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Abstract. Since the work of Crown [5] in the 1970’s, it has been known that the
projections of a finite-dimensional vector bundle E form an orthomodular poset
(omp) P(E). This result lies in the intersection of a number of current topics,
including the categorical quantum mechanics of Abramsky and Coecke [1], and the
approach via decompositions of Harding [6]. Moreover, it provides a source of omps
for the quantum logic program close to the Hilbert space setting, and admitting
a version of tensor products, yet having important differences from the standard
logics of Hilbert spaces.

It is our purpose here to initiate a basic investigation of the quantum logic
program in the vector bundle setting. This includes observations on the structure
of the omps obtained as P(E) for a vector bundle E, methods to obtain states on
these omps, and automorphisms of these omps. Key theorems of quantum logic
in the Hilbert setting, such as Gleason’s theorem and Wigner’s theorem, provide
natural and quite challenging problems in the vector bundle setting.

1. Introduction

The quantum logic approach to quantum mechanics began with the work of
Birkhoff and von Neumann [4] who argued that the projection operators of a Hilbert
space should form the questions of a quantum system, and that these questions form
a type of structure now known as an orthomodular lattice (abbrev. oml). Further
impetus to the quantum logic program came with Mackey’s argument [12] from basic
physical principles that the questions of a quantum system should form a kind of
structure known as an orthomodular poset (abbrev. omp).

In the time period of Mackey’s result, there was considerable interest in seeing if
objects close to Hilbert spaces produced orthomodular structures of use in quantum
mechanics (see [8] for a survey). Amemiya and Araki [3] showed that among the
pre-Hilbert spaces, orthomodularity of the closed subspaces characterized Hilbert
spaces. Perhaps motivated in part by this result, a substantial part of the quantum
logic program turned from looking at examples near the Hilbert space setting to
increasingly exotic examples. Difficulties with the existence of a tensor product for
omps lead, in part, to consideration of wider classes such as orthoalgebras and effect
algebras, where, under assumptions on state spaces, tensor products are obtained.

It is the purpose of this note to begin a more in-depth study of a class of omps
lying close to the Hilbert space setting, the omps of projections of a finite-dimensional
Hermitian vector bundle. This class of omps enjoys many properties of the finite-
dimensional Hilbert space setting, including full state spaces, closure under a version
of tensor product, and the existence of an intrinsic topology. Yet important differences
exist, such as the structures being omps and not usually lattices. Moreover, these

1



2 John Harding and Taewon Yang

omps obtained from vector bundles lie as interesting examples in the intersection of
many current research themes. These include the categorical quantum mechanics of
Abramsky and Coecke [1], Harding’s orthomodular posets of decompositions [6], and
Wilce’s topological orthoalgebras [17].

This paper is organized in the following way. The second section provides some
background information on vector bundles, quantum logic, topological omps, omps
of decompositions, and categorical quantum mechanics. The third section provides a
basic investigation of the quantum logic and categorical quantum mechanics programs
in the setting of vector bundles. A more in-depth study of these omps of decompo-
sition would entail proving quite difficult theorems, such as versions of Gleason’s
theorem and Wigner’s theorem in the vector bundle setting.

2. Preliminaries

Definition 2.1. An orthomodular poset (omp) is a bounded poset P with bounds 0, 1
and a unary operation ⊥ such that

(1) ⊥ is order inverting and period two;
(2) x ∧ x⊥ exists and is 0, and x ∨ x⊥ exists and is 1;
(3) if x ≤ y⊥, then x ∨ y exists, and is written x⊕ y;
(4) if x ≤ y⊥, then x⊕ (x⊕ y)⊥ = y⊥.

An orthomodular poset that is a lattice is an orthomodular lattice (oml).

Examples of omps include Boolean algebras, the projection operators of a Hilbert
space, and small pathological examples constructed using Greechie diagrams [9].
There are also general techniques to construct omps such as from the idempotents
Id (R) of a ring R with unit, from the complemented pairs L(2) of elements of a
bounded modular lattice L, and from the direct product decompositions Fact X of
any algebra, topological space, or relational structure X. See [6] for details.

Definition 2.2. A state on an omp P is a map µ : P → [0, 1] such that

(1) µ(0) = 0 and µ(1) = 1;
(2) µ(x⊥) = 1− µ(x);
(3) x ≤ y⊥ ⇒ µ(x⊕ y) = µ(x) + µ(y).

