree setting. We
introduce the concept of a stable compactification of a frame, and prove a generalization of
Banaschewski’s theorem, showing that the poset of stable compactifications of a frame L is
isomorphic to the poset of proximities on the frame in the sense of [4], and to the poset of
certain stably compact subframes of the ideal frame of L. The spatial case of this result
yields Smyth’s theorem.

This paper is organized in the following way. The second section provides preliminaries.
In the third, we discuss stable compactifications of T0-spaces, giving a characterization of
such compactifications in terms of the patch topology, and relating such compactifications
to ordered spaces. In the fourth section we define stable compactifications of frames, and
provide characterizations of such stable compactifications in terms of proximities, and in
terms of certain subframes of the ideal frame. The fifth section specializes the results of the
fourth to coherent and spectral compactifications.

2. Preliminaries

Recall the classical notion of a compactification of a topological space X is an embedding
e ∶X → Y into a compact Hausdorff space Y whose image is dense in Y . Here, embedding is
used to mean that e is a homeomorphism from X to its image considered with the subspace
topology from Y . Classical results characterize those spaces X having a compactification as
the completely regular ones. It is standard to form a poset from the compactifications of a
completely regular space, as in the following definition.

Definition 2.1. For compactifications e ∶ X → Y and e′ ∶ X → Y ′ of X write e′ ⊑ e if there
is a continuous map f ∶ Y → Y ′ with e′ = f ○ e.

It is well known that ⊑ is a quasiorder, and the associated partially ordered set is called
the poset of (inequivalent) compactifications of X. Smirnov described this poset in terms of
proximities on X. Standard results show that the Stone-Čech compactification of X is the
largest member of this poset, and that this poset has a least element iff X is locally compact,
and in this case the least element is the one-point compactification of X (see, e.g., [6, Sec. 3.5
and 3.6]). Also standard to the theory of compactifications is the following result.

Theorem 2.2. A compact Hausdorff space X has up to homeomorphism only itself as a
compactification. Thus, classical compactifications are transitive in that a compactification
of a compactification is a compactification.

The notion of a compactification e ∶ X → Y can be extended in an obvious way simply
by dropping the requirement that the compact space Y be Hausdorff. However, this is
a very poorly behaved notion, with a space X having such general compactifications of
arbitrary cardinality. Smyth [15] introduced a notion of a stable compactification of a T0-
space, that although still pathological in some ways, is much better behaved. We describe
these stable compactifications in detail in the following section, but remark they are certain
dense embeddings into the stably compact spaces we describe next. A few basic definitions
are required first.

A topological space X is locally compact if for each x ∈X and open neighborhood U of x,
there is an open neighborhood V of x and a compact set K with V ⊆K ⊆ U . A subset A of
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X is irreducible if A ⊆ B∪C with B,C closed implies A ⊆ B or A ⊆ C; and X is sober if each
closed irreducible set is the closure of a unique singleton. Finally, a subset of X is saturated
if it is an intersection of open sets.

Definition 2.3. A space X is stably compact if it is compact, locally compact, sober, and
the intersection of two compact saturated sets is compact.

The theory of stably compact spaces is developed in detail in [7], where it is shown that
there is a close connection between stably compact spaces and certain ordered topological
spaces. To recall this connection, we need to describe two additional topologies associated
to any stably compact space.

Definition 2.4. For a stably compact space X with topology τ , the compact saturated sets
are the closed sets of a topology τ k on X called the co-compact topology. The join of the
topologies τ and τ k is called the patch topology π.

An ordered topological space is a triple (X,≤, π) consisting of a set X with partial ordering
≤ and topology π. A subset U of X is an upset if x ∈ U and x ≤ y imply y ∈ U , and it is
a downset if x ∈ U and y ≤ x imply y ∈ U . An ordered topological space (X,≤, π) is order-
Hausdorff if x /≤ y implies that there exist an upset neighborhood U of x and a downset
neighborhood V of y such that U ∩ V = ∅. It is well known (see, e.g., [9]) that (X,≤, π) is
order-Hausdorff iff ≤ is a closed subset of X2. Ordered topological spaces were introduced by
Nachbin, who showed that compact order-Hausdorff spaces provide a natural generalization
of compact Hausdorff spaces [10]. In honor of Nachbin, we call a compact order-Hausdorff
space a Nachbin space. We recall that in a topological space, the specialization order ≤ is
defined by x ≤ y iff the closure of y contains x. The following results are well known [7].

Theorem 2.5. If (X,τ) is a stably compact space with specialization order ≤ and patch
topology π, then (X,≤, π) is a Nachbin space whose open upsets are the τ -open sets, and
whose open downsets are the τ k-open sets. We call this the Nachbin space associated to
(X,τ). Conversely, if (X,≤, π) is a Nachbin space, then the open upsets form a topology τ
on X. The space (X,τ) is stably compact, and its associated Nachbin space is (X,≤, π).

Following [7], we call a continuous map f between stably compact spaces proper if the
inverse image of each compact saturated set is compact. This is equivalent to f being
continuous with respect to both the given and co-compact topologies. Let StKSp be the
category of stably compact spaces and proper maps. Let Nach be the category of Nachbin
spaces and the continuous order-preserving maps between them. The above result extends
as follows [7].

Theorem 2.6. There is an isomorphism between the categories StKSp and Nach taking a
stably compact space to its associated Nachbin space.

We next turn our attention to frames.

Definition 2.7. A frame is a complete lattice L that satisfies a ∧ ⋁S = ⋁{a ∧ s ∶ s ∈ S}.
A frame homomorphism is a map f ∶ L → M that preserves finite meets (including 1) and
arbitrary joins (including 0).

For a topological space X, its open sets Ω(X) form a frame, and for any continuous map
f ∶ X → Y , the map Ω(f) = f−1 ∶ Ω(Y ) → Ω(X) is a frame homomorphism. This gives a
contravariant functor Ω ∶ Top→ Frm from the category of topological spaces and continuous
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maps to the category of frames and frame homomorphisms. A point of a frame L is a frame
homomorphism p ∶ L→ 2 into the two-element frame. The points pt(L) of L are topologized
by taking for all a ∈ L the sets ϕ(a) = {p ∶ p(a) = 1} as open sets. For a frame homomorphism
f ∶ L →M , the map pt(f) ∶ pt(M) → pt(L) defined by pt(f)(p) = p ○ f is continuous. This
gives a contravariant functor pt ∶ Frm→ Top. The following results are well known [8].

Theorem 2.8. The functors Ω and pt give a dual adjunction between Top and Frm. For each
frame L and space X, this dual adjunction provides a frame homomorphism h ∶ L→ Ω(pt(L))
and continuous map s ∶ X → pt(Ω(X)) called the sobrification of the space. The frame
homomorphism h is always onto, and the sobrification s is a topological embedding iff the
space is T0. A frame is called spatial if h is an isomorphism, and a space is called sober if s
is a homeomorphism. The functors Ω and pt restrict to give a dual equivalence between the
categories of spatial frames and sober spaces. If X,Y are spaces with Y sober, then Ω gives a
bijection between the homsets Top(X,Y ) and Frm(Ω(Y ),Ω(X)). Finally, if X is T0, then a
continuous map e ∶X → Y is an embedding iff the frame homomorphism Ω(e) ∶ Ω(Y ) → Ω(X)
is onto.

