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Abstract This is the second part of a two-part paper on Birkhoff systems. A Birkhoff sys-
tem is an algebra that has two binary operations · and +, with each being commutative,
associative, and idempotent, and together satisfying x · (x + y) = x + (x · y). The first
part of this paper described the lattice of subvarieties of Birkhoff systems. This second
part continues the investigation of subvarieties of Birkhoff systems. The 4-element subdi-
rectly irreducible Birkhoff systems are described, and the varieties they generate are placed
in the lattice of subvarieties. The poset of varieties generated by finite splitting bichains is
described. Finally, a structure theorem is given for one of the five covers of the variety of
distributive Birkhoff systems, the only cover that previously had no structure theorem. This
structure theorem is used to complete results from the first part of this paper describing the
lower part of the lattice of subvarieties of Birkhoff systems.

Keywords Birkhoff system · Variety · Splitting · Projective · Płonka sum · Lallement sum

1 Introduction

The first part of this paper [1] dealt with a description of the lattice L(BS) of subvarieties
of Birkhoff systems. All notation and results from that paper will be carried over here. In
particular, BS is the variety of Birkhoff systems, and DB, mDB, jDB are the varieties of

! John Harding
jharding@nmsu.edu

Anna B. Romanowska
A.Romanowska@mini.pw.edu.pl

1 Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003, USA

2 Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662
Warsaw, Poland

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11083-016-9392-1-x&domain=pdf
mailto:jharding@nmsu.edu
mailto:A.Romanowska@mini.pw.edu.pl


Order

distributive Birkhoff systems, those that satisfy both distributive laws, and the varieties of
meet-distributive and join-distributive Birkhoff systems.

It was shown in the first part that the poset S of finite, subdirectly irreducible, weakly
projective bichains is embedded in L(BS). This poset S is infinite, and has many interesting
properties. The second section of this paper describes properties of this poset S . In the third
section we describe all 4-element subdirectly irreducible Birkhoff systems, and place the
varieties they generate in L(BS).

The fourth section gives a structure theorem for the largest subvariety V (S3m ,S3j) of
BS that does not contain either mDB or jDB. We show that each element of this vari-
ety is obtained from its subalgebras that are lattices using a generalization of Płonka
sums known as Lallement sums [9]. This result is specialized to obtain a structure theo-
rem for the variety V (3n) generated by the bichain 3n. It follows that V (S3m ,S3j) is the
Mal’cev product [5] L ◦ SL of the varieties L of lattices and SL of semilattices within the
variety BS.

In the fifth section, the results of the fourth are applied to describe the finite subdirectly
irreducible algebras that belong to the variety V (3n). These are shown to be the bichains
2l, 2s, 3d, 3n, and one additional 4-element bichain we call 4n. This allows us to give an
equational axiomatization of the variety V (3n), and ultimately, to complete portions of the
description of the lattice of subvarieties of BS left open in the first part of this paper [1].

The final section contains a list of open problems. The reader should consult the first part
of this paper [1] for further background, and all notions not explicitly defined here.

2 The Poset S

In this section, we consider the structure of the poset S of finite subdirectly irreducible,
weakly projective bichains. We begin by recalling the definition from the first part of the
paper [1, Def. 4.8].

Definition 2.1 Let S be the set of all finite, subdirectly irreducible, weakly projective
bichains with meet order 1 <· · · · <· n for some n, and partially ordered by setting C ≤ D

if C is isomorphic to a subalgebra of D.

A recursive description of the finite subdirectly irreducible, weakly projective bichains
was given in [2, Sc. 6]. In what follows, the greatest element of the join reduct of a bichain
will be called its join top and the smallest element (or smallest two elements) of the join
reduct its join bottom.

Theorem 2.2 The set of all n-element weakly projective subdirectly irreducible bichains
can be partitioned into the following groups:

An is the set of all n-element bichains C with n as the join top element and such that
C \ {n} is subdirectly irreducible and weakly projective and not having n − 1 as its
join top.

Bn is the set of all n-element bichains C with n as the join bottom and such that C \{n} is
subdirectly irreducible and weakly projective and not having n−1 as its join bottom.

Cn is the set of all n-element bichains C with 1 <+ n as the join bottom and such that
C \ {1, n} is subdirectly irreducible and weakly projective and not having n− 1 as its
join bottom.
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Using this recursive description, the bottom part of the poset S is constructed in Fig. 1.
We also have the following result given in [2].

Corollary 2.3 ([2]) The number, up to isomorphism, of subdirectly irreducible, weakly
projective bichains with n elements is the (n+ 1)st Fibonacci number.

We consider further properties of the poset S .

Proposition 2.4 Consider the groups of bichainsAn, Bn and Cn of Theorem 2.2 in regards
to the partial ordering of S .

(1) Each member ofAn+1 covers a member of Bn or Cn.
(2) Each member of Bn+1 covers a member ofAn or Cn.
(3) Each member of Cn+1 covers a member of Bn.

Proof Suppose C is an (n + 1)-element bichain whose meet order is 1 <· · · · <· n + 1.
Lemma 6.5 of [2] shows that C ∈ An+1 if and only if n + 1 is the top of the join order of
C and C \ {n+ 1} belongs to Bn ∪ Cn. Lemma 6.6 of [2] shows that C ∈ Bn+1 if and only
if n + 1 is the bottom of the join order of C and C \ {n + 1} belongs to An ∪ Cn. Lemma

Fig. 1 The bottom portion of the poset S of finite, subdirectly irreducible, weakly projective bichains
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6.7 of [2] shows that C ∈ Cn+1 if and only if 1 <+ n+ 1 is the bottom of the join order of
C and C \ {1, n+ 1} is isomorphic to a member of An−1 ∪ Cn−1. The first two statements
follow immediately.

For the third, suppose C ∈ Cn+1. By Lemma 6.7 of [2], C \ {1, n+ 1} is isomorphic to a
member of An−1 ∪ Cn−1. But C \ {1} is formed from C \ {1, 2} by placing a new element
n+ 1 on the top of its meet order and bottom of its join order. Hence, by Lemma 6.6 of [2],
C \ {1} is isomorphic to a member of Bn.

Remark 2.5 We refer to the members of S with n elements as the nth level of S . The result
above shows that each member of the (n+ 1)st level covers a member of the nth level, and
Lemmas 6.5 and 6.6 of [2] show that each member of the nth level is covered by a member
of the (n+ 1)st level. We do not however know whether the only covers of a member of the
nth level belong to the (n + 1)st level, i.e. if the ordering of the poset is determined by the
containments between members of adjacent levels. In the portion of the poset depicted in
Fig. 1 this is indeed the case.

We next introduce another partition of S that will help to describe some of the sym-
metries of S . For this, we recall that there are four types of distributivity of bichains. A
bichain may be (fully) distributive (i.e. both join- and meet-distributive), it may be only
join-distributive, or only meet-distributive, or may be non-distributive.