A σ-additive state is one that is countably additive rather than finitely additive in (3).

This definition of a state plays a key role in the passage from the Hilbert space
treatment of quantum mechanics to the quantum logic treatment. In the Hilbert
space treatment, one associates to a quantum system a Hilbert space H. Observables
of the system, such as position and momentum, are self-adjoint operators A of H.
Pure states of the system are given by unit vectors in H, and time evolutions are
given by families of unitary operators on H.

The quantum logic approach is built around several key theorems. The spectral
theorem says that self-adjoint operators A correspond to σ-additive homomorphisms
mA from the Boolean algebra B(R) of Borel sets of the reals into the oml P(H) of
projection operators of H. Gleason’s theorem says that the states of H correspond to
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σ-additive states µ on the oml P(H). Born’s correspondence rule says the probability
of obtaining an outcome of the observable A in the Borel set B when the system is
in state µ is given by µ(mA(B)).

B(R)
mA // P(H)

µ // [0, 1].

Uhlhorn’s version of Wigner’s theorem [16] says that unitary operators on a real
Hilbert space H correspond to automorphisms of the oml P(H), the complex case
requiring also anti-unitary operators. This makes a bridge between the treatment
of time evolutions in the Hilbert space approach, and that in the quantum logic
approach.

We next consider the matter of compound systems. The following is a set of
fairly minimal, physically motivated conditions, that would be required for a tensor
product of omps. See [7, p. 790] for further discussion. In this definition we use x⊕y
both to indicate that x and y are orthogonal and to represent their join.

Definition 2.3. For omps A,B and C, we say f : A× B → C is a bilinear map if
for each a, a1, a2 ∈ A, and b, b1, b2 ∈ B

(1) f(a1 ⊕ a2, b) = f(a1, b)⊕ f(a2, b);
(2) f(a, b1 ⊕ b2) = f(a, b1)⊕ f(a, b2);
(3) f(1, 1) = 1.

Definition 2.4. A bilinear mapping f : A×B → C is an omp tensor product if for
all states µA, µB on A,B, there is a state ω on C with ω(f(a, b)) = µA(a)µB(b).

Compound systems in the Hilbert space approach are treated by taking the
tensor product H1⊗H2 as the space for the compound system. The projection lattice
P(H1 ⊗H2) is then an omp tensor product of P(H1) and P(H2). However, no such
tensor product exists for general omps, a true problem for the quantum logic approach
in the broad context. We turn next to the categorical quantum mechanics approach
of Abramsky and Coecke [1] built specifically to treat such compound systems.

Definition 2.5. A symmetric monoidal category is a category C equipped with a
bifunctor ⊗ : C × C → C and tensor unit I that satisfy certain coherence conditions
(see [11, p.162]). A dagger symmetric monoidal category is also equipped with a
contravariant functor † : C → C that is the identity on objects, and is compatible in a
natural way with the monoidal structure.

Abramsky and Coecke [1] formulated a version of quantum mechanics in a cer-
tain type of dagger symmetric monoidal category called a strongly compact closed
category. The idea was that quantum systems were the objects of the category, and
processes on the systems were its morphisms. Forming compound systems was taken
as the basic starting point, with the tensor product A⊗B of the category giving the
object for the compound system.

In their original formulation, questions, and a Born rule, were developed in the
setting of compact closed categories with biproducts. In this setting, and in somewhat
more general ones, a link to the quantum logic program is established in [7].
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Theorem 2.6. If C is a dagger biproduct category, then for any object A ∈ C, the
collection of binary dagger biproduct decompositions of A forms an omp.

Another topic of importance here is that of topological omps. There had been
a number of studies of topological omls, generalizing in an obvious way the notion
topological groups and lattices, and having all basic operations continuous. However,
these missed the primary example of topological structure on the oml P(H). For
instance, considering subspaces of R2, there is a sequence of rays Sθ making angle
θ with the x-axis T and converging in a natural sense to T . However, the sequence
Sθ ∧ T is constantly the origin, and does not converge to T ∧ T = T . A more subtle
notion of a topological omp due to Wilce [17] does capture this key example, and
will be the notion of interest here.

Definition 2.7. Let P be an omp and O = {(x, y) ∈ P 2 |x ⊥ y}. We say that P ,
equipped with a Hausdorff topology τ , is a topological omp if the following hold.

(1) The set O is closed.
(2) The operation ⊕ : O → P is continuous.
(3) The orthocomplementation ⊥: P → P is continuous.

