
1 23

Order
A Journal on the Theory of Ordered Sets
and its Applications
 
ISSN 0167-8094
 
Order
DOI 10.1007/s11083-015-9363-y

On the Proof that Compact Hausdorff
Boolean Algebras are Powersets

Guram Bezhanishvili & John Harding



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Order
DOI 10.1007/s11083-015-9363-y

On the Proof that Compact Hausdorff Boolean Algebras
are Powersets

Guram Bezhanishvili1 · John Harding1

Received: 16 December 2014 / Accepted: 6 July 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Papert Strauss (Proc. London Math. Soc. 18(3), 217–230, 1968) used Pontryagin
duality to prove that a compact Hausdorff topological Boolean algebra is a powerset algebra.
We give a more elementary proof of this result that relies on a version of Bogolyubov’s
lemma.

Keywords Topological Boolean algebra · Pontryagin duality · Bogolyubov’s lemma

1 Introduction

Papert Strauss [5] showed that every compact Hausdorff topological Boolean algebra B is
isomorphic to the powersetP(X) of some set X. Her proof follows from Pontryagin duality,
specifically from the existence of enough continuous characters to separate points. The point
is that a compact Hausdorff Boolean algebra is a compact Hausdorff abelian group under
the operation x + y = (x ∧ y′)∨ (x′ ∧ y), and any character into the circle group takes only
the values ±1 since x + x = 0 in any Boolean algebra.

A direct proof of this result that does not rely on the considerable machinery involved
in establishing Pontryagin duality turned out to be rather elusive. This was a hot topic of
discussion at the international workshop TOLO 2008 (http://www.rmi.ge/tolo/), when Dito
Pataraia got interested in the problem. In about a year Dito was able to design a proof
of the theorem, which was presented by Mamuka Jibladze at the international conference
BLAST 2009 (http://subsessile.nmsu.edu/blast/index.htm). Dito’s proof was independent
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of Pontryagin duality, but it was very involved. Since then Dito discussed at length sev-
eral simplifications of his original technique, and was planning to write up his findings.
Unfortunately, his untimely death did not allow the completion of the project.

It is our aim to provide a direct proof of Papert Strauss’ result that does not rely on
Pontryagin duality. Our main tool is a paper of Dikranjan and Stoyanov [3] giving a more
elementary treatment of Pontryagin duality based on Prodanov’s proof [6] of the Peter-Weyl
theorem in the abelian case. Using basic results from Boolean algebras and topological
lattices, much of the difficulty in the paper of Dikranjan and Stoyanov can be removed.

We obtain a short proof of the theorem of Papert Strauss that involves only concepts
familiar in the study of topological lattices, with one exception. There is a key combinatorial
lemma (a version of Bogolyubov’s lemma [2, p. 6]) about finite Boolean algebras, and the
only known proof of this lemma relies on the theory of group characters for finite abelian
groups. It is a remarkable consequence of Prodanov’s result that this combinatorial lemma
is the key to understanding (infinite) compact Hausdorff topological Boolean algebras. We
conjecture that this lemma can be considerably sharpened, and feel it likely has a direct
combinatorial proof. In sharpened form, this lemma may be of independent interest in the
study of finite posets.

2 Topological Boolean Algebras

As usual, by a topological lattice we mean a lattice L which is a topological space and for
which the lattice operations ∧,∨ : L2 → L are continuous. For a subset S of L, we use
↓S and ↑S for the downset and upset generated by S. If S is a singleton set {x}, we simply
write ↓x and ↑x. It is well known (see, e.g., [1, Lemmas 2 and 3]) that if S ⊆ L is open,
then so are ↓S and ↑S, and if L is Hausdorff and S is compact, then ↓S and ↑S are closed.
In particular, if L is a compact Hausdorff topological lattice, then if S is closed, then so are
↓S and ↑S. Thus, if S is open, then the largest upset L \ ↓(L \ S) and the largest downset
L \ ↑(L \ S) contained in S are open. It is also well known (see, e.g., [4, Section VII.1.5])
that a compact Hausdorff topological lattice L is complete, and the join of every ideal I of
L belongs to the closure of I .

