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Abstract. In [10] it was shown that the direct product decompositions of any non-empty set,
group, vector space, and topological space X form an orthomodular poset FactX. This is
the basis for a line of study in foundational quantum mechanics replacing Hilbert spaces with
other types of structures. The theory of states, observables, and probabilities in the context
of decompositions was developed in [11, 12], and [13, 14] made ties to the categorical approach
to quantum mechanics of Abramsky and Coecke [1] that focuses on compound systems. Here
we develop dynamics and an abstract version of a time independent Schrödinger’s equation in
the setting of decompositions by considering representations of the group of real numbers in the
automorphism group of the orthomodular poset FactX of decompositions.

1. Introduction

In [10] it was shown that for many types of structures X, such as non-empty sets, groups,
vector spaces, and topological spaces, the collection of direct product decompositions of X form
an orthomodular poset FactX. When applied to a Hilbert space H, this construction FactH
yields the orthomodular lattice of closed subspaces of H. Gleason’s theorem and the spectral
theorem describe states and observables in terms of FactH, and this is generalized in [13, 14]
to provide a treatment of states, observables, and probabilities in the setting of decompositions
FactX of more general types of structures.

To continue the development of a version of quantum mechanics based on decomposi-
tions, we describe here an approach to dynamics and an abstract version of a time independent
Schrödinger’s equation in the setting of FactX. This is based on representations of the group of
real numbers in the automorphism group of FactX. In doing so, we develop much of the basics
of general group representations in the setting of FactX.

This paper is arranged in the following manner. The second section provides preliminaries on
FactX in the setting of sets. The third section generalizes the construction of FactX for sets to
apply to a number of other settings to produce an orthoalgebra FactX from the decompositions
of more general types of structures X. While our aim is not to provide a version of categorical
quantum mechanics, category theory is used as a tool here to conveniently present a wide array of
instances of this construction. Group representations in sets and other structures are discussed
in Section 4, and it is shown that the decompositions of a representation X again provide
an orthoalgebra FactX. In the fifth section we review the treatment in [12] of observables,
states, and probabilities in the setting of FactX. This is then used in the sixth section to give
dynamics and a generalized time independent Schrödinger equation using representations of the
reals and an energy observable. Here it is shown that the standard approach to dynamics in
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the Hilbert space setting is an instance of the general one. The seventh section makes steps
towards classifying representations of the reals in sets and in Hausdorff spaces, and the final
section makes some concluding remarks.

2. The decompositions FactX of a set

In this section we provide the basics of a construction FactX introduced in [10] to produce
an orthomodular poset from the direct product decompositions of a set X. In the following
section, extensions of this construction [10, 13, 14] are described that apply to a wide range of
settings. These include universal algebras in the sense of [5], topological and uniform spaces,
and objects of suitable types of categories.

Definition 2.1. For a natural number n, an n-ary direct product decomposition of a set X
consists of sets A1, . . . , An and a bijection ϕ : X → A1 × · · · × An.

When n = 2 a direct product decomposition is called a binary decomposition, and when
n = 3 a ternary decomposition. We frequently refer to a direct product decomposition simply
as a decomposition. For any given n ≥ 1 there is a proper class of n-ary decompositions of X.
To define an equivalence relation on these decompositions, we note that for maps αi : Ai → Bi

for i = 1, . . . , n there is an obvious map α1 × · · · × αn from A1 × · · · × An to B1 × · · · ×Bn.

Definition 2.2. For a given n, two n-ary direct product decompositions ϕ : X → A1× · · · ×An
and ψ : X → B1 × · · · × Bn are equivalent if there are bijections αi : Ai → Bi for each i ≤ n
making the following diagram commute.

X

A1 × · · · × An

B1 × · · · × Bn

α1 αn

ϕ

ψ

The equivalence class of a decomposition ϕ is written [ϕ].

The key to putting structure on the collection of equivalence classes of binary decompositions
of a set X is to form new decompositions from old. A binary decomposition ϕ : X → A1 × A2

produces in an obvious way a new decomposition ϕ′ : X → A2 × A1, and from a ternary
decomposition γ : X → A1 × A2 × A3 we can build several binary decompositions, including

γ{1}{23} : X → A1 × (A2 × A3) and γ{12}{3} : X → (A1 × A2)× A3

Finally, we let {∗} denote some arbitrarily chosen 1-element set, and note that for any set X
there are unique binary decompositions ι : X → X × {∗} and ι′ : X → {∗} ×X.

Definition 2.3. For a non-empty set X let FactX be the set of all equivalence classes of binary
decompositions of X. Define on FactX two constants 1 and 0, a unary operation ⊥ and a binary
relation ≤ as follows.

(1) 1 is [ι] and 0 is [ι′].
(2) [ϕ]⊥ = [ϕ′]
(3) [ϕ] ≤ [ψ] iff there is a ternary decomposition γ with [ϕ] = [γ{1}{23}] and [ψ] = [γ{12}{3}]
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Remark 2.4. We restrict attention to non-empty sets since for any set Y there is a unique
bijection γ : ∅ → ∅ × Y . So there is a proper class of equivalence class of decompositions of ∅.
More problematic, while the above structure could be defined on Fact ∅, it is not well behaved.

We assume the reader is familiar with the notions of an orthomodular lattice (abbrev. oml),
orthomodular poset (abbrev. omp), and an orthoalgebra (abbrev. oa). See for instance [6, 28].
The following was established in [10].

Theorem 2.5. For X a non-empty set, FactX is an omp.

It is useful to give a small example. Consider a 4-element set X = {a, b, c, d}. This can
be written as the product of a 1-element set and a 4-element set, as the product of a 4-element
set and a 1-element set, and as the product of two 2-element sets. There are however six
non-equivalent decompositions ϕ of X as the product of two 2-element sets. This is because a
decomposition ϕ for which ϕ(a) and ϕ(b) have the same first component cannot be equivalent
to a decomposition ψ for which ψ(a) and ψ(b) have different first components. The omp FactX
for X a 4-element set is the shown below. It is often called MO3.

3. related constructions

The construction of FactX for a non-empty set X can be generalized and modified in many
directions. Category theory is a convenient setting to state and prove results about many of
these constructions. Our aim is not to provide a version of categorical quantum mechanics,
and the reader without a strong background in category theory will be able to understand the
remainder of the paper without following the details of this section.