For any Hilbert spaceH, the strong and weak operator topologies on P(H) agree,
and with this topology P(H) is a topological omp. In fact, this topological omp is
compact, a fact of some importance.

We turn next to our final topic of this preliminary section, some basics on vector
bundles. For further details, the reader should consult [2, 10].

Definition 2.8. Let E and X be topological spaces, π : E → X be continuous, and
suppose that each fiber π−1{x} is equipped with the structure of a real vector space.
This data is called a real vector bundle over X if for each x ∈ X, there is a natural
number k, a neighborhood U of x, and a homeomorphism

ϕ : U × Rk → π−1[U ]

such that ϕ : {y} × Rk → π−1{y} is a vector space isomorphism for all y ∈ U .

In general, the value of k in this definition depends one the point x. However, for
each k, the set {x ∈ X | dim(Ex) = k} for each k ∈ N is clopen. So if the base space
X is connected, then the dimensions of fibers remain constant. If all fibers have the
same dimension k ≥ 0, the bundle is called k-dimensional. An important example
of a k-dimensional vector bundle is the trivial bundle π : X × Rk → X where Rk is
given the usual topology and π is the projection onto the first coordinate.

Definition 2.9. Let π : E → X be a bundle. We say S ⊆ E is a subbundle of E if
the restriction π|S : S → X is a vector bundle and each of its fibers is a subspace of
the corresponding fiber of E. The set of all subbundles of E is denoted by Sub(E).

Definition 2.10. For a bundle π : E → X let E⊕E = {(u, v) ∈ E×E |π(u) = π(v)}.
A Hermitian metric 〈·, ·〉 on E is a continuous map

E ⊕ E → R
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which is a positive-definite inner product on each fiber of E. A bundle that is equipped
with a Hermitian metric is called a Hermitian bundle.

While there are examples of bundles that do not admit a Hermitian metric, it is
known that every bundle over a compact Hausdorff space X does admit a Hermitian
metric. Clearly the trivial bundle π : X × Rk → X has a Hermitian metric given by
the usual inner product in each fiber. When we speak of the trivial bundle, we shall
mean it to be equipped with this metric.

Definition 2.11. Let π : E → X be a bundle. A continuous map s : X → E is
called a global section if πs = idX . A global section s of a Hermitian bundle is called
normalized if s(x) is a unit vector for each x ∈ X.

Every bundle has a global section, namely the zero section s : X → E defined by
x; 0 for each x ∈ X. Also, every Hermitian bundle that has an everywhere non-zero
section s has a normalized global section obtained by normalizing the vector s(x) for
each x ∈ X. However, there are bundles that do not have everywhere non-zero global
sections, such as the familiar Möbius band [10].

Definition 2.12. An orthonormal basis for a Hermitian bundle over X is a set
{s1, . . . , sk} of global sections such that for each x ∈ X the set {s1(x), . . . , sk(x)} is
an orthonormal base of the fiber over x.

For a trivial bundle X × Rk, we let ẽ1, . . . , ẽk be the obvious orthonormal basis
and call this the standard basis of the trivial bundle. There are examples of Hermitian
bundles that have no basis. Indeed, it is known that a bundle has a basis if, and only
if, it is equivalent to a trivial bundle. Also known is that any bundle over a compact
Hausdorff space that is contractible to a point is equivalent to a trivial one.

Definition 2.13. Suppose s is an everywhere non-zero global section of a bundle
π : E → X. Then the subbundle ⋃

{[s(x)] |x ∈ X},

where [s(x)] is the subspace of the fiber Ex generated by s(x) for each x ∈ X, is called
the subbundle generated by the global section s and is denoted by [s].

While each everywhere non-zero global section gives rise to a one-dimensional
subbundle, the notions are not equivalent. The Möbius band is itself a one-dimensional
bundle, yet has no everywhere non-zero global section. Moreover, it is possible that
a bundle may not have any one-dimensional subbundles, for example the tangent
bundle over the unit sphere [13].

Definition 2.14. A bundle map between bundles π : E → X and π′ : F → X is a
map ϕ : E → F that is continuous, fiberwise linear, and satisfies π = π′ ◦ ϕ. The
category of bundles over X and their bundle maps is denoted by E (X). We let H (X)
be the category of Hermitian bundles and the bundle maps between them.

In the presence of a basis for a bundle, one can work with bundle maps via
matrices, much as one works with linear transformations of vector spaces. Here, we
let Mk×k(R) be the set of k × k real matrices with usual topology.