A topological Boolean algebra is a Boolean algebra B which is a topological lattice
and for which the complement operation (−)′ : B → B is continuous. We use + for the
operation

x + y = (x ∧ y′) ∨ (x′ ∧ y).

It is well known that B is an abelian group under + with identity 0, and that x + x = 0 for
all x ∈ B. For S, T ⊆ B, we use S +T with the usual meaning, and we use S(n) for S added
to itself n times S + · · · + S. We will require the following basic facts.

Lemma 2.1 Suppose B is a compact Hausdorff topological Boolean algebra, x ∈ B, and
U is an open neighborhood of 0 in B.

(1) x + U is an open neighborhood of x.
(2) The closure of U is contained in U + U .
(3) If U is a downset, then U + U is the downset U ∨ U .
(4) If U is an open downset, then there is an open downset neighborhood V of 0 with

V + V ⊆ U .
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Proof (1) The function h(y) = x + y is continuous and its own inverse, hence is a home-
omorphism. (2) Suppose x is in the closure of U . By (1), x + U is an open neighborhood
of x, hence intersects U nontrivially. If y belongs to this intersection, then y = x + u

for some u ∈ U , giving x = y + u ∈ U + U . (3) Suppose x, y ∈ U . As U is a
downset, x ∧ y′, x′ ∧ y ∈ U , so x + y = (x ∧ y′) ∨ (x′ ∧ y) ∈ U ∨ U . This yields
U + U ⊆ U ∨ U . Conversely, x ∨ y = x + (x′ ∧ y) and x′ ∧ y ∈ U as U is a downset.
Thus, x ∨ y ∈ U + U , so U ∨ U ⊆ U + U , hence the equality. (4) Since ∨ is continuous,
0 ∨ 0 = 0 ∈ U , and U is open, there is an open neighborhood W of 0 with W ∨ W ⊆ U .
Let V = ↓W . Then V is an open downset neighborhood of 0, and as U is a downset, by
(3), V + V = V ∨ V ⊆ ↓(W ∨ W) ⊆ U .

3 Boolean Bogolyubov Lemma

The key result we require is a version of the Bogolyubov Lemma for Boolean algebras.

Lemma 3.1 (Boolean Bogolyubov Lemma) Let F be a finite Boolean algebra, S be a
subset of F , and U be a downset of F such that S + U = F . Then there is an element of
U(4) that is the meet of a set of at most | S |2 coatoms of F .

The proof of our version of Bogolyubov’s Lemma for Boolean algebras is based on the
proof of Bogolyubov’s Lemma for finite abelian groups found in [2, pp. 6–7] and relies
entirely on properties of characters of finite abelian groups. We note that Lemma 3.1 is not
a direct reformulation of the Bogolyubov Lemma from [2, Lem. 1.2.3], and requires some
small additional considerations.

We begin with a basic result about characters of a finite Boolean algebra. We recall that
a character of a group G is a group homomorphism from G to the circle group. A character
of a Boolean algebra takes only the values ±1 because x + x = 0 in any Boolean algebra.

Lemma 3.2 Suppose the Boolean algebra F is the powerset of a finite set X. Then for each
A ⊆ X the map χA : F → {−1, 1} defined by χA(B) = (−1)|A∩B | is a character of F ,
and all characters of F arise this way.

Proof For B, C ⊆ X, we have

χA(B + C) = (−1)| (B+C)∩A | = (−1)| (B−C)∩A |(−1)| (C−B)∩A |

= (−1)| (B−C)∩A | · (−1)| (B∩C)∩A | · (−1)| (B∩C)∩A | · (−1)| (C−B)∩A |

= (−1)|B∩A | · (−1)|C∩A | = χA(B) · χA(C).

Therefore, χA is a character of F . Moreover, it is easy to see that if A �= B, then χA �=
χB . Since each finite group is isomorphic to its dual group of characters, F has as many
characters as there are subsets of X. Thus, each character of F arises as χA for some A ⊆
X.