We turn now to finer properties of frames.

Definition 2.9. For a, b elements of a frame L, we say a is way below b, and write a ≪ b,
if for any T with b ≤ ⋁T , there is a finite subset S ⊆ T with a ≤ ⋁S. We say a is well inside
b, and write a ≺ b, if ¬a ∨ b = 1, where ¬a is the pseudocomplement of a in L.

An element a of a frame L is compact if a≪ a, and a frame L is compact if its top element
1 is compact. We next use the way below and well inside relations to define the particular
classes of frames of primary interest here.

Definition 2.10. We say a frame L is

(1) locally compact if a = ⋁{x ∶ x≪ a} for each a ∈ L.
(2) regular if a = ⋁{x ∶ x ≺ a} for each a ∈ L.
(3) stable if a≪ b, c implies a≪ b ∧ c for all a, b, c ∈ L.

We say L is compact regular if it is compact and regular, and stably compact if it is locally
compact, compact, and stable.

Let KRFrm be the category of compact regular frames and frame homomorphisms between
them. A frame homomorphism f is called proper if a ≪ b implies fa ≪ fb. Let StKFrm
be the category of stably compact frames and proper frame homomorphisms between them.
Let KHaus be the category of compact Hausdorff spaces. The following are well known [7, 8].

Theorem 2.11. A space X is stably compact iff the frame Ω(X) is stably compact, and
a frame L is stably compact iff it is isomorphic to Ω(X) for some stably compact space
X. Further, a continuous map f between stably compact spaces X and Y is proper iff the
corresponding frame homomorphism between Ω(Y ) and Ω(X) is proper. Thus, the functors
Ω and pt restrict to give a dual equivalence between StKSp and StKFrm. Each compact
Hausdorff space is stably compact, and every continuous map between compact Hausdorff
spaces is proper. So KHaus is a full subcategory of StKSp, KRFrm is a full subcategory of
StKFrm, and Ω and pt restrict to give a dual equivalence between KHaus and KRFrm.

A frame is coherent if each element is the join of compact elements, and the meet of two
compact elements is compact. A frame homomorphism h between two coherent frames L
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and M is coherent if a compact in L implies that h(a) is compact in M . Let CohFrm be the
category of coherent frames and the coherent frame homomorphisms between them. A space
X is a spectral space if it is sober, compact, and the compact open sets are closed under finite
intersections and form a basis. A continuous map between spectral spaces is a spectral map
if the inverse image of each compact open set is compact open. Let Spec be the category of
spectral spaces and the spectral maps between them. We conclude the preliminaries with
the following well known result [8].

Theorem 2.12. The category Spec is a full subcategory of StKSp, the category CohFrm is a
full subcategory of StKFrm, and the functors Ω,pt restrict to a dual equivalence between Spec
and CohFrm.

3. Stable compactifications of spaces

In this section we recall Smyth’s definition of a stable compactification of a T0-space X, and
Smyth’s ordering of the stable compactifications of X. We provide an alternate description
of such stable compactifications in terms of the patch topology of a stably compact space,
and remark on the connections between stable compactifications and ordered spaces.

Definition 3.1. A stable compactification of a T0-space X is a pair (Y, e) where Y is a
stably compact space and e ∶ X → Y is a homeomorphism from X onto a subspace of Y that
satisfies U ≪ V ⇒ U << V for all U,V ∈ Ω(Y ).

Here Smyth uses U ≪ V to mean U is way below V in the frame of open sets, and he uses
U for the largest open set of Y whose intersection with the image of X is contained in U . If
(Y, e) is a stable compactification of X, using ∅ ≪ ∅ it follows that the image e[X] is dense
in Y . We next recall Smyth’s ordering of the stable compactifications of a T0-space X.

Definition 3.2. For two stable compactifications e ∶ X → Y and e′ ∶ X → Y ′, define e′ ⊑ e if
there is a proper continuous map f ∶ Y → Y ′ with e′ = f ○ e. We let Comp X be the poset of
equivalence classes of stable compactifications of X under the partial order associated with
the quasi-order ⊑ and denote the equivalence class of a compactification e ∶X → Y by [e].

Smyth characterized the poset Comp X in terms of his “quasi-proximities” on X, and
showed it has a largest element given by the space of prime filters of the frame Ω(X) of open
sets of X.

Remark 3.3. Stable compactifications of T0-spaces lack some of the familiar properties of
classical compactifications of completely regular spaces. Smyth’s result [15, Prop. 16] that
the space of prime filters of Ω(X) gives the largest stable compactification of X yields an
example showing that a compact Hausdorff space can have a stable compactification that
is not Hausdorff. One can further show that for stable compactifications e ∶ X → Y and
k ∶ Y → Z, the composite k ○ e ∶X → Z need not be a stable compactification.

The condition U ≪ V ⇒ U << V in Smyth’s definition of a stable compactification has a
strongly frame-theoretic nature. We provide a description of stable compactifications in more
purely topological terms, namely as embeddings into stably compact spaces that are dense
in the patch topology. We note that this is somewhat the inverse of the usual sequence of
things in pointfree topology, when standard topological notions are given pointfree meaning.
We begin with several standard facts from the theory of ordered spaces whose proofs can be
found in [7, 10].
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Proposition 3.4. Let (Y,≤, π) be a Nachbin space.

(1) A≪ B in the frame of open upsets of Y iff clπ(A) ⊆ B.
(2) If B is an open downset, B = ⋃{A ∶ A is an open downset and clπ(A) ⊆ B}.
(3) If A is closed, then its downset ↓A is closed.

Here clπ(A) indicates closure in the topology π.

Theorem 3.5. For a T0-space X, an embedding e ∶X → Y into a stably compact space Y is
a stable compactification of X iff the image of X is dense in the patch topology of Y .

Proof. By identifying X with its image e[X] in Y , we assume that X is a subspace of Y
and Y is a stably compact space with topology τ and patch topology π. Let (Y,≤, π) be the
Nachbin space associated to Y .

“⇐” Assume X is patch-dense in Y . To show the identical embedding of X into Y is
a stable compactification, we must show that for U,V τ -open subsets of Y , that U ≪ V
implies U ≪ V . If U ≪ V , then by Proposition 3.4.1, clπ(U) ⊆ V . As X is patch-dense in
Y , for each patch-open subset W of Y , we have clπ(W ) = clπ(W ∩X). Therefore, from the
definition of U as the largest τ -open set whose intersection with X is contained in U , we
have clπ(U) = clπ(U ∩X) = clπ(U ∩X) = clπ(U). Thus, clπ(U) ⊆ V , so U ≪ V .