6 John Harding and Taewon Yang

Proposition 2.15. Let E be a vector bundle over X with a basis {s1 · · · , sk}. For
any bundle map ϕ : E → E, there is the continuous map ϕ̂ : X → Mk×k(R) with
ϕ̂(x) being the matrix for the linear map ϕx : Ex → Ex in the basis {s1(x), · · · , sk(x)}.

Constructions in the vector space setting, such as direct sum V ⊕W , duals V ∗,
function spaces Hom(V,W ), and tensor products V ⊗W , are transferred to the vector
bundle setting by performing them fiberwise, and topologizing them appropriately.
There are general results that state that these constructions enjoy properties of those
in vector spaces [10]. We consider one such construction in detail, the others are
similar.

Definition 2.16. For vector bundles π : E → X and π′ : F → X, let E ⊕ F be the
subspace of the product space E×F consisting of those (a, b) with π(a) = π′(b). Then
the map π ⊕ π′ : E ⊕ F → X defined in the obvious way is a bundle over X called
the Whitney sum.

General considerations show that the Whitney sum of bundles E ⊕ F gives a
biproduct in the category E (X), and with an obvious lifting of inner products, a
biproduct also in H (X). Similarly, tensor products ⊗ provide symmetric monoidal
structure for both categories. Fiberwise considerations also provide the following.

Proposition 2.17. The category H (X) of real Hermitian vector bundles is a strongly
compact closed categories with biproducts in the sense of Abramsky and Coecke [1].

Several remarks are in order. The Hermitian metric 〈·, ·〉 on a real bundle E is
a bilinear mapping from E ⊕ E to the tensor unit I, and this lifts to a bundle map
εE : E ⊗ E → I. This serves as the counit, and its adjoint the unit ηE : I → E ⊗ E,
of a compact closed structure on H (X) where each object is self dual. Verifying the
necessary commutativity of diagrams is fiberwise and follows as in [1].

The result also holds for complex Hermitian bundles, but uses conjugate bundles
exactly as they are used in showing that finite-dimensional complex Hilbert spaces
are strongly compact closed. Finally, we remark that modest conditions on X, such
as paracompactness, ensure a rich supply of Hermitian bundles over X. But this is
not needed in the statement of the theorem.

3. omps from Hermitian vector bundles

Here we consider omps constructed from Hermitian vector bundles, and their
situation in the quantum logic program. The first construction of an omp from
vector bundles was in Crown [5] and proceeded via Baer *-semigroups, but equivalent
constructions are available in more accessible ways that we now describe.

Definition 3.1. For a Hermitian vector bundle E, the endomorphisms of E form a
ring End(E) with involution † where addition is fiberwise addition, involution is the
fiberwise adjoint, and multiplication is composition. Self-adjoint idempotents of this
ring are called projections of E, and the collection of all such is P(E).

For a trivial bundle E over X with basis s1, . . . , sk, this endomorphism ring
can be realized as the ring of matrices Mk×k(C(X)) having continuous functions
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f : X → R as entries. Addition, multiplication and adjoint in this ring are done
componentwise. Constructing an omp from an involutive ring is a well-known process.

Proposition 3.2. For R a ring with involution ∗ and Id ∗(R) = {e | e = e2 = e∗},
there is a partial ordering ≤ on Id ∗(R) given by e ≤ f ⇔ ef = e = fe. With this
partial ordering and orthocomplementation e⊥ = 1− e, Id ∗(R) forms an omp.

Corollary 3.3. The projections P(E) of a Hermitian bundle E form an omp.

This is an obvious extension of the construction of an oml from the projections
of a Hilbert space. The projections of a Hilbert space correspond to closed subspaces,
and in the finite-dimensional case, simply to subspaces. An analogous result is true
also for bundles. For each projection p of a Hermitian bundle E, it is known that
the image of p is a subbundle of E (a non-trivial fact that uses idempotence [2]), and
for each subbundle M of E there is a unique projection pM of E whose image is M .
Further, the image of the orthocomplement 1 − p of p is the subbundle we denote
M⊥ of E given by

M⊥ =
⋃
{M⊥

x |x ∈ X},
where Mx is the fiber of M over x and M⊥

x is the orthogonal subspace of Mx in the
fiber Ex. This immediately gives the following.