Definition 3.1. For an object X in a category C that has a terminal object Ω, let FactX be
defined as in Definition 2.3 as the collection of all equivalence classes of binary decompositions
of X.

Here the terminal object Ω is used to define the decomposition ι : X → X ×Ω. In general,
FactX may be a proper class. A category is called decomposition small if FactX is a set for
each object X ∈ C. This is not especially important if one takes the point of view as in [19]
where FactX can be viewed as a set in some larger model of set theory.

Definition 3.2. Let X be an object in a decomposition small category with terminal object. By
[13] there is a well-defined partial binary operation ⊕ on FactX given as follows. For a ternary
decomposition γ : X → X1 × X2 × X3, then with an obvious extension [12] of the notation of
Definition 2.3 define [γ{1}{23}]⊕ [γ{3}{12}] = [γ{13}{2}]. Informally,

[X1 × (X2 ×X3)]⊕ [X3 × (X2 ×X1)] = [(X1 ×X3)×X2]

Honest categories [13] are categories with finite products where projections are epic and
every ternary product X1×X2×X3 gives rise to a certain diagram that is a pushout. Disjointness
[13, 16] is related to diagrams built from X1×X2, X1, X2,Ω being pushouts. Honesty is a general
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notion, but disjointness can provide problems with constructions, and Proposition 4.8, below,
is not known to hold for honest categories. To deal with this problem of disjointness, strongly
honest categories we introduced in [16]. They are honest categories where every n-ary product
diagram is disjoint. The very strongly honest categories introduced below are an equivalent
reformulation of strongly honest categories.

Definition 3.3. A category is very strongly honest if it has finite products; projections are epic;
and for every X1, X2, X3, the following diagram is a pushout.

�
�
�	

�
�
�	

@
@
@R

@
@
@R

X1 ×X2 ×X3

X1 ×X2 X2 ×X3

X2

Theorem 3.4. Strongly honest categories and very strongly honest categories coincide. So, for
an object X in a decomposition small very strongly honest category, FactX is an oa.

Proof. Every strongly honest category is by definition very strongly honest. To show that a very
strongly honest category is strongly honest, we must show that every binary product diagram
in it is disjoint, so it must be shown that the obvious diagram built from X1 × X2, X1, X2,Ω
is a pushout. To do this, consider the ternary product X1 × Ω × X2 and use the definition of
very strong honesty to get that a diagram obtained from it is a pushout, and then apply basic
diagram chasing. That FactX is an oa for an object X in a very strongly honest category
follows from the corresponding result for strongly honest categories [16]. �

Examples of very strongly honest categories include non-empty sets, groups, vector spaces,
non-empty topological spaces, and many others where products and projections are given by
cartesian products of underlying sets [13, 16]. To see why, the reader might try the simple, but
illustrative, exercise of verifying that the category of non-empty sets is very strongly honest.

While honesty provides many settings in which to consider FactX, there are also many
others. We mention one in particular, dagger biproduct categories. Their specialization to
dagger compact closed categories with biproducts are the central ingredient in the categorical
quantum mechanics given in [1]. The following is from [14].

Definition 3.5. Let X be an object in a dagger biproduct category. Define ProjX to be the
collection of endomorphisms p of X for which there is an endomorphism p′ of X with

(1) p and p′ are idempotent and self adjoint
(2) p ◦ p′ = 0
(3) p+ p′ = 1

In [14] it is shown that projections correspond to biproduct decompositions u : X → X1⊕X2

where u is unitary, with such u yielding the projection p = u†µ1π1u where µ1, π1 are the biproduct
injection and projection to the first factor. A partial operation ⊕, unary operation ′, and
constants 0, 1 are defined on ProjX in [14], and the following is shown.

Theorem 3.6. For an object X in a dagger biproduct category, ProjX is an oa.
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A primary instance of this is the dagger biproduct category Hilb of Hilbert spaces and
bounded linear transformations. For a Hilbert space H we have ProjH is isomorphic to the oml
of closed subspaces C(H) of H.

Remark 3.7. This construction ProjH is not the only way to realize C(H) via some type
of decompositions. The direct product decompositions H, considered as a vector space with
orthogonality relation, also produces C(H). Further, considering H as a normed group, the
idempotent endomorphisms p that satisfy ||v||2 = ||pv||2 + ||v− pv||2 produces C(H). This latter
construction can be extended to produce an omp from any normed group G with operators
[10]. Here, one simply verifies directly that this is a sub-oa of the oa of all direct product
decompositions of the group G. There is no need to form a category of normed groups with
given type of morphism and show that such norm compatible endomorphisms p correspond to
direct product decomposition in this category.

To conclude this section, we emphasize that our aim is to build a version of quantum
mechanics taking an oa of decompositions of some structure X as the fundamental ingredient.
We do not aim here to make a version of categorical quantum mechanics. We use category
theory to establish that some construction such as FactX yields an oa. The category Hilb of
Hilbert spaces and bounded linear transformations does not include morphisms for position or
momentum operators but this is not important. Observables in our treatment will be created
from FactX in an operationally motivated way, and are not simply morphisms in some ambient
category. This will be treated in Section 5.

4. Group representations

Group representations in quantum mechanics provide a systematic means to exploit the
symmetries inherent in a quantum system. Wigner [36], see also [31, 35], motivates group
representations by considering the action of a group G on possible locations of an observer in
spacetime. For example, a rotation of 3-space will move an observer from position O to O′. If s
is the state of the system from the perspective of O and s′ that from the perspective of O′, this
rotation induces an automorphism of the convex set of states of the system.

In the standard Hilbert space approach to quantum mechanics, where a system is modeled by
a Hilbert space H, automorphisms of the state space of the system correspond to automorphisms
of the oml of propositions of the system [35], and hence to automorphisms of the oml of closed
subspaces of H. Automorphisms of this oml are called physical symmetries in [35]. One can also
give an argument similar to Wigner’s in terms of yes/no questions asked by observers in various
positions to directly motivate the connection to automorphisms of the oml of propositions of
the system.

In the decompositions approach to quantum mechanics, one associates to a quantum system
a structure X and an oa L built from the decompositions of X, either by FactX, ProjX, or
by some other means. The elements of this oa L are interpreted as the yes/no questions of the
system. We extend this now by the following.