“⇒” Assume X is not patch-dense in Y. We show that there exist τ -open sets U,V such
that U ≪ V and U /≪ V . We recall (see Theorem 2.5) that the open upsets of the Nachbin
space (Y,≤, π) are the topology τ , the open downsets are the co-compact topology τ k, and
the join of these topologies is the patch topology π. We also use −T for the set-theoretic
complement of T .

Claim 3.6.

(1) There exist an open upset S and an open downset T with S∩T ≠ ∅ and X∩S∩T = ∅.
(2) For each open upset A, if −T ⊆ A, then S ⊆ A.

Proof of Claim: (1) This is a consequence of the fact that the patch topology is the join of
the topologies of the open upsets and open downsets and that X is not patch-dense. (2) As
X ∩ S ∩ T = ∅, we have X ∩ S ⊆ −T ⊆ A. So S ⊆ A. �

Claim 3.7. Let z ∈ S ∩ T . There are open downsets P,Q with

(1) z ∈ Q and clπ(Q) ⊆ T .
(2) z ∈ P and clπ(P ) ⊆ Q.

Further, both U = −↓clπ(Q) and V = −↓clπ(P ) are open upsets.

Proof of Claim: (1) As z ∈ T and T is an open downset, Proposition 3.4.2 gives an open
downset Q with z ∈ Q and clπ(Q) ⊆ T . (2) As z ∈ Q and Q is an open downset, another
application of Proposition 3.4.2 gives an open downset P with z ∈ P and clπ(P ) ⊆ Q. For
the further comment, by Proposition 3.4.3, both ↓clπ(Q) and ↓clπ(P ) are closed, and are
clearly downsets. Thus, their complements are open upsets. �

We show the open upsets U,V satisfy U ≪ V and U /≪ V . As Q ⊆ ↓clπ(Q), we have
U = −↓clπ(Q) ⊆ −Q, and as clπ(P ) ⊆ Q and Q is a downset, ↓clπ(P ) ⊆ Q, giving −Q ⊆
−↓clπ(P ) = V . Thus, U ⊆ −Q ⊆ V , and as Q is open, clπ(U) ⊆ V . So by Proposition 3.4.1,
U ≪ V. To see that U /≪ V, note z ∈ P ⊆ ↓clπ(P ), so z /∈ −↓clπ(P ) = V . As clπ(Q) ⊆ T and
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T is a downset, we have ↓clπ(Q) ⊆ T , hence −T ⊆ −↓clπ(Q) = U . Since U is an open upset
and −T ⊆ U , by Claim 3.6.2, S ⊆ U . But z ∈ S, hence z ∈ U , and z /∈ V, so U /⊆ V . Thus,
U /≪ V. �

Corollary 3.8. The stable compactifications of a T0-space X determine, and are determined
by, mappings of X into a Nachbin space (Y,≤, π) that are embeddings with respect to the
topology of open upsets of Y , and are dense with respect to π.

We next use this result to relate the poset of stable compactifications of a completely
regular space X to its poset of classical compactifications. Surely any compactification of X
is a stable compactification, and any stable compactification into a compact Hausdorff space
is a compactification. We use k ∶ X → βX for the Stone-Čech compactification of X, and
recall this is the largest compactification of X.

Proposition 3.9. The poset of classical compactifications of a completely regular space X
is a retract of the downset of Comp X generated by βX.

Proof. Suppose e ∶X → Y is a stable compactification of X that lies beneath k ∶X → βX in
the poset of stable compactifications. Then there is a proper continuous map f ∶ βX → Y
with e = f ○ k. Let σ be the topology on βX and τ be the topology on Y . As βX is
compact Hausdorff, its patch topology is σ. Let π be the patch topology on Y . Since f is
proper with respect to σ and τ , it is continuous with respect to the patch topologies σ and
π. Let U ∈ π. Then f−1(U) ∈ σ, so k−1f−1(U) is open in X, hence e−1(U) is open in X.
Thus, e ∶ X → (Y,π) is continuous. By Theorem 3.5, e[X] is dense in (Y,π), and as (Y,π)
is a compact Hausdorff space, this is a compactification of X. It is then routine to show
that the map sending such a stable compactification e ∶ X → (Y, τ) to the compactification
e ∶X → (Y,π) is the required retraction. �

We recall the classical result that a completely regular space has a least compactification
iff it is locally compact, and in this case, its least compactification is the one-point com-
pactification. As the construction of the one-point compactification of a locally compact
Hausdorff space generalizes to any T0-space (see, e.g., [5, Sec. 3]), every T0-space X has a
(possibly non-Hausdorff) one-point compactification. This one-point compactification does
not have to be a stable compactification of X. In fact, as the next corollary shows, not every
T0-space has a least stable compactification.

Corollary 3.10. The space of rationals Q with the usual topology has no least stable com-
pactification.

Proof. If there were a least element in the poset of stable compactifications of Q, then by
Proposition 3.9, there would be a least element in the poset of classical compactifications of
Q. This is not the case since Q is not locally compact. �

There are further connections between stable compactifications and ordered spaces, some
of which bear fruit, while others do not. We describe some of these connections below.
We start by recalling Nachbin’s generalization of the concept of compactification to that of
order-compactification.

Definition 3.11. An order-compactification of an ordered space X is a pair (Y, e) such that
Y is a Nachbin space, e ∶ X → Y is both a topological embedding and an order-embedding,
and the image e[X] is topologically dense in Y .
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Proposition 3.12. Let e ∶X → Y be a stable compactification. Then the associated Nachbin
structure (Y,≤, π) induces an ordered space structure on X whose open upsets are the original
topology of X, and whose partial ordering is the specialization order of this topology. Further,
the embedding e of this ordered structure into (Y,≤, π) is an order-compactification.

Proof. Let (X,τ) and (Y, δ) be our original T0 and stably compact spaces. By Theorem 3.5,
the image e[X] is dense in the patch topology π of Y , so is a topologically dense subspace
of the Nachbin space (Y,≤, π). The restriction of this Nachbin structure to e[X] makes
e[X] into an ordered space having (Y,≤, π) as an order-compactification. So this induces an
ordered space structure on X having (Y,≤, π) as an order-compactification. It remains only
to show the open upsets of this ordered space structure on X are the original topology τ ,
and that the partial ordering on X is the specialization order.

The open upsets of e[X] are the restrictions of the open upsets of (Y,≤, π), hence are the
restrictions of members of δ to e[X]. So the open upsets of the induced structure on X are
the inverse images under e of members of δ, and as e is an embedding with respect to τ and
δ, these are exactly the members of τ . As the partial ordering of (Y,≤ π) is the specialization
order of δ, the partial ordering of e[X] is the specialization order of the open upsets of e[X],
hence the partial ordering on X is the specialization order of τ . �

Proposition 3.12 shows that every stable compactification can be viewed as an order-
compactification. The following example shows the converse of this does not hold. The
difficulty, roughly speaking, is in the fact that an order-compactification must be an em-
bedding with respect to the patch topology, while a stable compactification must be an
embedding with respect to the topology of open upsets.