Definition 2.6 The distributivity type of a bichain A depends on the kinds of distributivity
of the 3-element subbichains of A which are not fully distributive. The type is t, if all such
subbichains are isomorphic to 3t, for a unique t ∈ {j,m, n}, it is tu, if they are isomorphic
to precisely two 3t and 3u of them (i.e. t, u ∈ {j,m, n}), and finally it is jmn, if A contains
3-element subbichains of all three types.

In Fig. 1, the only distributive bichains of S are the two 2-element bichains of the second
level. Each of the bichains of the third level has a singular type (j, n and m from left to
right). All bichains of the fourth level have a double type (jn, jn, jm,mn,mn from left to
right).

Definition 2.7 For each bichainA ∈ S , the dualAd ofA is isomorphic to a unique member
of S we call Aδ . This defines a map δ : S → S we call the duality map.

Clearly δ is an automorphism of the poset S that is of period two. The following observa-
tion about the interaction of δ with distributivity types follows immediately from [1, Prop.
2.2].

Proposition 2.8 Suppose A is a bichain in S .

(1) A has j in its type if, and only if, Aδ has m in its type.
(2) A has m in its type if, and only if, Aδ has j in its type.
(3) A has n it its type if, and only if, Aδ has n in its type.

So the duality map δ takes a bichain of type jn to one of mn, one of type jm to perhaps a
different bichain of type jm, and one of type jmn to one of type jmn, and so forth. The axis
of the symmetry δ goes through the trivial bichain of the first level, the bichain 3n on the
third level, and the bichain B with the join-reduct 1324 in the middle of the fourth level.
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Note that both 3n and B are self-dual. Other self-dual bichains are centered in the middle of
Fig. 1 as well.

Lemma 2.9 Let A be an n-element bichain whose meet order is given by 1 <· · · · <· n.
Then the addition of one new element to A will change the distributivity type of A according
to the following rules.

(1) The addition of a new element n+ 1 on the top of both the meet and join orders of A
results in a possible addition of only j to the type of A.

(2) The addition of a new element n + 1 on the top of the meet order and bottom of the
join order of A results in a possible addition of only n to the type of A.

(3) First renumber elements of A as 2, 3, . . . , n + 1 in place of 1, 2, . . . , n. The addition
of a new element 1 to A on the bottom of both the meet and join orders results in a
possible addition of only m to the type of A.

Proof This is obvious from the definition of the type of a bichain, and the specific nature
of the bichains 3m, 3j and 3n.

Definition 2.10 For n ≥ 3, define recursively bichains An and Bn by setting A3 = 3j and
B3 = 3n, and then for n ≥ 3 defining

An+1 is built from Bn by method (1) of Lemma 2.9,
Bn+1 is built from An by method (2) of Lemma 2.9.

Then set JN = {An,Bn | n ≥ 4}.

In Fig. 1, JN consists of two left-most bichains from each level.

Proposition 2.11 For n ≥ 3, the join orders of An and Bn are:

An: n − 1 <+ n − 3 <+ n − 5 <+ · · · <+ n − 4 <+ n − 2 <+ n.
Bn: n <+ n − 2 <+ n − 4 <+ · · · <+ n − 5 <+ n − 3 <+ n − 1.

Further, each An belongs toAn and each Bn belongs to Bn .

Proof That the join orders of An and Bn have the indicated forms is a simple induction
based on their definitions. It is easily seen that each is subdirectly irreducible with their
minimal congruence generated by collapsing the pair (1, 2). Also, it is easily seen from
the forms of the join orders, decreasing, then increasing, that none can contain a bichain
isomorphic to 3d. Thus each An and Bn is a weakly projective bichain, hence a member of
S . From the definitions of An and Bn it is clear that An belongs to An and Bn to Bn for
n ≥ 3.

Proposition 2.12 The bichains in JN form a subposet of S whose members all have
distributivity type jn.

Proof This follows by a simple induction using Definition 2.10 and Lemma 2.9 once noting
that A4 and B4 have distributivity type jn.

Definition 2.13 Let MN be the set of bichains of S consisting of images of members of
JN under the duality map δ.
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In Fig. 1, members ofMN are the two rightmost members of each level. The following
is immediate from the Definition 2.13 and Proposition 2.8.

Corollary 2.14 The bichains in MN form a subposet of S whose members all have
distributivity type mn.

We have previously described the distributivity types of members of the first three levels.
We next describe the distributivity types of all members of higher levels.

Proposition 2.15 For n ≥ 4, each member of the nth level of S that is not a member of
JN orMN has distributivity type jmn.

Proof The proof is by induction on the level n. For n = 4 this is valid because the only
member of the 4th level not belonging to either JN orMN is the bichain B in the middle,
and it has type jmn.

Suppose our result holds for the nth level, and that C is a bichain in S with n + 1
elements. If C contains a bichain isomorphic to one with type jmn, then C also has type jmn.
So we may assume that C only covers members of the nth level belonging to either JN or
to MN . We assume that C only covers members belonging to JN , the argument in the
other case follows using the duality map δ. Since C covers only members of the nth level
belonging to JN , then C covers only the bichains An and Bn of the nth level. We consider
several cases.

Suppose C ∈ An+1. Proposition 2.4 (1), with the assumption that C covers only An

or Bn, provides that C covers Bn, and is built from Bn by adding a new element to the
top of both the join and meet order of Bn. Thus C = An+1 and therefore belongs to
JN .

Suppose C ∈ Bn+1. Proposition 2.4 (2), with the assumption that C covers only An or
Bn, provides that C covers An, and is built from An by adding a new element to the top of
the meet order and bottom of the join order of Bn. Thus C = Bn+1 and therefore belongs to
JN .

Suppose C ∈ Cn+1. Proposition 2.4 (3), with the assumption that C covers only An or
Bn, provides that C covers Bn, and is built from Bn by adding a new element to the bottom
of the meet and join order of Bn. Then C clearly has a subalgebra isomorphic to 3m. Thus
the type of C is jmn.

Theorem 2.16 The set of all bichains of S in levels 4 or higher, can be partitioned into
three disjoint groups:

(1) JN of distribuivity type jn;
(2) MN of distributivity type mn;
(3) JNM of distributivity type jmn.

Proof This follows directly from Proposition 2.12, Corollary 2.14, and Proposition 2.15.

Corollary 2.17 The lattice L(BCh) of subvarieties of BCh contains as subposets the three
posets JN , MN and JMN . Each member of JN contains the variety V (3j, 3n) and
is contained in the splitting variety of 3m; each member of MN contains the variety
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V (3m, 3n) and is contained in the splitting variety of 3j; and each member of JMN
contains the variety V (3j, 3m, 3n).

3 4-element Subdirectly Irreducibles

Up to isomorphism, there are two 2-element subdirectly irreducible members of BS, both
of which are bichains, and four 3-element subdirectly irreducible members of BS, all of
which are bichains. These facts are easily checked by hand. Using Sage in conjunction with
a universal algebra package from Peter Jipsen, we obtained the following.