Definition 4.1. For a quantum system with attached structure X and oa L built from the
decompositions of X, we call the automorphisms of the oa L the physical symmetries of the
system. The group of automorphisms of L is Aut(L), and a projective representation of a group
G in the system represented by X is a group homomorphism

Π : G→ Aut(L)
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While projective representations are physically motivated, a simpler notion is commonly
encountered in the Hilbert space setting. A unitary representation of a group G in a Hilbert
space H is a group homomorphism from G into the group of unitary operators of H. We make
analogous definitions in the setting of honest categories and dagger biproduct categories.

Definition 4.2. For an object X in a category, the group of automorphisms of X is Aut(X).
A group representation of a group G in X is a group homomorphism

U : G→ Aut(X)

We use Ug to denote the automorphism U(g), and (X, (Ug)G) for the representation.

Definition 4.3. For an object X in a dagger category, we say an automorphism u of X is
unitary if u† = u−1 and let Unit(X) be the group of unitary automorphisms of X. A unitary
representation of a group G in X is a group homomorphism

U : G→ Unit(X)

In the Hilbert space setting, projective representations and unitary representations are
related by Wigner’s theorem which states that every physical symmetry of H is obtained from
a unitary or anti-unitary operator of H, and that two such operators induce the same physical
symmetry if and only if they agree up to a scalar of unit modulus [35]. A related result holds in
more general settings.

Proposition 4.4. Let X be an object in a very strongly honest category, and Y be an object in
a dagger biproduct category. Then there are group homomorphisms

Γ : Aut(X)→ Aut(FactX)

Ψ : Unit(Y )→ Aut(ProjY )

Proof. For an automorphism α of X and a binary decomposition ϕ : X → X1 × X2, then
ϕ ◦ α−1 : X → X1 ×X2 is also a binary decomposition of X. It is routine so show that defining
Γ(α)([ϕ]) = [ϕ ◦ α−1] gives the desired group homomorphism. For a unitary automorphism u of
Y and a projection p : Y → Y in the sense of Definition 3.5, define Ψ(u)(p) = upu†. It is again
routine to verify that Ψ is a group homomorphism. �

In general these homomorphisms Γ and Ψ are not one-one or onto. In the Hilbert space
setting, the kernel of Ψ consists of the multiples of the identity operator by scalars of modulus
one, and it fails to be onto because anti-unitary operators are also required in order to get all
physical symmetries. Both of these failures have implications when studying representations
in quantum mechanics (see [35, Ch.s 7,8]). The situation for infinite sets is much clearer as
the following theorem shows [15]. It has the consequence that for infinite sets, representations
correspond to projective representations.

Theorem 4.5. For X an infinite set, Γ : Aut(X)→ Aut(FactX) is a group isomorphism.

There is another way to view group representations [20, 32]. A group G can be considered
as category with one object, say ∗, where each g ∈ G is a automorphism of ∗, and with g ◦ h
defined to be gh. For a category C, a functor U : G → C maps ∗ to some object X in C, and
takes elements g ∈ G to automorphisms of X. Then the functors U : G → C are exactly the
group representations of G in objects of C. If U, V : G→ C are representations with U(∗) = X
and V (∗) = Y , then a natural transformation T : U → V is given by a morphism T : X → Y
with T ◦Ug = Vg ◦ T for each g ∈ G. This is the defining property of intertwining operators [23]
between representations.
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Definition 4.6. For a group G and category C, the functor category CG has as its objects the
functors from G to C and as its morphisms the natural transformations between these functors.
This is called the category of G-representations in C.

Small modifications allow incorporation of the additional structure of dagger categories.
Recall that a dagger category C is a category with a contravariant functor † : C → C of period
two that is the identity on objects. Each group G, considered as a 1-element category as above,
naturally carries a dagger structure given by g† = g−1.

Definition 4.7. For a group G and dagger category C, a representation U : G→ C is a unitary
representation if for each g ∈ G

(Ug)
† = (Ug)

−1

The category CG†
of unitary representations of G in C is the full subcategory of CG whose objects

are unitary representations.

The categories CG can be viewed more concretely. Their objects are functors U : {∗} → C
that we represent as (X, (Ug)G) where X is the image of the object ∗ and each Ug is an auto-
morphism of X. The morphisms in CG are natural transformations between these functors, and
these amount to morphisms f : (X, (Ug)G) → (Y, (Vg)G) where f : X → Y is a morphism in C
with f ◦Ug = Vg ◦ f for each g ∈ G. Following well known results in category theory [26, p. 64],
we have the following.

Proposition 4.8. For a group G, if C is very strongly honest, then so is CG.

Corollary 4.9. Let X be a non-empty set, G be a group, and (X, (Ug)G) be a representation of
the group G in X. Then Fact(X, (Ug)G) is an oa.

Remark 4.10. The above corollary could have been obtained more directly by noting that
a representation (X, (Ug)G) in a set X is simply a G-set, and that this is a type of universal
algebra with a family of unary operations. Then results of [10] show that Fact(X, (Ug)G) is even
an omp. However, considering such things as a representation of G in a topological space X,
i.e. a continuous G-set, shows the broader scope of this result.

Also following directly from well known results about functor categories is the following.

Proposition 4.11. Let G be a group. If C is a dagger biproduct category, then so is CG†
.

There are other results of interest in the broader context. If C is a monoidal category and
G is a group, then CG is a monoidal category with the “coordinatewise” monoidal structure.
Similar comments hold for a dagger monoidal category C and the dagger category CG†

. Further,
if C is a strongly compact closed category with biproducts in the sense of [1], then so is CG†

. So
the path we take here with group representations can be implemented in the setting of [1]. A
different approach to dynamics for the categorical quantum mechanics of [1] is given in [7].

5. Observables

Here we discuss observables, such as position and momentum, and especially energy, in
the general setting of decompositions. From an operational viewpoint, terms such as position
and momentum are abstract notions used to discuss families of compatible experiments. For
example, position is a term we give to the family of measurements asking “is it here”. We call
this notion an observable quantity, and the particular manner in which numerical values are
associated to an observable quantity, such as position, its scaling. Here we describe matters
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assuming that X is a structure associated to a quantum system and the corresponding oa of
propositions is FactX. Obvious modifications apply if the oa of propositions were taken to be
ProjX or some other. For further details about observables in this setting, see [12].

Definition 5.1. An observable quantity is a Boolean subalgebra B of the propositions FactX of
the system.