Proposition 3.4. For a Hermitian bundle E, the collection Sub(E) of subbundles
of E forms an omp under set inclusion with the orthocomplementation M ; M⊥.
Further, this omp is isomorphic to the omp P(E).

The above proposition enables us to identify subbundles with their corresponding
projections. We will often use Sub(E) and P(E) interchangeably. This construction
of Sub(E) and P(E) can also be realized as the omp of †-biproduct decompositions
of an object E in the category of Hermitian vector bundles over X as described in
[7]. So the vector bundle setting provides an interesting case to study an example
of the categorical quantum mechanics program that differs from the base example of
finite-dimensional vector spaces, yet has much more interesting structure than some
toy models such as the category Rel of sets and relations.

Proposition 3.5. The omp Sub(E) of a Hermitian bundle E need not be a lattice.

Proof. Let E be the trivial 3-dimensional bundle over the the real unit interval [0, 1].
We will define four subbundles A,B,C and D of E by giving their fibers for each
time t in [0, 1]. Let the fiber A0 of A at time t = 0 be the x-axis in R3, let this rotate
around the y-axis at a constant rate until it becomes the z-axis at time t = 1/2, and
then let it stay at the z-axis until time t = 1. Let the fiber of B at time t be the
x− z plane for all times t from 0 to 1/2. At time t = 1/2 let this plane rotate around
the z-axis until it becomes the y − z plane at time t = 1. Let C be the z-axis at all
times t and let D be the x− z plane at all times t.

Then At is contained in Bt and Dt for all times t, and Ct is contained in Bt and
Dt for all times t. Thus A and C are lower bounds of B and D. It is clear that A
and C are incomparable, and that B and D are incomparable. For B and D to have
a greatest lower bound, it would have to be contained in B ∩D. But at time t > 1/2
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Bt ∩ Dt is one-dimensional. Since [0, 1] is connected, each subbundle has constant
dimension, so any non-trivial lower bound of B and D is one-dimensional. Clearly
then there is no greatest lower bound of B and D. �

We continue to investigate basic structural properties of these omps Sub(E).
We recall that a block of an omp is a maximal Boolean subalgebra. Some basics can
easily be determined about blocks of Sub(E), but matters can be quite delicate.

Proposition 3.6. Suppose E is a k-dimensional Hermitian bundle over a connected
compact Hausdorff space X.

(1) Each block of Sub(E) has at most k atoms.
(2) If X is contractible, then each block of Sub(E) has exactly k atoms.
(3) The blocks of even trivial bundles can have fewer than k atoms.

Proof. (1) If subbundles S and T of E are orthogonal, then for each x, their fibers
Sx and Tx are orthogonal subspaces of the k-dimensional space Ex. So there can
be at most k pairwise orthogonal non-zero subbundles of E. (2) Any bundle over a
compact contractible space is trivial, hence has an everywhere non-zero global section.
It follows that an atom of a block, which in general must be an atom of the omp, is
a one-dimensional subbundle. Its orthogonal subbundle has dimension k − 1 and a
simple induction applies. (3) Every bundle can be embedded as a subbundle into a
trivial bundle, and there are bundles that have no one-dimensional subbundles. �

In the absence of connectedness or compactness, one has difficulties establishing
the existence of atoms. When X is compact and connected, we can bound the size
of blocks in Sub(E). But some blocks can be of different sizes than others, and the
situation can involve highly complex questions about bundles. It is only in the case
of bundles over contractible spaces where matters are simple.

Definition 3.7. A subset of an omp P is compatible if it is contained in a block of
P . We say P is regular if every pairwise compatible subset of P is compatible.

Proposition 3.8. For any ring R, the omp Id (R) of its idempotents is regular, and
for any ∗-ring R, the omp Id ∗(R) of its projections is regular.

Proof. It is known that elements a, b of an omp are compatible iff there are pairwise
orthogonal elements x, y, z with a = x⊕ y and b = y⊕ z, and in this case the meet of
a, b is y. It is also known that elements x, y of Id (R) are orthogonal iff xy = yx = 0
and in this case x⊕ y = x + y. It follows from a simple calculation that if elements
a, b ∈ Id (R) are compatible, then they commute and their meet is ab. Conversely, if
a, b commute, then a− ab, ab, b− ab is a pairwise orthogonal set showing that a, b are
compatible. It is well known [14] that an omp is regular if {a, b, c} being compatible
implies {a, b ∧ c} is compatible, and it follows that Id (R) is regular. The argument
for a ∗-ring is the same, one has only to check various elements are self-adjoint. �

Corollary 3.9. For a Hermitian bundle E, the omp Sub(E) is regular.