Proposition 3.1 Up to isomorphism, there are 16 4-element subdirectly irreducible mem-
bers of BS. Of these, 12 are bichains, the five weakly projective bichains of Fig. 1 and
the seven bichains given in Fig. 2. The other four 4-element subdirectly irreducibles are
described in Fig. 3.

Figure 3 shows the meet and join orders of two of the four 4-element subdirectly irre-
ducible members of BS that are not bichains. The other two subdirectly irreducibles that are
not bichains are the duals of the two shown, and thus have Boolean lattices for their meet
orders and chains for their join orders.

Proposition 3.2 The bichain 4n of Fig. 2 generates the variety V (3n), the bichainsM1 and
M2 generate the variety mDB and the bichains J1 and J2 generate the variety jDB. The
varieties V (E) and V (F) both properly contain V (3j, 3m, 3n) and are incomparable to one
another.

Proof Clearly 4n has a subalgebra isomorphic to 3n, so V (3n) ⊆ V (4n). From earlier
results, the bichain 3d belongs to V (3n), hence so also does the product 3n × 3d. Remov-
ing the element (3, 1) from this product produces a subalgebra T of it. Then there is a
congruence φ of T that collapses the following pairs of elements: (3, 3) and (3, 2), and
(1, 1) and (2, 1). One can check that the quotient T/φ is isomorphic to 4n. It follows that
V (4n) ⊆ V (3n), hence 4n generates this variety.

It is easily checked that M1 and M2 satisfy (mD) and contain 3m, hence generate the
varietymDB. Similarly J1 and J2 satisfy (jD) and contain 3j, hence generate the variety jDB.
Both E and F have all of 3m, 3j and 3n as subalgebras. Thus both V (E) and V (F) contain
the variety V (3m, 3j, 3n). To see this containment is strict, consider the equation (χ) below.

xz(u+ y)(xy + u+ z) = xz(u+ y)(zy + u+ x). (χ )

Fig. 2 The 4-element subdirectly irreducible bichains with meet order 1 <· 2 <· 3 <· 4 that are not weakly
projective
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Fig. 3 Two 4-element subdirectly irreducibles that are not bichains. The other two are their duals

One checks that (χ) is valid in E, hence valid in all 3-element bichains, and fails in F .
Since E and F are isomorphic to the duals of one another, it follows that (χd) holds in F

and fails inE. These results imply that both V (E) and V (F) properly contain V (3j, 3m, 3n)
and are incomparable to one another.

Proposition 3.3 Consider the subdirectly irreducible algebra G shown in Fig. 3. Then G

and its dualGd generate varieties that properly contain V (3n), do not contain either V (3m)
or V (3j), are incomparable to one another, and are not subvarieties of BCh.

Proof One easily checks that 3n is isomorphic to a subalgebra of G, and that 3m and 3j
are not. So V (G) contains V (3n), and since 3m and 3j are splitting, V (G) does not contain
either V (3m) or V (3j). Since 3n is isomorphic to its own dual, and 3m and 3j are isomorphic
to the duals of one another, these same statements hold for the variety V (Gd). To see that
V (G) is not contained in BCh, note that the equation (BCh4) from the first part of the paper
[1] that is valid in all bichains fails in G by setting x = 1, y = 3, and z = 4. The same
reasoning with the dual of (BCh4) shows V (Gd) is not contained in BCh. Finally, that V (G)

and V (Gd) are incomparable follows from considering the following equation.

y(x + y)(y + z) = y(y + xz). (κ)

This equation, given by the Universal Algebra Calculator, holds in G but not in Gd . So its
dual equation holds in Gd but not in G.

Proposition 3.4 Consider the subdirectly irreducible algebra H of Fig. 3. Then H and
its dual Hd generate varieties that properly contain V (3m, 3j), do not contain V (3n), are
incomparable to one another, and are not contained in BCh.

Proof One easily checks that 3m and 3j are isomorphic to subalgebras of H , and that 3n
is not. It follows that V (H) contains V (3m, 3j), and as 3n is splitting, that V (H) does not
contain V (3n). Since 3n is isomorphic to its own dual and 3m and 3j are isomorphic to the
duals of one another, the same comments hold for the variety V (Hd). To see that V (H)

is not contained in BCh, and therefore properly contains V (3m, 3j), consider the equation
(BCh5) from [1]. This equation holds in all bichains, but fails in H with x = 1, y = 2,
and z = 4. Similar comments hold for V (Hd) using the dual of (BCh5). Finally, to see that
V (H) and V (Hd) are incomparable, consider the following equation.

z(x + y)(y + z) = z(y + xz). (λ)

This equation, given by the Universal Algebra Calculator, holds in H but not in Hd . So its
dual equation holds in Hd but not in H .
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Using Sage in conjunction with a universal algebra package there are, up to isomorphism,
125 subdirectly irreducible 5-element algebras in BS. We have not explored these further.

4 A Structure Theorem

In this section we give a structure theorem for the variety V (S3m ,S3j), and in particular for
its subvariety V (3n), by showing that each algebra A in this variety is built in a manner
somewhat like a Płonka sum from a family of lattices that are subalgebras of A. We begin
with several definitions and lemmas.

Definition 4.1 LetA be a Birkhoff system and u, v ∈ A. If u ≤· v, let [u, v]· be the interval
in the meet semilattice reduct of A, and if u ≤+ v, let [u, v]+ be the interval in the join
semilattice reduct of A.

Our key notions now follow.

Definition 4.2 Let A be a Birkhoff system. We say that a subset S ⊆ A is a sublattice of A
if S is a subalgebra of A that is a lattice. We say that S is a convex sublattice of A if S is a
sublattice of A and is convex in each semilattice reduct of A.

Our setting of interest will be the variety V (S3m , S3j) defined by the splitting equations
of the bichains 3m and 3j. Thus a Birkhoff system belongs to V (S3m ,S3j) if, and only if, it
contains no subalgebra isomorphic to either 3m or 3j. See [1] for a complete account.

Lemma 4.3 Assume that A belongs to the variety V (S3m ,S3j). Let a, b ∈ A. If a ≤· b and
a ≤+ b, then the intervals [a, b]· and [a, b]+ coincide and form a convex sublattice of A.

Proof We first show that each element x in the interval [a, b]· belongs to [a, b]+. Symmetry
then shows the other inclusion. If x = a or x = b or a = b, then there is nothing to show.
Suppose that a <· x <· b. Since a + b = b, the following inequalities hold:

x ≤+ a + x ≤+ a + b + x = b + x. (4.1)

Also, a <· x <· b gives ax = a and xb = x. Using Birkhoff’s equation (BS), we then
have a(a + x) = a + ax = a, x(x + a) = x + xa = x + a, x(x + b) = x + xb = x, and
b(b + x) = b + xb = b + x. This gives the following inequalities:

a ≤· a + x ≤· x ≤· b + x ≤· b. (4.2)

Suppose a ≮+ x. Then x <+ a + x. Also, as we have a <+ b, we cannot have b <+ x,
so x <+ b + x. The strictness of these inequalities in conjunction with (4.2) provides
a + x <· x <· b + x. Then (4.1) provides x <+ a + x <+ b + x. This gives a subalgebra
of A that is isomorphic to 3j, contrary to our assumption. Hence a <+ x.

