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Abstract. In [2] it was shown that the canonical extension of a bounded
modular lattice need not be modular. The proof was indirect, using a
deep result of Kaplansky. In this note we give an explicit example.
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1. Introduction

In [2] it was shown that the canonical extension of a modular lattice need not
be modular. The proof was through a result of Kaplansky [3], that a complete
modular ortholattice is a continuous geometry, and von Neumann’s work on
dimension functions of continuous geometries. Together, these provide that
a complete modular ortholattice cannot have an infinite pairwise perspective
set. Therefore, the modular ortholattice of finite and cofinite dimensional
subspaces of an infinite dimensional Hilbert space cannot be embedded into
a complete modular ortholattice. Since the canonical completion of an or-
tholattice is an ortholattice, this implies that the canonical completion of
this modular lattice of finite and cofinite dimensional subspaces cannot be
modular.

I have been asked on several occasions for a more explicit reason for the
failure of modularity to be canonical. Such is provided in the following. This
example grew from discussions with Christian Herrmann related to the old
problem of whether the variety of modular ortholattices is generated by ones
derived from vector spaces.

2. Setup

For L a bounded lattice, its canonical extension Lσ is characterized [1] up to
isomorphism as the unique complete lattice that contains L as a sublattice
where L ≤ Lσ is dense and compact. Density means that each element of
Lσ is a join of meets of elements of L and a meet of joins of elements of L.
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Compactness means that for S, T subsets of L, if
∧
S ≤

∨
T then there are

finite subsets S′ ⊆ S and T ′ ⊆ T with
∧
S′ ≤

∨
T ′. The canonical extension

satisfies [1, Lemma 3.2] the complete distributive law when applied to a meet
of up-directed joins of elements of L and to a join of down-directed meets of
elements of L.

Lemma 2.1. Suppose A,Bn, Cn for n ∈ N are elements of L with the following
properties.

(1) The Bn are decreasing.
(2) The Cn are increasing.
(3) Bn 6≤ A for each n.
(4) A ∧Bn 6= 0 for each n.
(5) Cn 6= 1 for each n.
(6) Bn+1 ∧ Cn = 0 for each n.
(7) (A ∧Bn) ∨ Cn = 1 for each n.

Then F =
∧
Bn, G =

∧
(A ∧ Bn) and I =

∨
Cn together with 0, 1 form a

pentagon in Lσ.

Proof. Surely G ≤ F . Compactness and (3) give F 6≤ A. Then as G ≤ A, we
have G < F . Compactness and (4), (5) give G 6= 0 and I 6= 1. Having all
Bn = 1 or all Cn = 0 contradicts assumptions (3), (6), and (7), thus F 6= 1
and I 6= 0. It remains to show that F ∧ I = 0 and G ∨ I = 1. Note that
F ∧ I = B1 ∧ B2 ∧ · · · ∧

∨
Cn. By complete distributivity applied to a meet

of up-directed joins from L we have

F ∧ I =
∨
n

∧
m

(Bm ∧ Cn)

So (6) gives F ∧ I = 0. That I ∨ G = 1 follows similarly using complete
distributivity applied to a join of down-directed meets from L and (7). �

3. The example

Let K be a field of characteristic not equal 2. For n ∈ N let Vn be the vector
space Kn and Sn be the lattice of subspaces of Vn. For each n ∈ N there is
a lattice embedding σn : Sn → S2n taking a subspace A to the set of vectors
(x1, . . . , x2n) where both (x1, . . . , xn) and (x2n+1, . . . , x2n) belong to A. For
n < m composition gives a map ϕn,m : S2n → S2m . A vector in V2m can be
broken into pieces of length 2n. The map ϕn,m takes A to the set of vectors
where each such piece belongs to A.

Definition 3.1. Let L = limS2n be the direct limit.

Since L is the limit of a family of complemented modular lattices, L
is a complemented modular lattice. If K is chosen to be a subfield of the
complex numbers that is closed under conjugation, and Sn is endowed with
the orthocomplementation given by the canonical scalar product, then L
would be even an orthocomplemented modular lattice.
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Elements of L are equivalence classes, but we treat A ∈ S2n as an
element of L meaning its equivalence class. If A ∈ S2n and B ∈ S2m where
n < m then the meet of their equivalence classes is formed by taking the
equivalence class of the meet of ϕn,m(A) and B. We abuse notation and
denote this A ∧B. Similar comments apply to join.

Definition 3.2. Let A ∈ S2, and for each n ∈ N let Bn ∈ S2n+1 and Cn ∈ S2n+2

be as follows.

A = < x1, 0 >

Bn = < x1, x2, x1, x2, . . . , x1, x2 >

Cn = < x1, x1, x3, x4, . . . , x2n+2−1, 2x2n+2−1 >

So A is all vectors in V2 whose second entry is 0, Bn is all vectors in
V2n+1 whose odd entries are all equal and whose even entries are all equal,
and Cn is all vectors in V2n+2 whose first two entries are equal and whose last
entry is twice its second last. As noted, we consider these as elements of L.

Proposition 3.3. The elements A, Bn, Cn for n ∈ N satisfy the conditions of
Lemma 2.1, so the canonical extension Lσ is not modular.

Proof. As mentioned, computations are done by moving the given subspaces
to the appropriate Sn. Considering Bn in S2n+2 it is all vectors in V2n+2 where
the first and second halves have the properties that their odd components
are equal and their even components are equal. Thus Bn contains Bn+1, so
the Bn are decreasing. In a similar way, the Cn are seen to be increasing.
Considered in S2n+1 we have A is all vectors in 2n+1 whose even components
are 0. So for each n, Bn � A and A ∧ Bn 6= 0. Clearly Cn 6= 1 for each n.
This provides the first five conditions.

For the final two conditions, define the normalized dimension of A ∈ Sn
to be DimA = dimA/n. It is easily seen that normalized dimension satisfies
the familiar dimension formula DimP +DimQ = Dim(P ∨Q)−Dim(P ∧Q),
and the maps ϕn,m preserve normalized dimension. Note DimBn = 2/2n+1,
Dim(A ∧ Bn) = 1/2n+1 and DimCn = (2n+2 − 2)/(2n+2). It follows that
Dim(A ∧ Bn) = DimBn+1 = 1 − DimCn. To show the last two conditions
of Lemma 2.1, and additionally that Cn is a common complement of A∧Bn
and Bn+1, it is enough to show Bn+1 ∧ Cn = 0 and (A ∧Bn) ∧ Cn = 0.

Now Bn+1 is all vectors of length 2n+2 whose odd entries agree and
whose even entries agree, and Cn is all vectors of length 2n+2 whose first
two entries agree and whose last entry is twice the second last entry. So
Bn+1 ∧ Cn = 0. Also A ∧Bn is all vectors of length 2n+2 whose even entries
are all zero, whose odd entries in the first half agree, and whose odd entries in
the second half agree. So for any vector in (A∧Bn)∧Cn, the condition on Cn
that the first two entries agree forces all entries in the first half of the vector
to be zero, and the condition on Cn that the last entry is twice the second
last forces all entries in the second half to be zero. So (A∧Bn)∧Cn = 0. �
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