We consider one final structural property of the oml P(H) that persists only in
a weakened form even in the setting of quite special bundles.
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Suppose H is a Hilbert space of dimension at least 3. Then for any atoms p, q
of P(H), there is an atom r that is orthogonal to both p and q. To see this, it is
enough to show this forH being R3 since any two atoms of P(H) belong to an interval
[0, s] that is isomorphic to P(R3). If p = q, we then take any atom beneath their
orthocomplement. On the other hand, if p 6= q, then p corresponds to a 1-dimensional
subspace spanned by a vector u, and q to a one dimensional subspace spanned by v.
Let w = u× v the usual cross product in R3. Then the subspace spanned by w is an
atom r that is orthogonal to both p, q.

This argument does not carry through even for trivial bundles over contractible
spaces. Suppose E is a 3-dimensional Hermitian bundle over a contractible space X.
Given two atoms p, q of Sub(E), there are everywhere non-zero global sections s, t
so that for each x ∈ X, the the span [s(x)] is the fiber px and the span [t(x)] is qx.
We can compute the cross product s× t of these global sections componentwise, and
the result is a global section. However s× t need not be everywhere non-zero, so will
not determine a 1-dimensional subbundle. With effort, one can however show the
following, whose technical proof involves a suitable choice of an everywhere non-zero
global section whose cross product does behave well with both s and t [18].

Proposition 3.10. For E the trivial 3-dimensional bundle over the space [0, 1], for
any two atoms p, q of Sub(E), there are atoms r, s with p ⊥ r ⊥ s ⊥ q.

In terms of Greechie diagrams, any two atoms of P(R3) can be connected by at
most two blocks, and any two atoms of Sub([0, 1]×R3) can be connected by at most
three blocks. We next turn our attention to the matter of topological omps in the
sense of Definition 2.7. The first result is a simple adaptation of the usual proof that
the endomorphisms of a finite-dimensional vector space form a C∗-algebra.

Proposition 3.11. For a vector bundle E over a compact space X, the endomor-
phisms End(E) form a C∗-algebra under the norm

‖ϕ‖ = sup{‖ϕx‖ |x ∈ X},
where ‖ϕx‖ denotes the operator norm of the fiber map ϕx on Ex for each x ∈ X.

In particular, for a vector bundle E over a compact space X, we have End(E)
is a topological ∗-ring in the obvious sense of being a ∗-ring with a topology making
the basic operations continuous.

Proposition 3.12. If R is a topological ∗-ring, then the projections P = Id ∗(R) are
a topological omp in the sense of Wilce.

Proof. Multiplication · : R2 → R is continuous. The set O is the intersection of the
closed sets {(e, f) | ef = 0} and {(e, f) | fe = 0} with the square P 2 of our omp
Id ∗(R), hence is a closed subset of P 2. The operations of orthocomplementation
⊥ and orthogonal sum are given from continuous operations on R, e⊥ = 1 − e and
e⊕ f = e+ f , hence are continuous on P . �

Corollary 3.13. For E a Hermitian bundle over a compact space X, there is a
complete metric space topology on Sub(E) making this a topological omp in the sense
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of Wilce. Further, if X is connected, and E is k-dimensional, then the set of all
m-dimensional subbundles of E is a clopen subspace of Sub(E).

Proof. Let R = End(E). Since Sub(E) ' P(E) and P(E) is the omp Id ∗(R), the
metric topology on R gives a metric topology on P(E) that transfers to Sub(E). The
metric on R is complete, and the limit of a sequence of self-adjoint idempotents is
a self-adjoint idempotent since adjoint and multiplication are continuous. So this
metric on Id ∗(R) is complete.

For a projection p, we have p = pM where M is the image of p. Then for each
x ∈ X the trace of px is the dimension of the fiber Mx. It is easily seen that the
map Tr(p) that assigns to each x ∈ X the trace of px is continuous and takes values
in {0, . . . , k}. So if X is connected, then it must be a constant function m for some
natural number 0 ≤ m ≤ k. Therefore, the trace map Tr may be viewed as a map
from P(E) to {0, . . . , k}, and as such is continuous. Thus each Tr−1{m} is a clopen
subspace of P(E) corresponding to the set of all m-dimensional subbundles. �

We see yet another difference between omps Sub(E) from a Hermitian bundle
over a compact space X and omps from the subspaces of a finite-dimensional Hilbert
space. While both have complete metric space topologies, the topologies on ones
from finite-dimensional Hilbert spaces are compact.