Example 3.13. Let (X,≤, π) be the natural numbers N with discrete topology, ordered as an
antichain, and let (Y,≤, π) be the one-point compactification N∪{∞} ordered as an antichain
on N and with n ≤ ∞ for each n ∈ N. The identical embedding is an order-compactification
of (X,≤, π) into (Y,≤, π). But the open upsets of Y are the cofinite ones containing ∞, while
all subsets of X are open upsets. So the identical embedding is not a stable compactification
with respect to the topologies of open upsets.

Proposition 3.12 can be viewed in another light. Each stable compactification of a T0-space
(X,τ) induces an ordered space structure on X having τ as its open upsets, and giving a
companion topology τ ′ of open downsets, so that the join of the topologies π = τ ∨ τ ′ is a
completely regular topology. Salbani [11, 12] has considered a method to associate with any
T0 topology τ on X a companion topology he calls τ∗, where τ∗ has the members of τ as a
basis for the closed sets.

Proposition 3.14. For a T0-space (X,τ), Salbani’s topology τ∗ is the companion topology
to τ arising from the largest stable compactification of X.

Proof. Smyth [15, Prop. 16] showed that the largest stable compactification of (X,τ) is the
space Y of prime filters of Ω(X), i.e. the spectral space of the distributive lattice Ω(X).
Here Y has as a basis for its topology all sets ϕ(U) = {F ∶ U ∈ F}, where U ∈ Ω(X), and
the embedding e ∶ X → Y is given by e(x) = {U ∶ x ∈ U}. Note e−1ϕ(U) = U for each
U ∈ Ω(X). The Nachbin space associated to Y is the Priestley space of Ω(X). The closed
sets of the topology of open downsets of Y are the closed upsets of the Priestley space. These
are the intersections of the clopen upsets, hence of the sets ϕ(U), where U ∈ Ω(X). So the
companion topology on X induced by this stable compactification has the sets U = e−1ϕ(U)
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for U ∈ Ω(X) as a basis for its closed sets. Thus, this companion topology is Salbani’s
topology τ∗. �

Remark 3.15. We may consider these results in one further context. We recall that a
bitopological space is a set X equipped with two topologies τ1 and τ2. For a bispace (X,τ1, τ2),
let π = τ1 ∨ τ2 be the patch topology. Following [11], we call a bispace (X,τ1, τ2) compact
if (X,π) is compact, T0 if (X,π) is T0, and regular if it is T0 and for each U ∈ τi, we have
U = ⋃{V ∈ τi ∶ clk(V ) ⊆ U} (i ≠ k, i, k = 1,2). The correspondence of Theorem 2.5 between
stably compact spaces and Nachbin spaces extends to also include compact regular bispaces.
Indeed, if (X,≤, π) is a Nachbin space, then the open upsets and open downsets form a
compact regular bispace, and each compact regular bispace arises this way (see, e.g., [7]).

Salbany [11] generalized the notion of compactification to that of bicompactification. A
bicompactification of a bispace (X,τ1, τ2) is a bispace embedding e ∶ (X,τ1, τ2) → (Y, δ1, δ2)
into a compact regular bispace (Y, δ1, δ2) such that e[X] is dense in the patch topology
π = δ1 ∨ δ2. For any stable compactification e ∶ (X,τ1) → (Y, δ1) of a T0-space, letting δ2 be
the co-compact topology of δ1, produces a compact regular bispace (Y, δ1, δ2). This induces
a completely regular bispace structure (X,τ1, τ2) on X with e ∶ (X,τ1, τ2) → (Y, δ1, δ2) a
bispace compactification. (Note that τ2 is not determined by τ1, but is dependent on the
specific stable compactification of (X,τ1).) This is the bispace analogue of Proposition 3.12,
and indicates that every stable compactification can be viewed as a bicompactification. On
the other hand, translating Example 3.13 into the language of bispaces shows that not every
bicompactification can be viewed as a stable compactification.

4. Stable compactifications of frames

In this section we extend the notion of stable compactifications to the setting of frames,
and describe the poset of inequivalent compactifications of a frame in several ways. To begin,
we recall Banascewski’s definition of a compactification of a frame [1].

Definition 4.1. A compactification of a frame L is a dense frame homomorphism f ∶M → L
from a compact regular frame M onto L. Here, a frame homomorphism is dense if for all
x ∈M we have f(x) = 0 implies x = 0.

Banaschewski showed that a frame L has a compactification iff it is a completely regular
frame, and that for a completely regular space X, the compactifications of the frame Ω(X)
correspond to the compactifications of the space X. So compactifications of spatial frames
amount to a translation of the notion of compactification to the frame language. However,
while every compact regular frame M is spatial, there are completely regular frames L that
are not spatial, and for these the notion of compactification is new. We now extend these
ideas to stable compactifications of frames.

Definition 4.2. For a frame homomorphism f ∶ M → L we let rf ∶ L → M be the right
adjoint of f , namely the map rf(a) = ⋁{x ∶ f(x) ≤ a}.

The map rf preserves finite meets, but need not preserve finite joins. When the map f is
clear from the context, we often use r in place of rf .

Definition 4.3. A stable compactification of a frame L is a pair (M,f) where M is a stably
compact frame and f ∶M → L is an onto frame homomorphism that satisfies

(∗) x << y⇒ r(f(x)) << y.
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The reader may notice that as with stable compactifications of spaces, density is not
specifically required in the definition. As with spaces, it is a consequence of the definition.

Lemma 4.4. If f ∶M → L is a stable compactification of L, then f is dense.

Proof. As 0 << 0, we have r(0) << 0, giving r(0) = 0. �

Proposition 4.5. Every compactification of L is a stable compactification of L.

Proof. Suppose f ∶ M → L is a compactification. Then f is a dense onto frame homomor-
phism. To show it is a stable compactification, we must verify condition (∗) of Definition 4.3.
The way below relation ≪ and well inside relation ≺ agree in any compact regular frame,
so it is sufficient to show that if x, y, z ∈ M with x ≺ y and f(z) ≤ f(x), then z ≺ y. From
f(z) ≤ f(x) it follows that f(z) ∧¬f(x) = 0, so f(z) ∧ f(¬x) = 0, and the density of f yields
z ∧ ¬x = 0, hence ¬x ≤ ¬z. But x ≺ y means ¬x ∨ y = 1, hence ¬z ∨ y = 1, giving z ≺ y. �

We next show that the stable compactifications of the frame of open sets of a T0-space X
correspond to Smyth’s stable compactifications of the space X. We recall (see Theorem 2.11)
that the stably compact frames are, up to isomorphism, exactly the frames Ω(Y ) for a stably
compact space Y . Also, by Theorem 2.8, if Y is a stably compact space, hence a sober space,
then Ω provides a bijection between the homsets Top(X,Y ) and Frm(Ω(Y ),Ω(X)).
Proposition 4.6. For X a T0-space, Y a stably compact space, and e ∶ X → Y continuous,
e is a stable compactification of X iff Ω(e) is a stable compactification of Ω(X).