To discuss the matter of a scaling, assume first that we have an experiment with n outcomes.
This experiment [12] corresponds to a finite Boolean subalgebra B of FactX with n atoms, and
hence to an n-ary decomposition X ' X1×· · ·Xn of X. A scaling of B is simply an assignment
of numerical values to the outcomes as shown in the figure below.

r r r r r
3.2 8.7 1.5 9.0 6.1

X1 X2 X3 X4 X5

This seems a suitable way to assign numerical values to outcomes in cases where we have
what amounts to a discrete spectrum. For a situation such as position, where we have what
amounts to a continuous spectrum, the situation is different. The notion of position at a point
is treated operationally as being given by an infinite family of ever finer questions. This leads
to consideration of maximally consistent families of questions for an observable quantity given
by the Boolean subalgebra B of FactX. These correspond to the ultrafilters of B, that is, to
the elements of the Stone space Z of B. It is to these idealized quantities that we associate
numerical values for our scaling.

Definition 5.2. A scaling of an observable quantity is a real random variable f on the Stone
space Z of B, or in other words, a measurable map from Z with the Borel σ-algebra to the
extended reals.

We stress that it is the finitary decompositions that have direct physical interpretation. The
passage to ultrafilters belonging to the Stone space Z of B, and then to measurable functions
on Z, is made to treat directly “idealized” quantities such as position, rather than physical
properties such as whether a particle is detected in a certain region. The occurrence of infinities
in treating such idealized quantities is the norm, and is encountered when considering force on a
classical particle governed by the inverse square law F = GMm/r2 when the particle lies at the
origin. We introduce terminology to reinforce this distinction between the physically realizable
and idealized observables.

Definition 5.3. Physical observables are given by an n-ary experiement corresponding to a
decomposition X ' X1×· · ·×Xn and an assignment of real numbers λ1, . . . , λn to its outcomes.
Idealized observables correspond to an arbitrary Boolean subalgebra B of FactX and a scaling
f : Z → R ∪ {±∞} on the Stone space Z of B.

We discuss how the standard treatment of observables in Hilbert space quantum mechanics,
that given by possibly unbounded self-adjoint operators on a Hilbert space H, fits with the
description above of observable quantities and their scalings. We give a treatment that is slightly
different from, but compatible with, that in [12] since it is more easily adapted to subsequent
matters involving dynamics. The reader should consult [22, Chapter 5] for background.
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For a self adjoint operator A, let EA : R → Proj(H) be its associated resolution of the
identity, and ϕA be its associated projection valued measure. Note that ϕA is a σ-complete oa
homomorphism from the Borel subsets of the reals to Proj(A). The observable quantity one
associates to A will be the complete Boolean algebra that is the image of ϕA, or more generally,
the complete Boolean algebra B of projections of any abelian von Neumann algebra A that
is affiliated with A. Here A is affiliated with A if U∗AU = A for each unitary operator U
commuting with A [22]. We let Z be the Stone space of B and note that since B is complete, Z
is extremely disconnected, meaning that the closure of each open set in Z is open. To consider
scalings of the observable quantity B, in the sense of Definition 5.2, we follow [22, Sec. 5.6].

Definition 5.4. A function f : D → C that is defined and continuous on a dense open set D ⊆ Z
is called a normal function. A real valued normal function is called a self-adjoint function. We
denote by N (Z) and S(Z) the sets of normal and self-adjoint functions on Z.

It follows from [22, p. 344] that the self-adjoint functions on an extremely disconnected
compact Hausdorff space Z correspond to the continuous functions on Z taking values in the
extended reals R ∪ {±∞} with its usual topology. The key item is [22, Thm. 5.6.12] that we
paraphrase, in part, below.

Theorem 5.5. Let A be an abelian von Neumann algebra of operators on H, B be its Boolean
algebra of projections, and Z be the Stone space of B. Then there is a bijection between the
self-adjoint operators A affiliated with A and the self-adjoint functions S(Z) on Z. The bounded
operators belonging to A correspond to the continuous functions f : Z → C.

This shows that self adjoint operators on H correspond to observable quantities B where B
is a complete Boolean subalgebra of Proj(H), and the scalings of such B are not only measurable
extended real valued functions on the Stone space Z of B, but are even continuous extended
real valued functions on Z. The definitions of observable quantities and their scalings in Defi-
nition 5.1 and 5.2 are made more general since the indicated properties are all that is required
to develop the theory. Further aspects of the standard Hilbert space treatment are compatible
with our approach to observable quantities and scalings. In [12] it is shown that states on H give
probability measures on Z, and this gives probabilities of outcomes of binary measurements of
an observable when the system is in a given state, and even an expected value of an observable
when the system is in a given state.

To conclude this section we comment on further ways to view matters in the setting of
non-empty sets, or non-empty algebras in the sense of [5]. For X a non-empty set or algebra,
the finite Boolean subalgebras with n atoms correspond to n-ary direct product decompositions
X ' X1 × · · · × Xn of X. But in these setting, the infinite Boolean subalgebras B of FactX
also have direct interpretation. Each such B gives a sheaf representation of X taken over the
Stone space Z of B where the stalks Xz for z ∈ Z are obtained as direct limits Xz = lim

e∈z
Xe.

For details, see [12].

Z

Xz

z
R ∪ {±∞}-

f
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It is not known whether a similar situation can be obtained, using either sheaves or related
bundles, in more general settings where there are topological or analytic features.

6. Dynamics

In this section we outline the approach to dynamics in the setting of decompositions and
group representations, provide a generalized time independent Schrödinger equation, and show
that the standard approach to dynamics in the Hilbert space setting is an instance of this.

As a first ingredient, we need a group for time. Throughout this section we will take the
additive group of real numbers for this. In Section 7 we consider also the additive group of
integers when talking about physically realizable evolutions, with the view that there would be
a smallest time interval that could be measured.

As motivation, consider the role played by the circle group T , i.e. the group of complex
numbers of modulus 1, in the dynamics of quantum systems modeled by Hilbert spaces. For
each Hilbert space H there is a base dynamical group EH : R→ Aut(H) given by

EHt v = e−it v

We refer to EH as the natural frequency of H. Note that each decomposition of H into a sum
of orthogonal closed subspaces is compatible with the natural frequency since v = v1 + · · ·+ vn
implies that e−it v = e−it v1 + · · ·+ e−it vn.