Suppose x ≮+ b. Then b <+ b + x. Also, as a <+ b, we cannot have x <+ a, so a <+
a + x. The strictness of these inequalities in conjunction with (4.2) gives a <· b + x <· b.
Then (4.1) provides a <+ b <+ b + x. This gives a subalgebra of A that is isomorphic to
3m, contrary to our assumption. Hence x <+ b.

We have shown that if a ≤· b and a ≤+ b, then the intervals [a, b]· and [a, b]+ are
equal. Now we will show that the partial orderings≤· and≤+ agree on these equal intervals.
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Suppose that x, y ∈ [a, b]· and x ≤· y. Then x, y ∈ [a, b]+. So we have a ≤· y and a ≤+ y.
Therefore, by the first part of the proof, applied to a, y, the intervals [a, y]· and [a, y]+
are equal. Then since x ≤· y we have x ∈ [a, y]·. Hence x ∈ [a, y]+, giving x ≤+ y. A
symmetrical argument shows that x ≤+ y implies x ≤· y. So the partial orderings ≤· and
≤+ agree on the two equal intervals. It follows that these intervals form a convex sublattice
of A.

Definition 4.4 For a Birkhoff system A, define a binary relation θ on A by setting a θ b if
a and b generate a sublattice of A.

While this relation is defined on any Birkhoff system, it is for those A in V (S3m ,S3j)
that it enjoys good properties.

Theorem 4.5 IfA ∈ V (S3m , S3j), then θ is a bisemilattice congruence ofA, the equivalence
classes of θ are convex sublattices, and the quotient A/θ is a semilattice.

Proof On any Birkhoff system, θ is reflexive and symmetric. To show that it is transitive,
suppose that a θ b and b θ c. This means that {a, b} and {b, c} generate sublattices of A.
Then, writing x ≤ y to mean that both x ≤· y and x ≤+ y hold, we have the following:

ab ≤ a, b ≤ a + b, (4.3)

bc ≤ b, c ≤ b + c. (4.4)

Next, we note that the following holds for any elements of any Birkhoff system
[2, Lemma 2.7]. The proof is a simple application of Birkhoff’s equation (BS).

abc ≤ a + b + c. (4.5)

This equation, together with Lemma 4.3, implies that the intervals [abc, a + b+ c]· and
[abc, a+b+c]+ coincide and form a convex sublattice of A. We will show that a, c belong
to this sublattice, giving a θ c.

We first establish the following:

ab + abc ≤· ab ≤· b, (4.6)

ab ≤+ ab + abc ≤+ b. (4.7)

It is a simple consequence of (BS) that x+ xy ≤· x. Applying this with x = ab and y =
bc yields the first inequality in (4.6). The second inequality in (4.6) is trivial, as is the first
inequality in (4.7). For the second inequality in (4.7), note (BS) implies x + xy ≤+ x + y,
and this yields ab + abc ≤+ ab + bc. Since (4.3) and (4.4) give ab, bc ≤+ b, the second
inequality in (4.7) follows.

Since A has no subalgebra isomorphic to 3j, (4.6) and (4.7) imply that the elements
ab + abc, ab, and b cannot all be distinct. It is a simple matter to see that this implies
ab+ abc = ab. It is clear that abc ≤· ab ≤· b. Further, the equality ab+ abc = ab, along
with (4.3), give abc ≤+ ab + abc = ab ≤+ b. We therefore have

abc ≤ ab ≤ b. (4.8)

Dually, using the assumption that A does not contain a subalgebra isomorphic to 3m, we
obtain

b ≤ a + b ≤ a + b + c. (4.9)
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This and (4.3) give

abc ≤ ab ≤ a, b ≤ a + b ≤ a + b + c. (4.10)

It follows that a belongs to the interval subalgebra [abc, a + b + c], and by symmetry,
that c also belongs to this interval subalgebra. Thus a, c generate a sublattice of A, showing
a θ c.

To show that θ is compatible with both bisemilattice operations, assume that a, a′, b, b′ ∈
A and that both a θ a′ and b θ b′. Then a, a′ generate a sublattice of A. So by Lemma 4.3,
they lie in the convex sublattice [aa′, a + a′] of A. Let x = aa′ and x′ = a + a′. Similarly,
let y = bb′ and y′ = b + b′. We then have

x ≤ a, a′ ≤ x′, (4.11)

y ≤ b, b′ ≤ y′. (4.12)

Note that Birkhoff’s equation (BS) is easily seen to imply pq ≤· p+q and pq ≤+ p+q,
hence pq ≤ p + q for any p, q ∈ A. Thus

xy ≤ x + y, (4.13)

x′y′ ≤ x′ + y′. (4.14)

Also, since · preserves ≤· in each coordinate, and + preserves ≤+ in each coordinate,
(4.11) and (4.12) with (4.13) and (4.14) give

xy ≤· ab, a′b′ ≤· x′y′ ≤· x′ + y′, (4.15)

xy ≤+ x + y ≤+ a + b, a′ + b′ ≤+ x′ + y′. (4.16)

Thus xy, x′ + y′ form a 2-element sublattice of A. By Lemma 4.3, these elements gen-
erate a convex sublattice of A. Since ≤· and ≤+ agree on this sublattice, (4.15) says that ab
and a′b′ belong to this convex sublattice, and (4.16) says that a+ b and a′ + b′ belong to it.
Then ab θ a′b′ and a + b θ a′ + b′. This shows θ is compatible with the operations, whence
it is a bisemilattice congruence.

To see that each equivalence class of A is a lattice, note that as the basic operations are
idempotent, each equivalence class is a subalgebra of A. In particular, each equivalence
class is a Birkhoff system in its own right. Suppose that a and b belong to an equivalence
class of A. By the definition of θ , we have that a and b generate a (convex) sublattice of
A. Thus a(a + b) = a = a + ab. So absorption holds in this subalgebra, showing that this
subalgebra is a lattice.

It remains to show that A/θ is a semilattice. Suppose that a, b ∈ A. We have noted that
(BS) imply (ab) θ (a+b). Therefore (a/θ) · (b/θ) = (ab)/θ = (a+b)/θ = (a/θ)+ (b/θ).
Therefore A/θ is a semilattice.