Proposition 3.14. The topological omp Sub(E) need not be compact.

Proof. Consider the three dimensional trivial bundle E = [0, 1]× R3. We produce a
sequence that has no convergent subsequence. For each natural number n, consider
the everywhere non-zero normalized global section un : [0, 1]→ R3 defined as follows.

un(x) = (
xn√

1 + x2n
,

1√
1 + x2n

, 0)

Then let [un] be the 1-dimensional subbundle determined by un. Using the standard
base {ẽ1, ẽ2, ẽ3} for the bundle E, notice that the ij-component of the 3 × 3 matrix
representing the bundle map p[un], when i = 1 and j = 1, is the function

fn(x) =
x2n

1 + x2n

The sequence {fn}n∈N in C([0, 1]) does not contain any convergent subsequence since
any such would converge to a function taking value 1

2
at 1 and value 0 otherwise. It

follows that the sequence p[un] contains no convergent subsequence. �

We next turn our attention to states on these omps built from Hermitian bundles.
First, we discuss notation surrounding states on the omp of projections of Rn.

Definition 3.15. For a unit vector v in a finite-dimensional inner product space V ,
define a state µv : P(V )→ [0, 1] by setting

µv(p) = ‖p(v)‖2

In the following, we consider a probability measure on a topological space X,
meaning a probability measure on the Baire σ-algebra of X.
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Proposition 3.16. Let E be a Hermitian bundle over a compact Hausdorff space
X. Then for each probability measure m on X, and each global section f of E that
is non-zero and normalized on the support of m, there is a continuous state µf,m on
P(E) given by

µf,m(p) =

∫
X

µf(x)(px)dm

Proof. The correspondence x ; ‖p(f(x))‖2 defines a nonnegative, continuous, and
integrable map with ‖p(f(x))‖ ≤ 1, showing that µf,m is well-defined. Clearly,
µf,m(0) = 0. Let S be the support of the measure m. As f is normalized on S, then
µf,m(idE) = 1. Also, for any projection p, on the support S we have ‖(1−p)(f(x))‖2 =
‖f(x)‖2 − ‖p(f(x))‖2 = 1 − ‖p(f(x))‖2 showing that µf,m(p⊥) = 1 − µf,m(p). If
p ⊥ q, as ‖(p + q)(f(x))‖ = ‖p(f(x))‖2 + ‖q(f(x))‖2, it follows that µf,m(p ⊕ q) =
µf,m(p) + µf,m(q). Finally, if pn is convergent to p in P(E), then the convergence
µf,m(pn)→ µf,m(p) follows from the the inequality ‖pn(f(x))− p(f(x))‖ ≤ ‖pn − p‖
for all x ∈ X and m(X) = 1. �

The set of states of any omp is convex, meaning that if µ1 and µ2 are states, then
λµ1 + (1− λ)µ2 is also a state, for any 0 ≤ λ ≤ 1. Further, it is known [14] that this
convex set is compact. Its extreme points, that is, states that cannot be expressed
as a non-trivial convex combination, are called pure states. For P(H), these are the
states µv given by unit vectors.

Proposition 3.17. If the state µf,m is pure, then m is a point charge.

Proof. For any A with m(A) > 0 we obtain a state µf,m,A(p) = 1
m(A)

∫
A
µf(x)(px) dm

If m is other than a point charge, there is A so that both A and its complement A′

have positive measure. Then µf,m = m(A)µf,m,A +m(A′)µf,m,A
′
. �

It was shown in [18] that for the trivial bundle E over [0, 1], each µf,m with m
a point charge is pure. It was also shown that each state on this P(E) that attains
value 1 on some atom is continuous. However, unlike the Hilbert space setting, there
are states on the trivial bundle E that attain value 1 on an atom and are not pure
[18].

Definition 3.18. A density operator on Rn is a positive self-adjoint operator that
has trace 1. A density map on a Hermitian bundle E over a space X is a bundle
endomorphism ρ ∈ End(E) such that ρx is a density operator on Ex for each x ∈ X.

Proposition 3.16 has an obvious extension.