We are ready to prove the Boolean Bogolyubov Lemma. Let F be the powerset of a finite
set X, S be a subset of F , U be a downset of F , and S +U = F . We also let F ′ be the group
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of characters of F . Suppose f is the characteristic function of U and B ⊆ X. It follows
from [2, Prop. 1.2.2] that

f (B) =
∑

χ∈F ′
cχ · χ(B),

where

cχ = 1

| F |
∑

B∈F

f (B) · χ(B)

is the Fourier coefficient of f corresponding to the character χ . By Lemma 3.2, each char-
acter χ is of the form χA for some A ⊆ X. We use cA for the Fourier coefficient of the
character χA. In the notation of [2] this is cχA

. Since f is the characteristic function of U ,
Lemma 3.2 yields

cA = 1

| F |
∑

B∈U

(−1)|A∩B |

Lemma 3.3 If a ∈ A, then | cA | ≤ c{a}.

Proof For each B ∈ U with a ∈ B we have B − {a} ∈ U since U is a downset. The
contributions ofB andB−{a} to the sum for cA negate one another, as do their contributions
to the sum for c{a}. So both cA and c{a} are given by the sum over all B ∈ U with a �∈ B

and B ∪ {a} not belonging to U . The contribution of such an element to the sum for cA may
be 1 or −1, but its contribution to the sum for c{a} is always 1.

Following the proof of the Bogolyubov Lemma [2, Lem. 1.2.3], we arrange the Fourier
coefficients in some decreasing order | cA1 | ≥ · · · ≥ | cAk

| ≥ · · · so that in case of ties,
c{a} comes before cA for each a ∈ A. Consider the first m = (| F |/|U |)2 entries in this
sequence. Note that S + U = F implies | S | · |U | ≥ | F |, so m ≤ | S |2. The Bogolyubov
Lemma [2, Lem. 1.2.3] then yields that {C ∈ F : χAi

(C) = 1 for all i ≤ m} ⊆ U(4).
LetD = {{a} : a ∈ Ai for some i ≤ m}. It follows from the construction of our sequence

and Lemma 3.3 that each {a} in D is equal to Ai for some i ≤ m, so D has at most m

elements. Let

B =
⋂

{X − {a} : {a} ∈ D}
be the meet of a set of at most m coatoms of F . Clearly B ∩ Ai = ∅, so χAi

(B) = 1 for
every i ≤ m. Therefore, B ∈ {C ∈ F : χAi

(C) = 1 for all i ≤ m} ⊆ U(4). Thus, B is an
element of U(4) that is the meet of a set of at most | S |2 coatoms of F , completing the proof
of the Boolean Bogolyubov Lemma.

We next conjecture a strengthened version of the Bogolyubov Lemma for Boolean alge-
bras, and phrase it in the language of sets. In this formulation the key differences are greater
control over the number and behavior of the coatoms, and we allow only two members from
U rather than four.

Conjecture 3.4 (Strong Boolean Bogolyubov Lemma) Suppose X is a finite set that is
partitioned into n disjoint pieces S1, . . . , Sn that are not necessarily of equal size. For any
A ⊆ X let Ai = A ∩ Si . There are 2n sets that can be built from A by choosing for each
i ≤ n either the set Ai or its complement in Si , and then taking the union of these n pieces.
Suppose U is a collection of subsets of X so that for any A ⊆ X, at least one of the 2n sets
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built from A belongs to U . Then there are two members of U whose union contains all but
at most one element from each Si .

Remark 3.5 The case for n = 1, 2 and several special cases for general n have simple
proofs. However, we do not know if this conjecture holds in general.

4 Proof of the Theorem

We are ready to give a more direct proof of the Papert Strauss theorem.

Theorem 4.1 (Papert Strauss) If B is a compact Hausdorff topological Boolean algebra,
then there is a set X with B isomorphic to the powerset P(X).

Proof It is enough to show that B is atomic. Once this is established, let X be the atoms of
B. Since B is also complete, it is well known that B is isomorphic to P(X).