Definition 4.6 We say that a Birkhoff system A is a semilattice sum of lattices, if there is
a congruence relation θ on A such that the congruence classes a/θ are sublattices of A and
the quotient A/θ is a semilattice. If we denote the quotient A/θ by S and the corresponding
congruence classes a/θ by As , then the semilattice sum is denoted by

⊔
s∈S As .

Proposition 4.7 In a semilattice sum
⊔

s∈S As , the summands As are necessarily convex
sublattices of A, and the congruence θ is unique.

Proof Let θ be a congruence of A such that its congruence classes are sublattices of A and
the quotient A/θ is a semilattice. We first show that the congruence classes of θ are convex
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sublattices. Suppose x θ y and that x ≤· a ≤· y. Since x, y belong to a sublattice of A,
then x = x + xy and y = y + xy. Then as A/θ is a semilattice, x/θ = x/θ · y/θ = y/θ .
Therefore a/θ = a/θ · y/θ = aθ · x/θ = x/θ . So a belongs to the same equivalence class
as x, y, so x/θ is convex with respect to the meet order. A similar argument shows that it is
convex with respect to the join order as well.

We have seen that x θ y implies that x, y belong to a convex sublattice of A. We now
show the converse. Suppose that a, b ∈ A are such that [a, b] is a convex sublattice of A
and that x, y ∈ [a, b]. The argument above shows that x/θ = x/θ ·b/θ = x/θ ·a/θ = a/θ ,
and similarly that y/θ = a/θ . Thus x θ y. So the congruence θ is uniquely determined.

Observe that a Płonka sum of lattices is a special case of a semilattice sum of lattices.
However, unlike the situation with Płonka sums, where the Płonka sum of lattices is known
to always be a Birkhoff system, it is not the case that an algebra A with a congruence θ

having the above properties must be a Birkhoff system. A simple example is given by the
3-element bisemilattice a, b, c, ordered by a >· b <· c and a <+ c >+ b.

Corollary 4.8 A Birkhoff system A belongs to the variety V (S3m ,S3j) if, and only if, it is a
semilattice sum of lattices.

Proof By Theorem 4.5, each member of V (S3m ,S3j) is a semilattice sum of its convex
sublattices.

Suppose thatA is a semilattice sum
⊔

s∈S As of latticesAs over a semilattice S. We show
that A cannot contain subalgebras isomorphic to 3j or 3m. Suppose to the contrary that A
contains a subalgebra C isomorphic to 3j. Let us identify C with 3j. Since the summands of
A are convex, neither of the 2-element sublattices {2, 3} and {1, 3} of C can be contained in
one summand. Since the subalgebra {1, 2} of C is a semilattice, it cannot be contained in a
summand. So all three elements of C belong to different summands of A. Hence there are
s >· t >· u in S such that 3 ∈ As, 2 ∈ At , 1 ∈ Au. But 2 <+ 3, providing a contradiction
to s <+ t . One obtains a similar contradiction if one starts with 3m.

Since V (3n) is a subvariety of V (S3m ,S3j), the result of Corollary 4.8 can be applied to
this setting. We note that [1, Prop.6.5] shows that the intersection of BCh with the variety L
of lattices is the variety DL of distributive lattices. The following is immediate.

Corollary 4.9 Each member of the variety V (3n) is a semilattice sum of distributive
lattices.

Classes of general algebras built in a similar way as the semilattice sums of lattices were
considered by Mal’cev (see [3–5]). We will adapt his definition to the case of Birkhoff
systems.

Definition 4.10 Let V and W be two varieties of Birkhoff systems. Then theMal’cev prod-
uct V ◦ W of V and W consists of Birkhoff systems A with a congruence ϕ such that the
quotient A/ϕ is in W, and each congruence class a/ϕ of A is in V.

It follows by a theorem ofMal’cev concerning general Mal’cev products that the Mal’cev
product V ◦ W is a quasivariety.
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Corollary 4.11 The class of Birkhoff systems that are semilattice sums of lattices is the
Mal’cev product L ◦ SL of the varieties L of lattices and SL of semilattices within the class
of Birkhoff systems.

Corollary 4.12 The following three classes of Birkhoff systems are equal: the variety
V (S3m , S3j), the class of Birkhoff systems that are semilattice sums of lattices, and the
quasivariety L ◦ SL.

It is natural to ask how to reconstruct the bisemilattice structure of a semilattice sum⊔
s∈S As from its lattice summands As and the quotient semilattice S. Such a construction

exists and was introduced for general algebras in [8, §6.2], under the name of a Lallement
sum, as a generalization of a Płonka sum (see also [6]). The primary idea is to relax the
requirement of functoriality in the definition of Płonka sums. In the case of bisemilattices
this construction can be described as follows.

Definition 4.13 Let (S, ∗) be a semilattice with partial ordering ≤∗. For each s ∈ S, let a
lattice As be given, and two extensions (E ·

s , ·) of (As, ·), and (E+
s ,+) of (As,+). For each

pair t ≤∗ s of S, let two homomorphisms be given:

ϕ ·
s,t : (As, ·) → (E ·

t , ·)
and

ϕ+
s,t : (As,+) → (E+

t ,+),

such that the following three conditions are satisfied for † ∈ {·,+}:
(1) ϕ†

s,s is the embedding of As into E†
s ;

(2) ϕ†
s,s∗t (As) † ϕ†

t,s∗t (At ) ⊆ As∗t ;
(3) for each u ≤∗ s ∗ t in S and a ∈ As, b ∈ At

ϕ†
s∗t,u(ϕ

†
s,s∗t (a) † ϕ†

t,s∗t (b)) = ϕ†
s,u(a) † ϕ†

t,u(b).

Here, for two sets A and B, A † B = {a † b | a ∈ A, b ∈ B}.
With this data provided, a bisemilattice structure on the disjoint sum A of all As is given

by defining the operations · and + for a ∈ As and b ∈ At as follows:

a · b = ϕ ·
s,s∗t (a) · ϕ ·

t,s∗t (b),

and
a + b = ϕ+

s,s∗t (a)+ ϕ+
t,s∗t (b).

Then all As are subalgebras of the bisemilattice A and S is its quotient. The semilattice
sum A of As is said to be the semilattice sum of As by the mappings ϕ†

s,t . If additionally, for
each t ∈ S, one has that E†

t = {ϕ†
s,t (a) | s ≥∗ t, a ∈ As}, and all Es are certain canonical

extensions of As (see [8, §6.1]), then this semilattice sum is called a Lallement sum.

By [8, Th. 624] each semilattice sum of lattices can be reconstructed as a Lallement sum
of these lattices. The usefulness of Lallement sums depends on properties of the available
extensions E†

s . In particular, a nice situation appears if for each s ∈ S, both extensions E·
s

and E+
s coincide with the summand As . Such Lallement sum is called strict.

Example 4.14 The subdirectly irreducible Birkhoff system G of Fig. 3, and its dual Gd ,
are strict Lallement sums of 2-element lattices. Specifically, G is the Lallement sum of As
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being 3 < 4 and At being 1 < 2 where s ∗ t = t , the map ϕs,t takes both 3, 4 to 2 and ψs,t

takes 3 to 1 and 4 to 2. The minimal congruence of G collapses {1, 2}.