Proof. Theorem 2.8 states that e is an embedding iff Ω(e) is onto. For U and V open subsets
of Y we have Ω(e)(V ) ⊆ Ω(e)(U) iff e−1(V ) ⊆ e−1(U) iff V ∩ e[X] ⊆ U ∩ e[X]. It follows that
U = r(Ω(e))(U) for all open U ⊆ Y . Thus, e is a stable compactification iff Ω(e) is a stable
compactification. �

We turn next to providing internal ways to describe stable compactifications of a frame.
This is similar in spirit to Smirnov’s result providing an internal characterization of the
compactifications of a completely regular space, and Banaschewski’s result [1] characteriz-
ing compactifications of a frame. Our first approach, via proximities, is closely related to
Banaschewski’s characterization using strong inclusions.

Definition 4.7. [4] Let L be a frame. A proximity on L is a binary relation ≺ on L satisfying:

(1) 0 ≺ 0 and 1 ≺ 1.
(2) a ≺ b implies a ≤ b.
(3) a ≤ b ≺ c ≤ d implies a ≺ d.
(4) a, b ≺ c implies a ∨ b ≺ c.
(5) a ≺ b, c implies a ≺ b ∧ c.
(6) a ≺ b implies there exists c ∈ L with a ≺ c ≺ b.
(7) a = ⋁{b ∈ L ∶ b ≺ a}.

Example 4.8. Some examples of proximity frames are the following. (1) The partial ordering
of any frame is a proximity. (2) A strong inclusion on a frame [1] is a proximity. (3) The
way below relation on a stably compact frame is a proximity. (4) The well inside relation
on any regular frame is a proximity. (5) The really inside relation on any completely regular
frame [8, Sec. IV.1] is a proximity.



STABLE COMPACTIFICATIONS OF FRAMES 11

Definition 4.9. For f ∶M → L a stable compactification of L, define a relation ≺f on L by
setting a ≺f b⇔ rf(a) << rf(b).

To make notation nicer, we often use ≺ in place of ≺f and r in place of rf .

Lemma 4.10. a ≺ b iff x << y for some x, y with f(x) = a and f(y) = b.
Proof. ⇒: This is trivial as f(r(a)) = a and f(r(b)) = b since f is onto.
⇐: Suppose x << y, where f(x) = a and f(y) = b. Then as y ≤ r(b), we have x << r(b).

But part of the definition of a stable compactification says p << q ⇒ r(f(p)) << q. Thus, as
r(f(x)) = r(a), we have r(a) << r(b). �

Proposition 4.11. If f ∶M → L is a stable compactification, then ≺ is a proximity on L.

Proof. For (1) note 0 << 0 always holds, and as M is compact 1 << 1. By Lemma 4.10,
f(0) ≺ f(0) and f(1) ≺ f(1), giving 0 ≺ 0 and 1 ≺ 1. For (2) suppose a ≺ b. Then
r(a) << r(b), hence r(a) ≤ r(b), giving a = fr(a) ≤ fr(b) = b. For (3) suppose a ≤ b ≺ c ≤ d.
Then r(a) ≤ r(b) << r(c) ≤ r(d), so r(a) << r(d), hence a ≺ d. For (4) suppose a, b ≺ c. Then
r(a), r(b) << r(c), hence by general properties of the way below relation, r(a) ∨ r(b) << r(c).
Then as f(r(a) ∨ r(b)) = a ∨ b and f(r(c)) = c, Lemma 4.10 gives a ∨ b ≺ c. For (5) suppose
a ≺ b, c. Then r(a) << r(b), r(c) and as M is stable, r(a) << r(b)∧r(c), giving r(a) << r(b∧c),
hence a ≺ b ∧ c. For (6) suppose a ≺ b. Then r(a) << r(b). As M is stably compact, we may
interpolate to find z with r(a) << z << r(b). Then letting f(z) = c, Lemma 4.10 shows a ≺ c ≺
b. For (7) as M is stably compact, r(a) = ⋁{x ∶ x << r(a)}, so f(r(a)) = ⋁{f(x) ∶ x << r(a)}.
By Lemma 4.10, if x << r(a) then f(x) ≺ a. It follows that a = ⋁{b ∶ b ≺ a}. �

Definition 4.12. For a proximity ≺ on L, we say an ideal I of L is ≺-round if for each a ∈ I
there is b ∈ I with a ≺ b. We let I≺L be the collection of all ≺-round ideals of L.

Definition 4.13. For a stably compact frame M , we say N ⊆M is a stably compact subframe
of M if

(1) N is a subframe of M .
(2) N is a stably compact frame.
(3) The identical embedding of N in M is proper, so a <<N b⇒ a <<M b.

A stably compact subframe M of the ideal frame IL is called dense if ⋁ ⋅ ∶M → L is onto.

We note that if N is a stably compact subframe of M , then a << b in N iff a << b in M .
One direction is provided by the definition of stably compact subframe, the other as a ≪ b
in a frame implies a ≪ b in any subframe. We also point the reader to [4, Sec. 4], where a
number of results were established for the frame of round ideals of a proximity frame. In [4],
this frame was called RIL rather than I≺L as above because there was no need to consider
more than one proximity on a given frame, as there shall be here.

Proposition 4.14. For a proximity ≺ on L, the set I≺L of ≺-round ideals is a dense stably
compact subframe of the frame IL of ideals of L. Further, the join map ⋁ ⋅ ∶ I≺L → L is a
stable compactification of L.

Proof. For a ∈ L let ↡a = {b ∈ L ∶ b ≺ a}. In [4, Prop. 4.6] it is shown that I≺L is a subframe
of IL, and I ≪ J in I≺L iff I ⊆ ↡a for some a ∈ J . This second condition shows I ≪ J in
I≺L implies I ≪ J in IL. That I≺L is a stably compact frame is given in [4, Prop. 4.8].
Together, these show I≺L is a stably compact subframe of IL.
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The map ⋁ ⋅ ∶ IL→ L is known to be a frame homomorphism. So its restriction to I≺L is a
frame homomorphism. To see it is onto, if a ∈ L, then ↡a is a ≺-round ideal and by properties
of a proximity, ⋁↡a = a. Thus, I≺L is dense. Finally, we show ⋁ ⋅ satisfies condition (∗).
Suppose I, J are ≺-round ideals with I << J . Then there is a ∈ J with I ⊆ ↡a. Suppose
⋁ I = b. Then the largest round ideal mapped by ⋁ ⋅ to b is ↡b. As I ⊆ ↓a and b = ⋁ I, we
have b ≤ a. Then ↡b ⊆ ↓a and a ∈ J imply ↡b << J . This shows ⋁ ⋅ satisfies condition (∗), so
is a stable compactification. �

