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Algebra Universalis

Compact Hausdorff Heyting algebras

Guram Bezhanishvili and John Harding

Abstract. We prove that the topology of a compact Hausdorff topological Heyting
algebra is a Stone topology. It then follows from known results that a Heyting alge-
bra is profinite iff it admits a compact Hausdorff topology that makes it a compact
Hausdorff topological Heyting algebra.

1. Introduction

A topological algebra is an algebra A together with a topology on A for which
all of the basic operations of A are continuous. A compact Hausdorff topological
algebra is a topological algebra where the topology is compact Hausdorff, and
a Stone topological algebra is one where the topology is a Stone topology (a
compact Hausdorff zero-dimensional topology). An algebra is profinite if it is
the inverse limit of an inverse system of finite algebras. Since the inverse limit
of an inverse family of finite discrete spaces is a Stone space, each profinite
algebra is naturally a Stone topological algebra. In good cases, the converse is
also true. For example, it is well known that a group is profinite iff it admits
a topology making it a Stone topological group. It was proved in [4] that the
same is also true for semigroups and distributive lattices. For further results
in this direction, consult [3, Thm. VI.2.9].

For Boolean algebras, a stronger result is true. Namely, a Boolean algebra B
is profinite iff it admits a topology making it a compact Hausdorff topological
Boolean algebra, which happens iff B is isomorphic to a powerset algebra.
Further, when these conditions occur, B admits exactly one compact Hausdorff
topology making it a topological Boolean algebra. This topology is the interval
topology, which in this case is a Stone topology with a subbasis of clopen sets
given by the upsets of atoms and the downsets of coatoms. For proofs of these
results, see [5] or [3, Prop. VII.1.16], and [2] for a different proof.

The results for Boolean algebras cannot be generalized to (bounded) dis-
tributive lattices (see, e.g., [3, Sec. VII.1.15]), but we show that they can be
generalized to Heyting algebras. For an illustrative example, we consider the
unit interval [0, 1] with the interval topology. This is a compact Hausdorff
distributive lattice whose topology is not Stone. The interval [0, 1] is also
a Heyting algebra, but the Heyting implication → is not continuous under
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the interval topology since the sequence 1/n converges to 0, but the sequence
1/n → 0 is constantly 0 and so does not converge to 0 → 0 = 1.

The goal of this note is to prove the following:

Theorem 1.1. For a Heyting algebra H, the following are equivalent:

(1) H admits a topology making it a compact Hausdorff topological Heyting
algebra.

(2) H admits a topology making it a Stone topological Heyting algebra.
(3) H is profinite.
(4) H is isomorphic to the lattice of all upsets of an image-finite poset X.

Further, when these equivalent conditions hold, there is exactly one topology on
H making H a compact Hausdorff topological Heyting algebra. This topology
is the interval topology, which in this case is a Stone topology with a subbasis
of clopen sets given by the upsets of completely join prime elements and the
downsets of completely meet prime elements.

Proof. For (2)⇒(3), see [3, Prop. VI.2.10]; for (3)⇔(4), see [1, Thm. 3.6]; and
(3)⇒(1) is obvious. We will prove (1)⇒(2) and the further remarks describing
the topology in the next section. !

2. Main result

Let H be a compact Hausdorff Heyting algebra with implication → and
negation ¬. Basic facts about topological lattices (see, e.g., [3, Sec. VII.1])
show that H is complete, hence a ∧

∨
S =

∨
{a ∧ s : s ∈ S}, the join infinite

distributive law, holds in H. Moreover, the closed ideals of H are exactly the
principal downsets ↓a and the closed filters are exactly the principal upsets
↑a of H. An element d ∈ H is dense provided ¬d = 0. Let D be the set of
all dense elements of H. Then, as in any Heyting algebra, D is a filter. Also,
since D = ¬−1(0) is the inverse image of a closed set under the continuous
map ¬, it is closed. So there is a least dense element d ∈ H such that D = ↑d.

For p, q ∈ H with p ≤ q, the interval [p, q] of H is a Heyting algebra whose
meet and join are the restrictions of those of H and whose implication is given
by x ⇒ y = (x → y)∧q. Since [p, q] = ↑p∩↓q is a closed subset of H, it follows
that [p, q] is also a compact Hausdorff topological Heyting algebra, hence has
a least dense element. Specializing this to intervals ↑d allows the following
definition.

Definition 2.1. Define a transfinite sequence of elements dα ∈ H as follows.

(1) d0 = 0.
(2) If α = β + 1 is a successor ordinal, then dα is the least dense element in

↑dβ.
(3) If α is a limit ordinal, then dα =

∨
{dβ : β < α}.
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Since the bottom element of a Heyting algebra is dense iff the Heyting
algebra is trivial, if dα ̸= 1, then dα < dα+1. Since the sequence {dα} must
eventually stabilize, this immediately gives the following.

Lemma 2.2. The sequence {dα} is strictly increasing until it stabilizes at 1.