Definition 6.1. For a category C, call Ĉ = CR an assignment of natural frequencies in C, and
for a dagger category C, call Ĉ = CR†

an assignment of unitary natural frequencies in C.

In categories Ĉ, objects can be thought of as objects of C equipped with an “internal clock”.
One may find it more natural to consider full subcategories of Ĉ consisting of one member of Ĉ
for each object X of C, so that as in the Hilbert space case each object in C is given one choice
of natural frequency, but this is not vital. If one were to prefer such subcategories, they should
be chosen to be closed under the pertinent structure of Ĉ such as finite products or biproducts.
The results of Section 4 provide the following.

Theorem 6.2. If C is a very strongly honest category, biproduct category, or dagger biproduct
category, then for any object (X, (Et)R) in Ĉ, its direct product decompositions Fact(X, (Et)R)
form an oa.

Suppose that H is the Hamiltonian for a quantum system modeled by the Hilbert space
H, and assume that H has finitely many eigenvalues λ1, . . . , λn. Then there is a dynamical
group U : R → Aut H induced by this Hamiltonian H as follows. If v ∈ H has eigenspace
decomposition v = v1 + · · ·+ vn then

(6.1) Ut v = e−iλ1t v1 + · · ·+ e−iλnt vn

This may be rewritten as Ut = e−iHt, a generalized form of the Schrödinger equation.
For an object X̂ = (X, (Et)R) in Ĉ we may consider its decompositions in the category Ĉ.

These are decompositions X̂ ' X̂1 × · · · × X̂n, where X̂i = (Xi, (E
i
t)R), that are decompositions

of the underlying structure X and are compatible the assigned natural frequencies. In situations
described in Section 4, the decompositions of X̂ again form an oa or omp Fact X̂ or Proj X̂,
and we may then speak of its observable quantities and scalings as before. In the following we
assume we are dealing with Fact X̂, but the situation for Proj X̂ is similar.
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Definition 6.3. For an object X̂ in Ĉ, let H be a physical observable of Fact X̂ associated
with the finite decomposition X̂ ' X̂1 × · · · × X̂n and the scaling λ1, . . . , λn. Then define the
representation EH : R→ Aut X̂ by

EH
t x = (E1

λ1t
x1, . . . , E

n
λnt xn)

We have a familiar situation. An observable quantity H of X̂, which might be called the
Hamiltonian of the system, determines the dynamical group U : R→ Aut X̂ of the system. We
write this as follows, a type of generalized time independent Schrödinger’s equation.

(6.2) Ut = EH
t

Remark 6.4. In the generalized Schrödinger’s equation (6.2), an element x is broken into
components, and the components at higher energy levels λ evolve at more rapid rates. This can
be viewed as an extension of the wave formalism where frequency is related to energy, that is,
components at higher energy levels evolve more rapidly.

The construction of representations of R in Definition 6.3 applies to physical observables,
that is, to finite decompositions and their scalings. For an idealized observable quantity H
we might aim to produce a representation EH of R in FactX as the result of limiting process
of representations produced from physical observables that are approximations to H. Such
a limiting process seems to require additional topological or analytic structure on X and/or
FactX. Such structure is not available in the general setting, but does exist in a number of
cases of interest, such as normed groups [3, 10], vector bundles [17], and perhaps also in the
structures given in [12, Sec. 6.4], and others. While analysis of these particular situations has
not yet been made, we can consider matters in the standard Hilbert space setting where there is
ample topological and analytic structure onH and ProjH. Here idealized observables correspond
to self-adjoint operators H on H with infinite spectrum. We begin with an analysis of bounded
self-adjoint operators.

Proposition 6.5. Let H be a bounded self-adjoint operator on a Hilbert space H. Then for any
n ∈ N, there is a physical observable Hn on H so that for any t ∈ [−n, n ]

|| e−itH − EHn
t || < 1/n

Thus, there is a sequence Hn (n ∈ N) of physical observables so that for any v ∈ H and t ∈ R
we have that EHn

t v → e−itHv in the topology of H.

Proof. Let A be the abelian von Neumann algebra generated by H and the identity I. Let B
be the complete Boolean algebra of projections of A and let Z be the Stone space of B. There
there is an isomorphism Γ from A to C(Z), the continuous complex-valued functions on Z. Let
f : Z → R be the continuous function corresponding to the self-adjoint operator H.

Given n ∈ N, there is a finitely valued function fn : Z → R such that || f − fn || < 1/n2

where this norm is the usual sup norm on C(Z). Suppose that the finitely valued function fn
takes the values λ1, . . . , λmn . Then there are clopen subsets Z1, . . . , Zmn of Z where fn is the
constant λi on Zi. For each 1 ≤ i ≤ mn, let Pi be the projection in A corresponding to the
clopen set Zi, and set

Hn = λ1P1 + · · ·+ λmnPmn
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Since Hn is a self-adjoint operator with a finite spectrum, it corresponds to a physical
observable of H. Further, the function fn ∈ C(Z) corresponds to the element Hn of A via Γ.
Since Γ preserves norms, then ||H −Hn || = || f − fn || < 1/n2. Since the functional calculus on
A transfers to C(Z) we have that for any time t, that Γ takes e−itH to e−itf and EHn

t = e−itHn

to e−itfn . So || e−itH − EHn
t || = || e−itf − eitfn ||.

For any real numbers x, y, we have | eix − eiy | < |x− y |. It follows that for t ∈ [−n, n ],

|| e−itf − eitfn || = sup{ | e−itf(z) − e−itfn(z) | : z ∈ Z}
≤ sup{ | tf(z)− tfn(z) | : z ∈ Z}
= sup{ | t | | f(z)− fn(z) | : z ∈ Z}
≤ n|| f − fn ||
≤ 1/n

This shows that for any t ∈ [−n, n ], that || e−itH−EHn
t || < 1/n. Suppose v ∈ H and t ∈ R.

Then for any ε > 0 we can find N so that for any n > N we have 1/n || v || < ε and t ∈ [−n, n ].
For any n > N we have || e−itH − EHn

t || < 1/n, and hence || e−itHv − EHn
t v || < 1/n || v || < ε.