We next consider a special case of strict Lallement sums of lattices.

Definition 4.15 A Birkhoff system A is a semilattice sum
⊔

As of bounded lattices if A
has a congruence θ such that A/θ is a semilattice S, and the congruence classes As of θ are
bounded lattices.

For A a semilattice sum
⊔

As of bounded lattices, where 0s and 1s are the bounds of As ,
define for a ∈ A and t ≤∗ s in S the maps

ϕs,t : As → At ; a ,→ a · 1t and ψs,t : As → At ; a ,→ a + 0t .

Note that t ≤∗ s in S means s · t = t and s + t = t , so these maps are well defined. It
is easily seen that each ϕs,t is a homomorphism of the meet reducts of As and At , and that
ψs,t is a homomorphism of the join reducts of As and At . It is also not difficult to see that
they satisfy the requirements of a strict Lallement sum. This gives the following theorem, a
corollary of Theorem 624 of [8].

Theorem 4.16 LetA be a Birkhoff system. ThenA is a semilattice sum
⊔

s∈S As of bounded
lattices As over a semilattice S if, and only if, it is a strict Lallement sum of the lattices As

over the semilattice S given by the homomorphisms ϕs,t and ψs,t described above.

The following is then immediate from Corollaries 4.8 and 4.9.

Corollary 4.17 Each finite algebra in the variety V (S3m ,S3j) is a strict Lallement sum of
lattices, and each finite algebra in the variety V (3n) is a strict Lallement sum of distributive
lattices.

Problem 4.18 Is each semilattice sum of lattices embeddable into a semilattice sum of
bounded lattices?

5 The Variety V (3n)

In this section we give an equational aximoatization of the variety V (3n). Key to this will be
a description of the finite subdirectly irreducibles in this variety obtained using the results
of the previous section on semilattice sums of lattices.

Definition 5.1 Let us consider the following equation:

x + z(x + y) = x + yz(x + y) (N)

This equation, and its dual, (Nd), play a key role.

Proposition 5.2 Both (N) and (Nd ) are valid in the bichain 3n.

Proof Label 3n as before, with join order 3 <+ 1 <+ 2. We will show that (N) holds.
Since 3n is self-dual it follows that (Nd) will hold as well. Note that (N) holds in any
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bichain in which x is the join top since then both sides are x, and it holds in any bichain
in which x is the join bottom, since it then becomes zy = yzy. So it holds in any bichain
with 1 or 2 elements. To see it holds in 3n, we only consider when x, y, z are distinct,
and when x is neither the join top nor join bottom, so when x = 1. It clearly holds when
yz = z, so we may assume y <· z. Since x, y, z are distinct and x = 1, this leaves
y = 2 and z = 3. Then we have x + z(x + y) = 1 + 3(1 + 2) = 1 + 2 = 2 and
x + yz(x + y) = 1+ 2(1+ 2) = 1+ 2 = 2.

Proposition 5.3 In any lattice, (N) is equivalent to the distributive law, and so is (Nd )

Proof Since 3n satisfies (N), so does the 2-element distributive lattice. Hence all distribu-
tive lattices satisfy (N). Therefore the equations for distributive lattices imply (N). For the
converse, assume L is a lattice that satisfies (N). To see that L is distributive, it is enough
to show that it doesn’t have a sublattice isomorphic to either of the two 5-element non-
distributive lattices. For M3 let x, y, z be the three middle elements to get a failure of (N).
For the pentagon, let x < z be the two elements in one side and y the element on the other
to get a failure of (N). Then x + z(x + y) = x + z and is equal to 1 in M3 and to z in the
pentagon, and x + yz(x + y) = x + yz = x.

Proposition 5.4 We have the following.

(1) (N) implies the splitting equation (S3m) for 3m.
(2) (Nd ) implies the splitting equation (S3j) for 3j.
(3) 3j satisfies (N).
(4) 3m satisfies (Nd).

Proof (1) The computer program Prover9 provides a fairly short proof of (S3m) from (N).
(2) This follows from duality.
(3) The join order of 3j is 2 <+ 1 < +3. We have seen that (N) is valid in any 2-element

bichain, so to verify that (N) holds in 3j it is enough to check all instances where x, y, z

are distinct. It clearly holds when x is either the join top or the join bottom, so we assume
it is the join middle x = 1. It also holds when yz = z. So we are left with just the case
x = 1, y = 2, z = 3. The equation then becomes x + y = x + y(x + y) and this is valid.

(4) This follows from (3) by duality.

Lemma 5.5 The equation (N) is valid in the bisemilattice G, but is not valid in Gd . The
equation (Nd ) is valid in the bisemilattice Gd , but is not valid in G.

Proof We show that the first statement is valid. The second follows by a dual argument.
First note that the sets {1, 2, 4} and {2, 3, 4} form distributive subalgebras ofG, and {1, 2, 3}
is isomorphic to the non-distributive 3n. So it is sufficient to show that the elements 1, 3 and
4 satisfy (N). If x = 3, then both sides of (N) are equal to yz. If x = 1, then both sides are
2 or both sides are 1. And finally, if x = 4, then both sides are always equal to 2. Hence G
satisfies (N). Now substituting 3 for x, 4 for y and 1 for z, one obtains x(z + xy) = 1 and
x(y + z+ xy) = 2. This shows that (Nd) is not satisfied in G.

We next turn to the matter of applying these axiomatics to help describe the finite subdi-
rectly irreducible algebras in V (3n). A key step is Corollary 4.9, that states that each algebra
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A in this variety is a semilattice sum of distributive lattices. We introduce some further
terminology for discussing these semilattice sums.

Definition 5.6 For any Birkhoff systemA, the largest quotientA/θ ofA that is a semilattice
is called the semilattice replica of A.

Thus A being a semilattice sum of lattices means that for θ , the congruence producing
its semilattice replica, the congruence classes of θ are lattices. For S = A/θ its semilattice
replica, we denote the identical operations of + and · on S by ∗. We treat S as a meet
semilattice with order ≤∗ given by s ≤∗ t iff s ∗ t = s. The following definition and
proposition are adapted to the setting of BS from a more general notion. (See [8, p. 73] and
[7].)

Definition 5.7 For a Birkhoff system A, we call a subset B of A a sink if for each a ∈ A

and b ∈ B, we have a + b ∈ B and a · b ∈ B.

Sinks are automatically subalgebras. If A is a semilattice S, then sinks are also called
downsests or ideals of S. The principal downset generated by s ∈ S is denoted ↓ s. The
result below follows from the fact that lattices have no nontrivial sinks.

Proposition 5.8 [7] If a Birkhoff system A is a semilattice sum of lattices
⊔

s∈S As , then a
subset B of A is a sink of A if, and only if, B = ⊔

s∈D As for a downset D of S.