An ordered pair (j,m) of elements in a Heyting algebra H is a splitting pair
if ↑j and ↓m are disjoint and their union is H. It is well known that in a
complete Heyting algebra H, for each completely join prime element j there
is a completely meet prime element m with (j,m) a splitting pair, and that
for each completely meet prime element m there is a completely join prime j
with (j,m) a splitting pair. We let J∞(H) be the set of completely join prime
elements of H and M∞(H) be the set of completely meet prime elements of H.

Lemma 2.3. Suppose H is a compact Hausdorff Heyting algebra.

(1) If c is a coatom of H, then c ∈ M∞(H).
(2) If p ∈ H and j ∈ J∞(↓p), then j ∈ J∞(H).

Proof. (1): For any x ∈ H, we have x ! c iff x∨c = 1. Let F = {x : x∨c = 1}.
Clearly, F is an upset and distributivity shows that it is closed under finite
meets, hence is a filter. Since F = (· ∨ c)−1(1), it is closed, hence is equal to
↑j for some j ∈ H. Then j is the least element of H that does not lie under c,
showing that (j, c) is a splitting of H. Consequently,

∧
S ≤ c implies j ̸≤

∧
S,

so S ̸⊆ F , hence S ∩ ↓c ̸= ∅. Thus, c ∈ M∞(H).
(2): If S ⊆ H and j ≤

∨
S, then by the join infinite distributive law,

j ≤ p ∧
∨
S =

∨
{p ∧ s : s ∈ S}. Since j is completely join prime in ↓p, there

is s ∈ S with j ≤ p ∧ s. Thus, j ≤ s, and so j ∈ J∞(H). !

Proposition 2.4. For a, b ∈ H with a ̸≤ b, there is j ∈ J∞(H) such that
j ≤ a and j ̸≤ b.

Proof. Since the sequence {dα} stabilizes at 1, there is a least ordinal α with
a ∧ dα ̸≤ b ∧ dα. If α is a limit ordinal, then

a ∧ dα = a ∧
∨

{dβ : β < α} =
∨

{a ∧ dβ : β < α}.

But a∧dβ ≤ b∧dα for each β < α. Therefore, a∧dα ≤ b∧dα, a contradiction.
Thus, α is a successor ordinal. Let β be such that α = β + 1.

Let a′ = a∧dα and b′ = b∧dα. Then our definitions of α and β give a′ ! b′,
and a′ ∧ dβ = a ∧ dβ ≤ b ∧ dβ = b′ ∧ dβ . We claim that a′ ∨ dβ ! b′ ∨ dβ .
Indeed, if this were not the case, then

a′ = a′ ∧ (b′ ∨ dβ) = (a′ ∧ b′) ∨ (a′ ∧ dβ) ≤ (a′ ∧ b′) ∨ (b′ ∧ dβ) = b′ ∧ (a′ ∨ dβ).

But this would imply a′ ≤ b′, a contradiction.
The interval [dβ , dα] is a compact Hausdorff Heyting algebra with its im-

plication given by x ⇒ y = (x → y) ∧ dα. Suppose x is dense in [dβ , dα].
Then dβ = (x ⇒ dβ) = (x → dβ) ∧ dα. But dα is the least dense element in
↑dβ , so dβ is the only element of ↑dβ whose meet with dα gives dβ . Therefore,
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dβ = (x → dβ) ∧ dα implies x → dβ = dβ . This gives that x is dense in ↑dβ ,
yielding dα ≤ x. Thus, dα is the only dense element of [dβ , dα], and this im-
plies that this interval is Boolean (see, e.g., [6, p. 132]). Since every compact
Hausdorff Boolean algebra is a powerset algebra, this interval is a complete
and atomic Boolean algebra.

The elements a′ ∨ dβ and b′ ∨ dβ belong to the interval [dβ , dα]. Since
a′ ∨ dβ ̸≤ b′ ∨ dβ , there is a coatom c in this interval with a′ ∨ dβ ! c and
b′ ∨ dβ ≤ c. It follows that a′ ! c and b′ ≤ c. Since c is a coatom of [dβ , dα],
it is also a coatom of ↓dα. So by Lemma 2.3.1, c ∈ M∞(↓dα). Thus, there
is j ∈ J∞(↓dα) with (j, c) a splitting pair of the Heyting algebra ↓dα. Then
a′ ! c and b′ ≤ c imply j ≤ a′ and j ! b′. Lemma 2.3.2 gives j ∈ J∞(H).
Since j ≤ a′ and a′ = a∧ dα, clearly j ≤ a. As j ≤ dα and j ! b′ = b∧ dα, we
have j ! b. !

We now prove our main result, completing the proof of Theorem 1.1.

Theorem 2.5. Let H be a compact Hausdorff Heyting algebra. Then the
topology of H has a subbasis of clopen sets given by ↑j, where j ∈ J∞(H), and
↓m, where m ∈ M∞(H).

Proof. For each j ∈ J∞(H), there is an m ∈ M∞(H) with (j,m) a splitting
pair of H, and conversely. If (j,m) are a splitting pair of H, then ↑j and
↓m are complementary closed sets of H, hence are clopen sets of H. The
topology generated by these clopen sets is contained in the topology of H,
hence is compact, and Proposition 2.4 shows that it is Hausdorff. Therefore,
this topology is a compact Hausdorff topology that is contained in the given
topology; hence they are equal. !
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