So the sequence EHn
t v converges to e−itHv. �

It remains to consider the situation for an ideal observable given by an unbounded self-
adjoint operator H. Again, the aim is to approximate the unitary representation e−itH given
by H in the standard approach to quantum mechanics by a family of representations given by
physical observables.

Theorem 6.6. Let H be a self-adjoint operator on a separable Hilbert space H. Then there is
a sequence Hn (n ∈ N) of physical observables so that for any v ∈ H and t ∈ R we have that
EHn
t v → e−itHv in the topology of H.

Proof. Suppose H is affiliated with the abelian von Neumann algebra A. Let B be the complete
Boolean algebra of projections of A, let Z be the Stone space of B, and let f : D → R be
the self-adjoint function associated to H, defined on the dense open set D ⊆ Z. Stone duality
provides a bijection between elements of B and clopen subsets of Z, and for a projection P ∈ B
we let β(P ) be the clopen subset of B corresponding to P .

Let X be the collection of all sets S of pairwise disjoint subsets of D with each A ∈ S clopen
in Z. Then X is non-empty and closed under unions of chains. By Zorn’s lemma, X contains a
maximal member M . Since M is a collection of pairwise disjoint clopen subsets of Z, there is
a family Qi (i ∈ I) of pairwise orthogonal projections in B with M = {β(Qi) : i ∈ I}. These
pairwise orthogonal projections correspond to pairwise orthogonal subspaces of H, and since H
is separable, this family Qi (i ∈ I) must be countable. We may assume that it is indexed as Qn

for n ∈ N. We show that
⋃

N β(Qn) is dense in Z. Indeed, if A is a non-empty open set in Z,
then since D is dense open in Z and Z has a basis of clopen sets, there is a non-empty clopen
set K that is contained in D ∩ A. Then by the maximality of M , it cannot be the case that K
is disjoint from Qn for each n ∈ N. Since

⋃
N β(Qn) is dense in Z, it follows that

∨
NQn = 1.

For each n ∈ N define Pn =
∨
{Qk : k ≤ n}. Then the family Pn (n ∈ N) is an increasing chain

of projections in B with
∨

N Pn = 1 and β(Pn) ⊆ D for each n ∈ N.
For each n ∈ N, the operator PnH is affiliated with A, and its corresponding self-adjoint

function is fn : Z → R given by
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(6.3) fn(z) =

{
f(z) if z ∈ β(Pn)

0 otherwise

Then for each n ∈ N, PnH is a bounded-self adjoint operator. So we may apply Proposition 6.5
to obtain a physical observable Hn so that for any t ∈ [−n, n ] we have

(6.4) || e−itPnH − EHn
t || < 1/n

Suppose we are given time t ∈ R and v ∈ H. Since
∨

N Pn = 1, we have limPnv = v. So
for any ε > 0 there is an N0 ∈ N so that for all n > N0 we have ||P⊥n v || < ε where P⊥n is the
orthogonal projection to Pn. With the given t ∈ R and v ∈ H, let ε > 0. Choose N ∈ N large
enough so that for each n > N we have t ∈ [−n, n ], ||P⊥n v || < ε/4, and n > 2 || v ||/ε. Note

(6.5) || e−itHv − EHn
t v || ≤ || e−itHv − e−itPnHv || + || e−itPnHv − EHn

t v ||

Writing v = Pnv + P⊥n v we have

(6.6) || e−itHv − e−itPnHv || ≤ || e−itHPnv − e−itPnHPnv || + || e−itHP⊥n v − e−itPnHP⊥n v ||

The continuous complex valued functions on Z corresponding to e−itH and e−itPnH both agree
with e−if on the clopen set β(Pn). Thus e−itHPn and e−itPnHPn are equal. So the first term in
the right side of inequality (6.6) is equal to zero. We then obtain from (6.6) that

(6.7) || e−itHv − e−itPnHv || ≤ || e−itH − e−itPnH || · ||P⊥n v ||

Both e−itH and e−itPnH are unitary, hence || e−itH − e−itPnH || ≤ || e−itH ||+ || e−itPnH || ≤ 2.
Then for n > N , from our assumption that ||P⊥n v || < ε/4 we have

(6.8) || e−itHv − e−itPnHv || ≤ ε/2

For the second term in inequality (6.5) we have

(6.9) || e−itPnHv − EHn
t v || ≤ || e−itPnH − EHn

t || · || v ||

Since n > N we have t ∈ [−n, n ], and our choice of physical observables Hn was made so that
|| e−itPnH −EHn

t || < 1/n for all t ∈ [−n, n ]. Also, since n > N we have that n > 2 || v ||/ε. Thus

(6.10) || e−itPnHv − EHn
t v || ≤ ε/2

So for n > N we have || e−itHv − EHn
t v || ≤ ε. So EHn

t v → e−itHv in the topology of H. �
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Remark 6.7. This settles the case for the base dynamical group EH : R → Aut(H) given
by EHt v = e−itv that is used in the standard approach to quantum mechanics. In the above
proofs we use many properties not only of Hilbert spaces, but also of this base dynamical group.
Even the modest move to considering which other base dynamical groups over H might give a
reasonable dynamics poses challenges.

7. Assignments of natural frequencies in sets and topological spaces

Here we consider assignments of natural frequencies to sets, and later to topological spaces.
As mentioned in Section 6, this involves choosing a group G for time, and then looking at
representations of G in Aut(X) for a set X. In terms of Definition 6.1, such representations are
objects in the category SetG where Set is the category of non-empty sets. We first make some
general comments about representations of groups in sets. Here we can profitably view matters
from the perspective of universal algebra. See [25, p. 108].

Proposition 7.1. For a group G, an object of SetG is a G-set (X, (Ug)G) that consists of a
non-empty set X with unary operations Ug for g ∈ G with Ug ◦Uh = Ugh for all g, h ∈ G, and a
morphism of SetG is a homomorphism of G-sets. Thus SetG is the variety of G-sets.

To understand the nature of G-sets, the notion of an orbit in a G-set is of basic use.

Definition 7.2. For a G-set (X, (Ug)G), the orbit of an element x ∈ X is {Ug(x) : g ∈ G}. A
G-set is called transitive if it has a single orbit.

It is easily seen that an orbit of a G-set naturally forms a G-set, that the union of any
family of disjoint G-sets naturally forms a G-set, and that each G-set is the union of its orbits.
Thus, to understand the nature of G-sets, for a given G, it suffices to understand the transitive
G-sets. The following is well known, see for example [25, Thm. 3.4].