Proposition 4.15. If f ∶M → L is a stable compactification, then there are mutually inverse
frame isomorphisms g ∶M → I≺fL and h ∶ I≺fL →M defined by g(m) = {f(n) ∶ n <<m} and
h(I) = ⋁ rf [I]. Further, (⋁ ⋅) ○ g = f and f ○ h = ⋁ ⋅.
Proof. For m ∈ M we first show I = g(m) is a ≺f -round ideal of L. Suppose n << m and
a ≤ f(n). Then r(a) ≤ rf(n), and by condition (∗) on f we have n << m⇒ rf(n) << m, so
r(a) <<m, thus a = fr(a) ∈ I. So I is a downset. If n1 <<m and n2 <<m, then n1 ∨ n2 <<m,
and as f is a frame homomorphism, it follows that I is closed under finite joins, so I is an
ideal of L. Say n << m. Then there is p with n << p << m. Therefore, by Lemma 4.10,
f(n) ≺f f(p) and f(p) ∈ I. So I is ≺f -round.

We have shown g is well-defined. Clearly h is also well-defined, and it is obvious that both
g and h are order-preserving. For m ∈M we have hg(m) = ⋁{rf(n) ∶ n <<m}. Condition (∗)
on f shows n <<m⇒ rf(n) <<m, hence n <<m⇒ n ≤ rf(n) ≤m. As M is stably compact,
m = ⋁{n ∶ n << m}, and it follows that m = ⋁{rf(n) ∶ n << m}. Thus, h ○ g is the identity
map on M .

Suppose I is a ≺f -round ideal of L. If a ∈ I, then there is b ∈ I with a ≺f b. By the definition
of ≺f we have r(a) << r(b), hence r(a) << r(b) ≤ ⋁ r[I] = h(I). As gh(I) = {f(n) ∶ n << h(I)}
we have a = fr(a) ∈ gh(I). Thus, I ⊆ gh(I). Conversely, suppose a ∈ gh(I). Then a = f(n)
for some n << h(I). As h(I) = ⋁ r[I], the definition of way below and the fact that r[I] is
up-directed gives n ≤ r(b) for some b ∈ I. Therefore, a = f(n) ≤ fr(b) = b, and as I is an
ideal, we have a ∈ I. Thus, I = gh(I), showing g ○h is the identity map on I≺fL. So we have
shown g and h are mutually inverse frame isomorphisms between M and I≺fL.

For the further comment, suppose m ∈ M . As M is stably compact, m = ⋁{n ∶ n << m},
and as f is a frame homomorphism, f(m) = ⋁{f(n) ∶ n << m}. Thus, (⋁ ⋅) ○ g = f . Then
f ○ h = (⋁ ⋅) ○ g ○ h = ⋁ ⋅ as g and h are mutually inverse isomorphisms. �

Proposition 4.16. If L is a frame and M is a dense stably compact subframe of IL, then
⋁ ⋅ ∶M → L is a stable compactification of L, and M is equal to I≺⋁ ⋅L.

Proof. By the definition of a stably compact subframe, we have M is a stably compact
frame. Also, this definition implies M is a subframe of IL, and as the join map from IL to
L is a frame homomorphism, its restriction to M is also a frame homomorphism. We have
assumed the join map from M to L is an onto mapping, so to show ⋁ ⋅ ∶M → L is a stable
compactification we need only show this map satisfies condition (∗). Suppose I, J ∈M with
I << J in M , hence by the definition of a stably compact subframe, I << J in IL. Let r(I)
be the largest element of M mapped by ⋁ ⋅ to ⋁ I, and let r̂(I) be the largest element of IL
mapped by ⋁ ⋅ to ⋁ I. As ⋁ ⋅ ∶ IL→ L is a stable compactification, we have r̂(I) << J in IL,
so r(I) ≤ r̂(I) << J in IL, giving r(I) << J in IL, hence r(I) << J in M . Thus, ⋁ ⋅ ∶M → L
is a stable compactification.

We now show M = I≺⋁ ⋅ . Suppose I is an element of M . Surely I is an ideal of L, we
must show it is ≺⋁ ⋅-round. Let a ∈ I. Then as ⋁ ⋅ ∶ M → L is assumed to be onto, there is
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some J ∈ M with ⋁J = a. So J ⊆ ↓a and a ∈ I give J << I. As M is stably compact, << is
interpolating, so we can find K in M with J << K << I. Setting b = ⋁K, the definition of
≺⋁ ⋅ gives a ≺⋁ ⋅ b since J << K and both a = ⋁J and b = ⋁K. Now K << I gives K ⊆ ↓c for
some c ∈ I, hence b ∈ I. So I is indeed ≺⋁ ⋅-round. Conversely, suppose I is a ≺⋁ ⋅-round ideal
of L. As ⋁ ⋅ ∶M → L is an onto frame homomorphism, for each a ∈ I there is a largest ideal
Ja in M with a = ⋁Ja. Let J be the join in the ideal frame of {Ja ∶ a ∈ I}. Then as M is
a subframe of IL, we have J ∈ M . For each a ∈ I we have Ja ⊆ ↓a, so each Ja is contained
in I, hence J ⊆ I. Suppose a ∈ I. As I is ≺⋁ ⋅-round, there is b ∈ I with a ≺⋁ ⋅ b. This means
there are ideals P << Q in M with a = ⋁P and b = ⋁Q. As P << Q, there is c ∈ Q with
P ⊆ ↓c. Clearly a ≤ c, and c ∈ Q ⊆ Jb. Thus, a ≤ c ∈ J , so a ∈ J . So J = I, showing I belongs
to M . �

Definition 4.17. For stable compactifications f ∶ M → L and f ′ ∶ M ′ → L of a frame L,
define f ⊑ f ′ if there is a proper frame homomorphism g ∶M →M ′ with f ′ ○ g = f . Then ⊑
is reflexive and transitive, so is a quasi-order on the class of stable compactifications of L.
Let Comp L be the poset of equivalence classes of stable compactifications under the partial
order associated with ⊑, and denote the equivalence class of f ∶M → L by [f].
Remark 4.18. Proposition 4.15 shows every equivalence class of Comp L contains a member
of the form ⋁ ⋅ ∶ J→ L for some stably compact subframe J of IL. So Comp L is a set with
a partial ordering even though there is a proper class of compactifications.

Definition 4.19. For a frame L, let Prox L be the poset of proximities on L, partially
ordered by set inclusion, and Sub IL be the poset of dense stably compact subframes M of
the ideal frame IL, partially ordered by set inclusion.

We next see that the posets Comp L,Prox L, and Sub IL are isomorphic.

Theorem 4.20. For a frame L there are isomorphisms

Φ ∶ Comp L→ Prox L where Φ([f]) =≺f
Ψ ∶ Prox L→ Sub IL where Ψ(≺) = I≺L
Π ∶ Sub IL→ Comp L where Π(M) is the equivalence class of ⋁ ⋅ ∶M → L.