Proposition 3.19. Let E be a Hermitian bundle over a compact Hausdorff space X.
Let m be a probability measure on X and ρ be a density map on E. Then there is a
continuous state µρ,m on P(E) given by

µρ,m(p) =

∫
X

Tr(ρ p)x dm
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Gleason’s theorem [9] provides that for a Hilbert space H of dimension more
than 2, that the density operators on H correspond to states on P(H). We ask the
following questions about states on omps built from bundles.

Problem 1. Suppose E is a Hermitian bundle over a compact connected space X.
Characterize the states on P(E). Are all states continuous? Do all states arise from
density maps? What are the pure states?

In the previous section we noted that a version of Wigner’s theorem characterizes
automorphisms of the omp P(H) as those maps built in an obvious way from a unitary
endomorphism of the real Hilbert space H. An endomorphism U of a Hermitian
bundle E over X is called unitary if it is invertible and its adjoint U † is its inverse,
or equivalently, if each Ux is unitary. The following is easily established.

Proposition 3.20. Suppose E is a Hermitian bundle over X and U is a unitary
endomorphism of E. Then the map Û : P(E) → P(E) defined by Û(p) = UpU †

is an automorphism of the omp P(E). Further, the automorphisms Û arising from
unitary maps form a subgroup of the automorphism group of P(E).

We come to the second of our problems.

Problem 2. For a Hermitian bundle E, describe its automorphism group Aut P(E).
Does every automorphism of P(E) arise from a unitary bundle map of E?

Remark 3.21. For a Hermitian bundle π : E → X over a compact connected
space X, it appears there is another way to form automorphisms of P(E). Given a
homeomorphism α of X to itself, we define a mapping α̂ : E → E in the following
way. For a element (v, x) in the fiber over x choose a neighborhood U of x for which
the restrictions E|U and E|αU are trivial. Then consider the trivializing maps

ϕU : U × Rn → π−1[U ]

ϕαU : αU × Rn → π−1[αU ]

We then define α̂ by requiring that it send (v, x) to the element ϕαU ◦ (α× id) ◦ ϕ−1U
applied to (v, x). Note that α̂ is not a bundle map, but for any projection p, the map
α̂−1 ◦ p ◦ α̂ is a bundle map, and is seen to be a projection. It is also easily seen that
Φα = α̂−1 ◦ (·) ◦ α̂ is an automorphism of P(E). However, Φα may be induced by a
unitary bundle map, we do not know.

Besides questions about states and automorphisms, there are questions involving
the relationship between the two. For each state µ on P(H) that attains value 1 on
some one-dimensional subspace [u] spanned by a vector u, a basic fact is that the
value µ([v]) for any vector v depends only on the angle between u and v. So such a
state µ is invariant under any rotation, i.e. action of a unitary map, that leaves u
fixed. This is an essential point in Piron’s discussion of states [15].

Problem 3. Suppose µ is a state on P(E) that has a value 1 on some projection q

onto a one-dimensional subbundle of E. If U is a unitary bundle map on E where Û
leaves q fixed, is µ(Û(p)) = µ(p) for all projections p of E?
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In Definition 2.4, we gave a definition of a tensor product of omps P and Q.
This involved the existence of a bilinear map from P × Q into the tensor product
P ⊗Q that had certain properties, especially with respect to the lifting of states on
P and Q to a state on P ⊗ Q. For bundles E and F over X, we have a bundle
tensor product E ⊗ F constructed from E and F . Also, for projections p ∈ P(E)
and q ∈ P(F ), there is the natural projection on E ⊗ F , written p ⊗ q, namely, the
usual tensor product of the bundle maps p and q. The following is straightforward.

Proposition 3.22. For Hermitian bundles E and F over a compact space X, the
map Φ : P(E)×P(F )→ P(E⊗F ) defined by Φ(p, q) = p⊗ q is a bilinear omp map.

It is not difficult to verify that if states µE and µF on P(E) and P(F ) are given
by density maps on E and F respectively, then there is a state ω on P(E ⊗F ) given
by a density map with ω(p ⊗ q) = µE(p)µF (q) for all projections p ∈ P(E) and
q ∈ P(F ). However, to fully answer the following problem, we would need to know
that all states on P(E) and P(F ) arise from density operators, or a way to extend
such states that do not.

Problem 4. Is Φ : P(E)× P(F )→ P(E ⊗ F ) an omp tensor product?

We note that this problem could be bypassed by extending the notion of a
quantum logic to allow for a specified set of states, and to then specify this set of
states for P (E) to be those given by density maps. It remains of interest to know
whether such measures are necessary.
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