To see B is atomic, let x be a non-zero element of B. Then ↑x and {0} are disjoint closed
sets of B. Therefore, there are disjoint open sets C and D with ↑x ⊆ C and 0 ∈ D. Let
E = B \ ↓(B \ C) be the largest upset contained in C and H = B \ ↑(B \ D) be the largest
downset contained in D. Then E and H are disjoint open sets with ↑x ⊆ E and 0 ∈ H . By
Lemma 2.1(4), there is an open downset neighborhood V of 0 with V + V ⊆ H . Applying
Lemma 2.1(4) to V yields an open downset neighborhood U of 0 with U + U ⊆ V , hence
U(4) ⊆ V + V ⊆ H . Therefore, U(4) is disjoint from E, and hence ↑x is disjoint from the
closure of U(4).

For each b ∈ B, Lemma 2.1(1) shows b + U is an open neighborhood of b. By com-
pactness, there is a finite subcollection that covers B, say b1 + U, . . . , bp + U . Let S be
the subalgebra of B generated by b1, . . . , bp. Since Boolean algebras are locally finite, S

is finite. Let F be the collection of all finite subalgebras of B that contain S. Clearly F is a
directed set.

Suppose F ∈ F. Since b1 + U, . . . , bp + U cover B, they also cover F . Therefore, the
Boolean Bogolyubov Lemma is applicable to F , S, and the restriction of U to F . Thus,
there is an element of U(4) that is the meet of a family of at most k = | S |2 coatoms of
F . Consequently, as U is a downset, there is a family QF

1 , . . . , QF
k of maximal ideals of F

whose intersection is contained in U .
Extend each QF

i to a maximal ideal P F
i of B. Then for each i ≤ k the family {P F

i :
F ∈ F} is a net in the Stone space Y of B. As Y is compact Hausdorff, there is a cofinal
subfamily E of F with the subnets {P F

i : F ∈ E} converging, say to P1, . . . , Pk . Suppose b

belongs to the intersection of P1, . . . , Pk . Then the clopen subset ϕ(b) := {x : b ∈ x} of Y

corresponding to b is a neighborhood of each Pi . Using the convergence of {P F
i : F ∈ E}

to Pi , there is some common F ∈ E with P F
1 , . . . , P F

k belonging to ϕ(b), and this F can
be chosen to contain b. This means b belongs to each of P F

1 , . . . , P F
k , and as b ∈ F , we

have b belongs to the restrictions QF
1 , . . . , QF

k of P F
1 , . . . , P F

k to F . ButQF
1 , . . . , QF

k were
chosen so that their intersection was contained inU(4). Thus, b ∈ U(4). So we have produced
maximal ideals P1, . . . , Pk of B whose intersection I is contained in U(4).

The join
∨

I of the ideal I belongs to the closure of U(4). Therefore, since ↑x is disjoint
from the closure of U(4), we see that x �≤ ∨

I . The infinite distributive law for complete
Boolean algebras gives

∨
I = (

∨
P1)∧· · ·∧(

∨
Pk). So there is some i ≤ k with x �≤ ∨

Pi .
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This implies
∨

Pi is a coatom of B that does not lie above x, so its complement is an atom
of B beneath x. Thus, B is atomic.

Remark 4.2 In the above proof, the argument using the maximal ideal theorem and nets in
the Stone space Y to produce prime ideals P1, . . . , Pk of B whose intersection is contained
in U(4) can be replaced by a compactness argument from first order logic.

Consider a language for Boolean algebras enriched with constants ca for each a ∈ B, and
unary predicatesU and P1, . . . , Pk . Consider the set� of sentences consisting of all ca ≤ cb

for constants ca, cb with a ≤ b in B, sentences U(ca) for all a ∈ U , as well as sentences
saying each Pi is a prime ideal and that the intersection of P1, . . . , Pk is contained in U(4).
Let �′ be a finite subset of these sentences. Taking the finite subalgebra F of B generated
by the constants appearing in �′ and S produces a model of �′ where the predicates Pi are
the sets QF

i . So the compactness theorem says � has a model, and this gives prime ideals
P1, . . . , Pk of B whose intersection is contained in U(4).
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