Further, Φ−1 = Π ○Ψ, Ψ−1 = Φ ○Π, and Π−1 = Ψ ○Φ.

Proof. To see Φ is well-defined, suppose f ∶ M → L and f ′ ∶ M ′ → L are equivalent stable
compactifications, so there are proper frame homomorphisms g ∶M →M ′ and g′ ∶M ′ →M
with f ′g = f and fg′ = f ′. If a ≺f b, then by Lemma 4.10, there are x << y in M with
f(x) = a and f(y) = b. As g is proper, we have g(x) << g(y), and as f ′g = f , we have
a = f ′g(x) ≺f ′ f ′g(y) = b. So ≺f⊆≺f ′ , and by symmetry ≺f ′⊆≺f , hence equality. So the
definition of Φ does not depend on the member f of the equivalence class [f] chosen. That
Φ([f]) is indeed a member of Prox L is given by Proposition 4.11. That Ψ is a map
into Sub IL is given by Proposition 4.14, and that Π is a map into Comp L is given by
Proposition 4.16.

To see Φ is order-preserving, suppose [f] ≤ [f ′] where f ∶ M → L and f ′ ∶ M ′ → L are
stable compactifications. Then there is a proper frame homomorphism g ∶ M → M ′ with
f ′g = f . We have just seen that this implies ≺f ⊆≺f ′ , so Φ([f]) ≤ Φ([f ′]). To see Ψ is
order-preserving, suppose ≺⊆≺′. Then I≺L is a subset of I≺′L, so Ψ(≺) ⊆ Ψ(≺′). Finally,
to show Π is order-preserving, suppose M and M ′ are dense stably compact subframes of
IL with M ⊆ M ′. Let g ∶ M → M ′ be the identical embedding. As both M and M ′ are
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subframes of IL, we have finite meets and arbitrary joins in M and M ′ agree with those in
IL, so g is a frame homomorphism. To see g is proper, we note that the definition of a stably
compact subframe implies that the way below relations in M and M ′ are the restrictions of
the way below relation in IL. Finally, for I ∈ M we have (⋁ ⋅) ○ g(I) is simply the join of
I in L, which is equal to (⋁ ⋅)I. This shows ⋁ ⋅ ∶M → L is ⊑ related to ⋁ ⋅ ∶M ′ → L, hence
the equivalence class of the first compactification is beneath that of the second in the partial
ordering of Comp L, showing Π(M) ≤ Π(M ′).

To show that Φ,Ψ,Π are isomorphisms and the further remarks describing their inverses,
it is enough to show ΠΨΦ, ΨΦΠ, and ΦΠΨ are the identity maps on Comp L, Sub IL, and
Prox L, respectively.

To see ΠΨΦ is the identity on Comp L, let f ∶ M → L be a stable compactification.
Then ΠΨΦ([f]) = ΠΨ(≺f) = Π(I≺fL), and this final item is the equivalence class of the
compactification ⋁ ⋅ ∶ I≺fL → L. Proposition 4.15 shows f ∶ M → L and ⋁ ⋅ ∶ I≺f → L are
equivalent, so ΠΨΦ([f]) = [f].

To see ΨΦΠ is the identity map on Sub IL, suppose M belongs to Sub IL. Proposi-
tion 4.16 shows M is equal to I≺⋁ ⋅L, hence ΨΦΠ(M) =M .

Finally, we show ΦΠΨ is the identity on Prox L. Suppose ≺ is a proximity on L and let
≺′ be the proximity ΦΠΨ(≺). Suppose a ≺ b. Then there is c with a ≺ c ≺ b. The ideals ↡a
and ↡b are ≺-round and as ≺ is a proximity, we have (⋁ ⋅)↡a = a and (⋁ ⋅)↡b = b. As ↡a ⊆ ↓c
and c ∈ ↡b, we have ↡a << ↡b, and it follows from Lemma 4.10 and the definition of ≺′=≺⋁ ⋅
that a ≺′ b. Conversely, suppose a ≺′ b. Then the definition of ≺⋁ ⋅ gives r(a) << r(b), where
r is the right adjoint of ⋁ ⋅ ∶ I≺L → L. Clearly the largest ≺-round ideal of L mapped by ⋁ ⋅
to a is ↡a, so r(a) = ↡a, and r(b) = ↡b. So ↡a << ↡b. This means there is c ∈ ↡b with ↡a ⊆ ↓c.
As ≺ is a proximity, a = ⋁↡a, so a ≤ c, and as c ∈ ↡b, we have c ≺ b, hence a ≺ b. So ≺=≺′, thus
≺= ΦΠΨ(≺). �

We conclude this section with a discussion of matters related to the poset of stable com-
pactifications of a frame. We begin with a comparison to Smyth’s poset Comp X of stable
compactifications of a T0-space described in Definition 3.2.

Proposition 4.21. For a T0-space X, the poset Comp X of stable compactifications of X
is isomorphic to the poset Comp Ω(X) of stable compactifications of the frame Ω(X).

Proof. Proposition 4.6, and the discussion before it, show that each equivalence class of stable
compactifications of the frame Ω(X) contains an element of the form Ω(e) ∶ Ω(Y ) → Ω(X)
for some stable compactification e ∶ X → Y of the space X. The result then follows as the
proper frame homomorphisms from the frame Ω(Y ) to the frame Ω(Z) of open sets of stably
compact spaces Y and Z are exactly the Ω(f) where f ∶ Z → Y is proper. �

Corollary 4.22. For a T0-space X with sobrification s(X), the poset Comp X is isomorphic
to the poset Comp s(X).

Proof. This follows from Proposition 4.21 as the frames Ω(X) and Ω(sX) are isomorphic. �

Remark 4.23. The poset of stable compactifications of L always has a largest element. In
terms of the poset of proximities on L, this corresponds to the largest proximity, namely
the partial ordering on L, and in terms of the dense stably compact subframes of the ideal
frame, this corresponds to the largest such subframe, namely the ideal frame IL itself. As
we discuss in the next section, this largest stable compactification is coherent. We also point
to Smyth’s results on the largest stable compactification of a T0-space and its connection to
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Salbani’s companion topology discussed in Proposition 3.14. We further note that as shown
in Corollary 3.10, the poset of stable compactifications of L need not have a least element,
even in the case when L is a spatial frame.

Remark 4.24. In [1] Banaschewski showed that for a completely regular frame L, there is an
isomorphism between the poset of compactifications of L and the poset of strong inclusions
on L. Strong inclusions are proximities ≺ on L that are contained in the well inside relation
on L and satisfy a ≺ b implies ¬b ≺ ¬a. He also showed that each compactification of L is
equivalent to one of the form ⋁ ⋅ ∶ M → L, where M is a compact regular subframe of the
regular coreflection RL. It follows that the poset of compactifications of L is isomorphic to
the poset of dense compact regular subframes of RL. In particular, RL gives the largest
element of the poset of compactifications of L. The above results form extensions of these to
the setting of stable compactifications. Note, the largest stable compactification of L given
by IL need not be a compactification of L.