It is easily seen that a congruence on a sink in any algebra can be extended in an obvious
way to a congruence of the whole algebra. The following then follows from the proposition
above.

Corollary 5.9 Suppose A is a semilattice sum of lattices
⊔

s∈S As and D is a downset of
S. Then for each congruence φ on

⊔
s∈D As , the relation on A which agrees with φ on⊔

s∈D As , and is equal to the equality relation otherwise, is a congruence on A.

The following will be key in our investigation of finite subdirectly irreducible algebras
in V (3n).

Corollary 5.10 If A is subdirectly irreducible and a semilattice sum of lattices
⊔

s∈S As ,
then for any downset D of S, the sink

⊔
s∈D As either has one element or is subdirectly

irreducible.

The other facet of our investigation will involve small configurations of points possibly
arising in semilattice sums. This arises frequently in conjunction with the following easily
proved observation.

Proposition 5.11 Let A be a semilattice sum
⊔

s∈S As of lattices, and s ≤∗ t . Then for any
sublattice T of At , T ∪ As is a subalgebra of A.

In dealing with 3-element subalgebras, the following result is most useful. It can be
verified by hand, or by using Prover9/Mace4.

Proposition 5.12 Up to isomorphism, there are exactly nine 3-element Birkhoff systems,
the six bichains and the three shown in Fig. 4.
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Fig. 4 The 3-element Birkhoff systems that are not bichains

From the first part of this paper [1], the bichains 2l, 2s, 3d, and 3n belong to V (3n),
and Proposition 3.2 shows that the 4-element bichain 4n of Fig. 2 belongs to V (3n). Each
of these bichains is subdirectly irreducible. Since these algebras belong to V (3n), each is
a semilattice sum of distributive lattices

⊔
s∈S As . These semilattice sums are described

completely by the following.

2l: S is 1 with |A1| = 2.
2s: S is 1 <∗ 2 with |A1| = 1 and |A2| = 1.
3d: S is 1 <∗ 2 with |A1| = 1 and |A2| = 2.
3n: S is 1 <∗ 2 with |A1| = 2 and |A2| = 1.
4n: S is 1 <∗ 2 <∗ 3 with |A1| = 1, |A2| = 2, and |A3| = 1.

We come to our key result.

Theorem 5.13 The finite subdirectly irreducible Birkhoff systems that are semilattice sums
of distributive lattices and do not have subalgebras isomorphic to either G or Gd are the
bichains 2l, 2s, 3d, 3n and 4n.

Proof Suppose A is a finite subdirectly irreducible algebra that is the semilattice sum⊔
s∈S As of distributive lattices and does not contain a subalgebra isomorphic to G or Gd .

We prove by induction on the cardinality |S| of the semilattice S that A is isomorphic to one
of the bichains 2l, 2s, 3d, 3n, 4n.

The base case when S has a single element, hence A is the semilattice sum of a single
distributive lattice, leads to A being isomorphic to 2l. We suppose |S| > 1 and our result
holds for all smaller cases.

Let m be a maximal element of S. The set S \ {m} is a downset of S, so by Corollary
5.10,

⊔
s∈S\{m}As is subdirectly irreducible or has one element.

In the case that
⊔

s∈S\{m}As has one element, we have that S is 1 <∗ m and A1 is a 1-
element lattice. Then for any congruence θ on Am, there is a congruence on A that agrees
with θ on Am and is the identity otherwise. Since A is subdirectly irreducible, it follows
that Am has either one or two elements, and these lead to A being isomorphic to 2s and 3d,
respectively.

Now assume that
⊔

s∈S\{m}As is non-trivial. Then for each maximal element m of S
the sum

⊔
s∈S\{m}As is subdirectly irreducible. Hence, by the inductive hypothesis, it is

one of the bichains 2l, 2s, 3d, 3n, 4n. It follows that the semilattice S is either of the form
1 <∗ · · · <∗ k <∗ m, if it has only one maximal element, or 1 <∗ · · · <∗ k <∗ m1,m2, if
it has two maximal elements.

Suppose Ak has only a single element. If S has two maximal elements m1 and m2,
then there is a congruence θ1 collapsing Ak ∪ Am1 and nothing else, and a congruence θ2
collapsing Ak ∪ Am2 and nothing else. This would contradict that A is subdirectly irre-
ducible. If S has only a single element m, then again there is a congruence θ collapsing
Ak∪Am and nothing else. But by Corollary 5.9 there is a congruenceψ collapsing

⊔
i≤∗k Ai
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and nothing else, and our assumption that
⊔

s∈S\{m}As is not a singleton, provides that ψ

is non-trivial. This again contradicts that A is subdirectly irreducible. So Ak has more than
one element, and from our descriptions of 2l, 2s, 3d, 3n, 4n, we have thatAk has exactly two
elements 0k, 1k , and we assume 0k < 1k in the lattice Ak .

We next show that S has only one maximal element by assuming that S has two maximal
elements m1, m2 and deriving a contradiction. Since Ak has 2 elements, Corollary 5.10 and
the inductive hypothesis imply that for each i = 1, 2, that

⊔
s≤∗mi

As is isomorphic to
either 3n or 4n since these are the only alternatives whose semilattice sum has a lattice with
2 elements that does not occur at the top of the semilattice order. Therefore Am1 and Am2

must both have a single element. We let a1 be the element of Am1 and a2 be that of Am2 .
Note that k = m1 ∗ m2, and that the intersection of the subalgebras

⊔
s≤∗m1

As and⊔
s≤∗m2

As is
⊔

s≤∗k As . It follows that these first two subalgebras are both isomorphic to
3n, or are both isomorphic to 4n. This leads to Am1 ∪Am2 ∪Ak being the subalgebra shown
below. This is a contradiction since this algebra fails (BS) because a1(a1+a2) = a1 ·0k = 0k
and a1 + a1a2 = a1 + 1k = 1k .

We have seen that Ak has 2 elements 0k and 1k , and now know that S has a single
maximal element m, hence is a chain. We will show that Am has a single element. Since the
inductive hypothesis implies that

⊔
i≤∗k Ai is isomorphic to either 2l or 3d, this will show

that A is isomorphic to either 3n or 4n.
Assume that Am has at least 2 elements, and that 0m and 1m are its smallest and largest

elements. By Proposition 5.11 we have that {0k, 1k, 0m, 1m} is a subalgebra of A. We
consider the possibilities (m1), (m2), (m3) for its meet order:

And the possibilities (j1), (j2), (j3) for the join order:

Recall that there is a congruence ψ collapsing
⊔

i≤∗k Ai and nothing else. If (m1) and
(j1) occur, then there is a congruence collapsing just Am and nothing else. This contradicts
that A is subdirectly irreducible. The same is true if (m1) and (j2) occur, and if (m2) and
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(j2) occur. Having (m1) and (j3) occur gives a subalgebra isomorphic toG, an impossibility.
Having (m2) and (j3) occur gives a subalgebra {0k, 1k, 1m} that is not a Birkhoff system.
The only case not following from one of these by symmetry is (m3) and (j3). We note that
the assumption that Gd is not a a subalgebra is used in consideration of these symmetric
cases.