Proposition 7.3. For any subgroup of a group G, the collection G/H of left cosets of H in G
is a G-set with the group action Ug(xH) = gxH. Further, each transitive G-set is isomorphic to
G/H where H is the stabilizer subgroup of any element of the G-set.

We now apply these considerations to dynamics. The situation is simplest when the group
chosen for time is the additive group of integers Z. This choice of group is physically motivated
by the view that there is a smallest time interval, or at least a smallest time interval that can
in practice be measured. Here, the description of Z-sets is obvious from Proposition 7.3.

Proposition 7.4. The transitive Z-sets are isomorphic to the cyclic groups Zn and Z with the
obvious action of Z.

Describing the transitive G-sets for G being the additive group of rationals or reals requires
a notion familiar from universal algebra [5, 25].

Definition 7.5. An algebra A is subdirectly irreducible if for each embedding ϕ : A→
∏

I Ai of
A into a product of algebras with πi ◦ ϕ onto for each projection πi, there is some index i with
πi ◦ ϕ an isomorphism.

Theorem 7.6. For a group G, the subdirectly irreducible transitive G-sets are exactly those
G-sets isomorphic to the set of cosets G/H, with obvious action, where H is a completely meet
irreducible subgroup of G. Here a completely meet irreducible subgroup is one that cannot be
expressed as the intersection of any family of subgroups of G that properly contain it.
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Proof. Suppose that X is a transitive G-set. Then Proposition 7.3 shows that X is isomorphic
to G/H for some subgroup H of G. Then [25, Lemma 4.20] shows that the congruence lattice
of the G-set G/H is isomorphic to the interval [H,G] of the subgroup lattice of G. Then the
general characterization of subdirectly irreducible algebras [25, Thm. 4.40] shows that G/H is
subdirectly irreducible iff H is completely meet irreducible. �

As with any universal algebra [5], any G-set is given by a subdirect product of the family
of subdirectly irreducible G-sets that are homomorphic images of it. If G is a tranisitve G-set,
then its homomorphic images are also transitive. So a description of the subdirectly irreducible
transitive G-sets goes a considerable way to describing all transitive G-sets, and hence all G-sets.
In general, describing the subdirectly irreducible transitive G-sets will be a difficult problem,
but when G is a divisible abelian group, such as Q or R, things are more tractable. We recall
that for a prime p, the Prüfer p∞ group is the subgroup of {z ∈ C : |z| = 1} consisting of all
pn-th roots of unity for some natural number n.

Proposition 7.7. Let G be a divisible group. Then the subdirectly irreducible transitive G-sets
are isomorphic to G/H with the natural action where G/H is isomorphic to a Prüfer p∞ group
for some prime p.

Proof. By Theorem 7.6 the subdirectly irreducible transitive G-sets are isomorphic to G/H where
H is a completely meet irreducible subgroup of G. Since every subgroup H of an abelian group
is normal, each G/H is an abelian group. The conditions of H being completely meet irreducible
is equivalent to the group G/H being subdirectly irreducible. A quotient of a divisible group is
divisible, and it is known [8, p. 576] that the subdirectly irreducible divisible groups are exactly
the Prüfer groups p∞ for some prime p. �

It is tempting to see a resemblance between these representations using Prüfer p∞ groups
and the familiar representation of R in the complex line given by circle group. But there is an
important aspect lacking, that of continuity. Indeed, when considering representations of a group
G in the automorphisms of a set X, we lack the analytic structure on X to even consider notions
of continuity. We extend our setting by allowing topological structure on X and considering
topological groups G.

Definition 7.8. Let G be a topological group and let X be a topological space. Consider a group
representation (X, (Ug)G) as a map U : G × X → X where U(g, x) = Ug(x). We say that this
representation is continuous if U is a continuous function.

For a continuous transitive representation (X, (Ug)G) of a topological group G, we have that
(X, (Ug)G) is isomorphic as a G-set to G/H where H is the stabilizer of an element x0 ∈ X.
Since H = U( · , x0)−1(x0), it is a closed subgroup of G. The following result [18, p. 120] shows
that each closed subgroup H of G gives rise to a continuous transitive representation of G.

Proposition 7.9. If G is a topological group and H is a closed subgroup of G, then G/H
is Hausdorff in the quotient topology and the natural transitive coset representation G/H is a
continuous representation of G.

Under suitable restrictions, the isomorphism of transitive group representations given in
Proposition 7.3 will extend to a homeomorphism of the underlying spaces. The following result
is given in [18, Thm. 3.2].
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Theorem 7.10. Let G be a locally compact group with a countable base for its topology and
let X be a locally compact Hausdorff space. Then for any continuous, transitive representation
(X, (Ug)G) there is a closed subgroup H of G and a bijection

f : G/H → X

that is both an isomorphism of G-sets and a homeomorphism of spaces.

We shift attention to the primary matter at hand, continuous representations of R.

Proposition 7.11. Let R+ = {λ ∈ R : λ ≥ 0}. The closed subgroups of R are the following.

(1) H0 = R
(2) Hλ = {nλ : n ∈ Z} for λ ∈ R+ \ {0}
(3) H∞ = {0}

Proof. Clearly each of these is a closed subgroup of R. Conversely, suppose that H is a closed
subgroup of R. If H is not equal to {0}, then H∗ = H ∩ {x : x > 0} is non-empty and bounded
below, so has an infinum λ. If λ 6∈ H∗, then it is easy to see that for any ε > 0 that there are
elements x, y ∈ H with |x − y| < ε. It follows that H is dense in R, and as it is closed, that
H = R. If λ ∈ H∗, then it follows that H = Hλ. �

Definition 7.12. For λ ∈ R+ ∪{∞}, let (Tλ, (Vt)R) be the continuous coset representation of R
given by R/Hλ with the quotient topology. Then

(1) T0 is a singleton
(2) Tλ for λ ∈ R+ \ {0} is a unit circle with the action Vt being rotation by 2πt/λ
(3) T∞ is the reals with the action Vt being translation by t

For each λ ∈ R+ \ {0}, Tλ bears similarity to the usual circle group. As topological spaces,
they are homeomorphic. However as R-sets, they are not. As R-sets, we have that Tλ is
isomorphic to Tλ′ iff λ = λ′. As a consequence of Theorem 7.10 and Proposition 7.11, we have
the following.