Remark 4.25. In [3] Banaschewski, Brümmer, and Hardie introduced biframes as a point-
free version of bitopological spaces, much as frames are a pointfree version of topological
spaces. A biframe is a triple M = (M0,M1,M2), where M1,M2 are subframes of the frame
M0 and M0 is generated by M1 ∪M2, and a biframe homomorphism h ∶ M → L is a frame
homomorphism h ∶M0 → L0, where h(Mi) ⊆ Li for i = 1,2.

The notions of compactness and regularity for biframes were introduced in [3], and in
[2] Banaschewski and Brümmer constructed for any stably compact frame M1, a compact
regular biframe (M0,M1,M2). Their technique involved representing M1, and the stably
compact frame M2 of Scott open filters of M1, in the congruence frame Con(M1) of M1, and
then constructing M0 from the subframe of this congruence frame generated by the images
of M1 and M2. It follows that the category of compact regular biframes is equivalent to the
category of stably compact frames, hence dually equivalent to the category of stably compact
spaces, and also to the category of Nachbin spaces.

In [13] Schauerte studied bicompactifications of biframes. She defined a bicompactification
of a biframe L to be a pair (M,f), where M is a compact regular biframe and f ∶M → L is
a dense onto biframe homomorphism. Here density is used in the usual sense with respect to
M0 and L0, while onto means that the restrictions to Mi are onto Li for i = 1,2. Schauerte
[13] generalized Banaschewski’s theorem by proving that the poset of bicompactifications of
a biframe is isomorphic to the poset of “strong inclusions” on L.

Our results on stable compactifucations and ordered spaces can be placed in the context
of biframes. Suppose f ∶M1 → L1 is a stable compactification of a frame L1. As f is an onto
frame homomorphism, there is a frame homomorphism f ∶ Con(M1) → Con(L1) taking
a congruence θ on M1 to the congruence on L associated with θ ∨ ker f . For the compact
regular biframe M = (M0,M1,M2) constructed in [2], the frames M0,M1,M2 were realized
inside the congruence frame Con(M1), and we obtain a biframe L = (L0, L1, L2) with Li
determined by the image of f(Mi) for i = 0,1,2. This gives a biframe compactification
f ∶ M → L. So every stable compactification naturally yields a biframe compactification.
On the other hand, translating Example 3.13 into the language of biframes shows that
not every bicompactification of a biframe arises this way. So the correspondence between
stable compactifications of frames and bicompactifications of biframes is similar to that
between stable compactifications of T0-spaces and bicompactifications of bispaces discussed
in Remark 3.15.
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5. Coherent and spectral compactifications

Recall that a frame is coherent if its compact elements are a bounded sublattice, and
each element is a join of compact elements. A space is spectral if it is the space of prime
filters of a bounded distributive lattice. Every coherent frame is stably compact, and every
spectral space is stably compact. Here we consider stable compactifications in the context
of coherent frames and spectral spaces. This is closely related to Smyth’s characterization
[15, Prop. 20] of spectral compactifications of a T0-space X in terms of lattice bases of the
frame of open sets Ω(X), where we call a stable compactification (Y, e) of a T0-space X a
spectral compactification if Y is a spectral space.

Definition 5.1. Let L be a frame and f ∶M → L be a stable compactification of L. We call
f a coherent compactification of L if M is a coherent frame. Let Coh L be the sub-poset of
Comp L whose equivalence classes consist of coherent compactifications of L. A proximity
≺ on L is called coherent if a ≺ b implies there is c with c ≺ c and a ≺ c ≺ b.
Proposition 5.2. Coh L is isomorphic to the sub-poset of Prox L consisting of coherent
proximities on L, and to the sub-poset of Sub IL consisting of dense stably compact subframes
that are additionally coherent.

Proof. Consider the isomorphism Φ ∶ Comp L→ Prox L of Theorem 4.20 and suppose that
f ∶M → L is a stable compactification of L. By Lemma 4.10, a ≺f b iff f(x) = a and f(y) = b
for some x≪ y in M . If M is coherent, the proximity ≪ on M is coherent, and it follows that
≺f is coherent as well. Next, consider the isomorphism Ψ ∶ Prox L → Sub IL and suppose
that ≺ is a coherent proximity. Then the frame I≺L of ≺-round ideals of L is coherent.
Indeed, if I, J are ≺-round ideals with I ≪ J , then there is a ∈ J with I ⊆↡a. As J is round,
there is b ∈ J with a ≺ b. Then as ≺ is coherent, there is c ≺ c with a ≺ c ≺ b. Therefore,
I ≪↡ c ≪ J . Finally, consider the isomorphism Π ∶ Sub IL → Comp L. Clearly if M is
a dense stably compact subframe of IL that is coherent, then the stable compactification
⋁ ⋅ ∶M → L is by definition coherent. �

In the coherent setting, there is an alternate path to a description of compactifications that
is convenient. We call a bounded sublattice S of a frame L a lattice basis if S is join-dense
in L. Let Lat L be the poset of lattice bases of L, where the ordering is set inclusion.

Proposition 5.3. Coh L is isomorphic to Lat L.

Proof. By Proposition 5.2, Coh L is isomorphic to the poset CSub IL of dense stably
compact subframes of IL that are themselves coherent.

If M belongs to CSub IL, then as ≪ in M is the restriction of ≪ in IL, the compact
elements of M are those principal ideals ↓a belonging to M . As M is coherent, we have
S = {a ∈ L ∶ ↓a ∈ M} is a sublattice of L, and as each element of M is the join of compact
elements and the join map ⋁ ⋅ ∶M → L is onto, S is a dense sublattice of L, hence a lattice
basis. Setting Γ(M) = {a ∶ ↓a ∈M} gives an order-preserving map from CSub IL to Lat L.

If S is a lattice basis of L, set ISL to be the set of ideals of L generated by S, and note
that this is the subframe of IL generated by {↓a ∶ a ∈ S}. The compact elements of ISL are
exactly the ↓a where a ∈ S, and it follows that ISL is a coherent frame. If I ≪ J in ISL, then
I ⊆ ↓a for some a ∈ J with a ∈ S, hence I ≪ J in IL. So ISL is a stably compact subframe
of IL that is coherent, and it is dense as S is a dense sublattice of L. Setting Λ(S) = ISL
then gives an order-preserving map from Lat L to CSub IL.
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Our constructions show that ΛΓ(M) =M for each M ∈ CSub IL and ΓΛ(S) = S for each
S ∈ Lat L, so Γ and Λ establish an isomorphism of CSub IL and Lat L. �

Remark 5.4. Smyth [15, Prop. 20] showed that the poset of spectral compactifications of X
is isomorphic to the poset of lattice bases of Ω(X). The above result is an obvious extension
of this to the setting of coherent compactifications of frames.
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