So we assume that (m3) and (j3) describe the meet and join semilattices for
{0k, 1k, 0m, 1m}. We note that there may be more elements in Am beside 0m and 1m. The
set of all elements of the finite lattice Am that lie above 1k in the meet order is a principal
filter, say ↑a, and the set of elements of Am that lie beneath 0k in the join order is a princi-
pal ideal, say ↓b. Note that 1m ∈ ↑a and 0m ∈ ↓b from our assumption that (m3) and (j3)
describe a portion of the meet and join orders.

We note that ↑a ∩ ↓b = ∅. Indeed, if c belongs to this intersection, then c ̸= 1m
since 1m ̸≤+ 0k since we have assumed that the join order is described by (j3). But then
{0k, 1k, c, 1m} is a subalgebra of A that is isomorphic to G. Also, ↑a ∪ ↓b = Am. Suppose
that d is an element of Am that is not in this union. Then d(0k + d) = d · 1k = 0k , with the
first equality since d ̸∈ ↓b and the second since d ̸∈ ↑a; while d + 0k · d = d + 0k = 1k ,
with the first equality obvious, and the second since d ̸∈ ↓b.

Thus ↑a and ↓b are a disjoint pair consisting of a prime ideal and its complementary
prime filter. So there is a congruence γ that collapses {0k} ∪ ↓b and {1k} ∪ ↑ a and noth-
ing else. With the congruence ψ described above, this contradicts that A is subdirectly
irreducible. So Am has only a single element, concluding the proof.

Corollary 5.14 Up to isomorphism, the finite subdirectly irreducible members of the variety
V (3n) are 2l, 2s, 3d, 3n, and 4n.

Proof The results of the first part of this paper show that 2l, 2s, 3d and obviously 3n belong
to V (3n), and Proposition 3.2 shows that 4n also belongs to V (3n). Corollary 4.9 provides
that each member of V (3n) is a semilattice sum of distributive lattices. Proposition 5.2 gives
that (N) and (Nd ) are valid in V (3n), so it is a consequence of Lemma 5.5 that neither
G nor Gd belongs to V (3n). So each finite subdirectly irreducible algebra in V (3n) is a
semilattice sum of distributive lattices that does not containG orGd as a subalgebra. Hence
by Theorem 5.13 it is one of 2l, 2s, 3d, 3n or 4n.

We next apply these results to resolve a number of gaps from the fifth section of first part
of the paper [1] concerning the varieties V (3n), V (3m, 3n) and V (3j, 3n).

Theorem 5.15 The following varieties are equal: V (3n), the variety V (N,Nd), and the
variety V (S3m ,S3j) ∩ BCh.
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Proof Proposition 5.2 gives that (N) and (Nd ) are valid in V (3n), so V (3n) is contained in
V (N,Nd). Proposition 5.4 gives that (N) implies (S3m ) and (N

d ) implies (S3j ), so V (N,Nd)

is contained in V (S3m ,S3j). Thus V (3n) is contained in V (S3m ,S3j).
We next see the other inequalities. Corollary 4.8 gives that each member of V (S3m ,S3j)

is a semilattice sum of lattices, so each member of V (N,Nd) is also a semilattice sum of
lattices. Since each member of BCh that is a lattice is distributive, and Proposition 5.3 gives
that each lattice in V (N,Nd) is distributive, each member of V (N,Nd), and each member of
V (S3m , S3j) ∩ BCh is a semilattice sum of distributive lattices. In particular, this shows that
each of these varieties is locally finite, hence is generated by its finite subdirectly irreducible
members.

Lemma 5.5 shows that neither of G,Gd belong to V (N,Nd), and Proposition 3.3 shows
that neither of G,Gd belongs to BCh. Thus each member of V (N,Nd), and each mem-
ber of V (S3m ,S3j) ∩ BCh, is a semilattice sum of distributive lattices that does not have
a subalgebra isomorphic to G or Gd . By Theorem 5.13, the finite subdirectly irreducible
algebras in V (N,Nd), and the finite subdirectly irreducible algebras in V (S3m ,S3j) ∩ BCh,
are among 2l, 2s, 3d, 3n, and 4n. But all of these belong to V (3n). Thus, as V (N,Nd) and
V (S3m , S3j) ∩ BCh are generated by their finite subdirectly irreducible algebras, they are
contained in V (3n).

Remark 5.16 In view of the result above, it is natural to ask whether V (S3m)∩BCh is equal
to V (3j, 3n). But we have seen that this is not the case. In Section 2 we saw an infinite family
of subdirectly irreducible, weakly projective bichains that have subalgebras isomorphic to
3j and 3n, but not to 3m. Each of this will generate a distinct variety that contains V (3j, 3n)
and is contained in V (S3m) ∩ BCh.

We can now complete our study from the first part of the paper [1].

Corollary 5.17 V (3m, 3n) ∩ V (3j, 3n) = V (3n).

Proof Propositions 5.2 and 5.4 show that V (3m, 3n) is contained in the variety V (Nd) and
that V (3j, 3n) is contained in V (N). Therefore V (3m, 3n) ∩ V (3j, 3n) ⊆ V (Nd) ∩ V (N) =
V (N,Nd). The result then follows from Theorem 5.15 which shows V (N,Nd) = V (3n).

Corollary 5.18 The only subvarieties of V (3m, 3n) are V (3m), V (3n), DB, DL, SL, and the
trivial variety.

Proof By Proposition 5.9 of [1], V (3m, 3n) covers V (3m). Suppose V is a subvariety of
V (3m, 3n) that does not contain V (3m). Then 3m ̸∈ V, so V ⊆ V (S3m). Also, as V (3m, 3n)
is contained in V (S3j), we have V ⊆ V (S3m ,S3j). Since V is contained in BCh, it follows
from Theorem 5.15 that V ⊆ V (3n). The result then follows from the description of the
subvarieties of V (3n) given in [1].
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Clearly, a symmetric result holds also for the subvarieties of V (3j, 3n). This provides the
following figure of the subvarieties of V (3j, 3m, 3n) where bold lines indicate covers.

6 Problems

We collect some problems we feel would aid in developing the theory of Birkhoff systems.

1. Solve free word problem for BS.
2. Is BS generated by its finite members?
3. Can every Birkhoff system be embedded into a complete one?
4. Are epimorphisms surjective in BS?
5.Which Birkhoff systems are weakly projective?
6. Is every subvariety of BCh generated by the bichains it contains?
7. Is the equational theory of BCh finitely based?
8. Is the variety generated by the 4-element bichain B finitely based?
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