Corollary 7.13. Each continuous, transitive representation of R in a locally compact Hausdorff
space X is isomorphic as an R-set, and homeomorphic, to Tλ for some λ ∈ R+ ∪ {∞}.

This result cannot be extended to general topological spaces since any R-set with the
indiscrete topology will provide a continuous representation of R. However, it would be desirable
to have the result for general Hausdorff spaces without the assumption of local compactness.
We do not know a complete answer, but a partial result is provided by the following.

Proposition 7.14. Suppose that X is a topological space and that (X, (Ut)R) is a continuous
representation of R. Let λ ∈ R+ ∪ {∞} be such that (X, (Ut)R) is isomorphic to Tλ as an R-set.
Then there is a continuous R-set isomorphism f : Tλ → X.

Proof. Consider the case T∞, which is the reals with Vt(s) = s + t. Choose some x0 ∈ X, and
define f : T0 → X by setting f(s) = Us(x0). This is seen to be an isomorphism of R-sets. Since
T0 is a sequential space, to show that f is continuous it suffices to show that if sn → s in T0,
then f(sn)→ f(s). But f(sn) = Usn(x0) and f(s) = Us(x0). Since U : R×X → X is continuous
and sn → s in R, we have U(sn, x0)→ U(s, x0), and hence Usn(x0)→ Us(x0). So f(sn)→ f(s).

The case for Tλ, where λ ∈ R+ is similar. Elements of Tλ are equivalence classes s/Hλ.
Define f(s/Hλ) = Us(x0). For a sequence sn/Hλ → s/Hλ where s 6∈ Hλ we may choose the sn
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and s to belong to (0, λ) with sn → s in R, and the argument is as above. If s ∈ Hλ, apply
the homeomorphism Vλ/2 to the sequence. Then f ◦ Vλ/2(sn/Hλ) → f ◦ Vλ/2(s/Hλ), and as
f ◦ Vλ/2 = Uλ/2 ◦ f and Uλ/2 is a homeomorphism, we have f(sn/Hλ)→ f(s/Hλ). �

Corollary 7.15. Suppose that X is a Hausdorff space and that (X, (Ut)R) be a continuous
transitive representation of R. Then this representation is isomorphic and homeomorphic to Tλ
for some λ ∈ R+, or is isomorphic as an R-set to the reals, and the topology on X is a weaker
Hausdorff topology than the usual topology on R.

Proof. The spaces Tλ for λ ∈ R+ are compact, and a continuous bijection from a compact
Hausdorff space to a Hausdorff space is a homeomorphism. If (X, (Ut)R) is isomorphic as an
R-set to the reals T∞, then there is a continuous R-set isomorphism f : T∞ → X. Treating this
isomorphism as the identity, the topology on X is weaker than the usual topology on R. �

The following gives an example, applicable in the standard Hilbert space setting, of a
transitive R-set that is algebraically isomorphic to the reals, but has a strictly weaker topology.

Example 7.16. Let C2 be the complex plane with the standard basis e1 = (1, 0) and e2 = (0, 1).
Let Pi for i = 1, 2 be the projection onto the span of ei. Then for real numbers α1, α2 consider
the self-adjoint operator H = α1P1 + α2P2. There is a representation Ut = e−itH of the reals in
C2 given by this self-adjoint operator. For v = (β1, β2) we have

Ut(v) = (e−iα1tβ1, e
−iα2tβ2)

If αi = 0, each point in the image of Pi is in a singleton orbit of type T0 and each other point
has an orbit type the same as the points in the image of Pj. Suppose αi 6= 0 for i = 1, 2. Then
each point in the image of Pi has an orbit of type T2π/αi

. For a point v that is not in the image
of either Pi, the type of its orbit depends on α1/α2. If this is a rational p/q in lowest terms, then
the orbit of v is of type Tλ where λ = 2πp/α1 = 2πq/α2. If α1/α2 is irrational, then each v not
in the image of P1 or P2 has orbit of type T∞. These irrational orbits have a subspace topology
that is weaker than the standard topology on the reals since open sets pick up points on future
traversals.

8. Concluding remarks

Our aim is to provide a path to including a dynamics in the decompositions approach
to quantum mechanics. The idea is to attach to each object an internal clock E, that is,
a representation of the reals in the automorphism group of the object. One then considers
decompositions of the object that are compatible with this internal clock. A dynamics for the
system is obtained from an energy observable H for the system based on the simple idea that
factors of the system at higher energy levels have their internal clocks run more rapidly. This
produces a type a generalized time independent Schrödinger equation for the system,

Ut = EH
t

Our approach is shown to be consistent with the standard Hilbert space approach to dy-
namics. For a self-adjoint operator H with finite spectrum, the dynamics associated to H agrees
exactly with ours. When the spectrum of H is infinite, even unbounded, the dynamics given by
the standard e−itH of Hilbert space quantum mechanics is the limiting process of the dynamics
via decompositions given by finitary approximations to H.
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First steps were made towards classifying internal clocks in the setting of sets and topological
spaces. These are representations of the reals in the permutation group of a set, or continuous
representations of the reals in the group of homeomorphisms of a space. In each case similarities
were seen with the representations via the circle group familiar from the standard Hilbert space
setting.

The program outlined here gives the first steps towards incorporating group representations
into the decompositions approach to quantum mechanics. With an eye to the future, basics
of general group representations are developed in the decompositions setting. It is shown that
many of the categorical techniques that are used in the decompositions approach, such as honest
and dagger biproduct categories, are compatible with the implementation of representations.
While the decompositions approach is not intended as a sort of categorical quantum mechanics
along the lines of [1], the use of such categorical tools is very helpful in its development.

There remain many directions for study. There are a number of settings somewhat close
to the Hilbert space setting that allow the analytic tools needed to treat idealized observables.
These include normed groups with operators [10], vector bundles [17], and the normed sets that
were considered in [12]. Further development of representations of the reals including versions
of a Stone-von Neumann theorem for 1-parameter groups in these setting would be of interest.
Even the standard Hilbert space setting may present open ground if a base representation other
than the usual one were taken. In the study of representations of more general groups, a likely
starting spot might be the finite crystallographic groups considered in [33].

Finally, I would like to thank Martin Bohata for discussions and an anonymous referee for
helpful suggestions.
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