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Abstract Each poset P naturally forms a locally compact T0-space in its Alexandroff
topology. We may therefore consider the hit-or-miss topology on the closed sets of P
and the associated Fell compactification of P. Here we give a purely order-theoretic
description of the Fell compactification of P. We note that the Fell compactification
naturally gives rise to a stable compactification of P, and place this in the general
theory of stable compactifications. When P is a chain, we show that this stable com-
pactification is simply the sobrification of P, and is the least stable compactification
of P.

1 Introduction

Say nice things about Hung, then transition into his interests in hit-or-miss topol-
ogy, etc. Discuss the history and some connections, then transition to the Fell
compactification. Connect with stable compactifications and Nachbin compact-
ifications.

2 Preliminaries

Here we consider topological spaces that are not necessarily Hausdorff. A compact
space is the one in which every open cover has a finite subcover, and a locally
compact space is one in which compact sets form a neighborhood base.

In a topological space, a closed set is irreducible if it cannot be written as the
union of two proper closed subsets. A space X is sober if each irreducible closed set
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is the closure of a unique singleton. Sober spaces are T0. A set that is an intersection
of open sets is saturated.

Definition 2.1. (see, e.g., [3, Def. VI-6.7]) A space is stably compact if it is com-
pact, locally compact, sober, and the intersection of any family of compact saturated
sets is compact.

For a stably compact space (X ,τ), the co-compact topology τk on X has as opens
the complements of compact saturated sets, and the patch topology π = τ ∨τk is the
smallest topology on X containing the original and co-compact topologies.

Definition 2.2.
1. An ordered topological space (X ,π,≤) is a set X with a partial ordering ≤ and

topology π .
2. An ordered topological space (X ,π,≤) is a Nachbin space if π is compact and
≤ is closed in the product topology.

Remark 2.3. The study of ordered topological spaces in general, and of Nachbin
spaces in particular was pioneered by Nachbin in the 1940s (see [6]); the name
Nachbin space appears to originate from [1, Def. 2.5].

Every Nacbin space is Hausdorff. A Nachbin space has an upper topology πu,
and a lower topology π`. To define these, we recall that a subset S of a poset is an
upset if x ∈ S and x ≤ y implies y ∈ S, and is a downset if x ∈ S and y ≤ x implies
y ∈ S. Then πU is defined as open upsets of (X ,π,≤) and π` is defined as open
downsets. Both (X ,πu) and (X ,π`) are stably compact spaces. We use ↑S for the
smallest upset containing S, ↓S for the smallest downset containing S, and for x ∈ S
we use ↑x for ↑{x} and ↓x for ↓{x}.

The specialization order of a topological space is defined by setting x≤ y if x is
in the closure of y. This is a partial ordering on X iff X is T0. For a stably compact
space (X ,τ) with specialization order ≤ and patch topology π = τ ∨ τk, we have
that (X ,π,≤) is a Nachbin space with upper topology τ and lower topology τk. This
provides a 1-1 correspondence between stably compact spaces and Nachbin spaces
(see, e.g., [3, Sec. VI-6]).

We next turn to the definition of the well-known hit-or-miss topology. For a topo-
logical space X , let O(X) be the set of open sets, F (X) the set of closed sets, and
K (X) the set of compact sets in X .

Definition 2.4. Let X be a topological space.

1. For S⊆ X , define

�S = {F ∈F (X) | F ∩S =∅} and ♦S = {F ∈F (X) | F ∩S 6=∅}.

2. Let τ� be the topology on F (X) given by the subbasis {♦K | K ∈K (X)}.
3. Let τ♦ be the topology on F (X) given by the subbasis {♦U |U ∈ O(X)}.
4. Let π = τ�∨ τ♦.



The Fell compactification of a poset 3

We call τ♦ the hit topology, τ� the miss topology, and π the hit-or-miss topology.

It is easily seen that for any collection {Si | i ∈ I} of subsets of X , we have⋂
i∈I

�Si =�⋃
i∈I Si and

⋃
i∈I

♦Si = ♦⋃
i∈I Si .

Therefore, the subbasis for τ� is actually a basis, and the hit-or-miss topology has a
basis of sets of the form

{�K ∩♦U1 ∩·· ·∩♦Un | K ∈K (X) and U1, . . . ,Un ∈ O(X)}.

If X is locally compact, then the hit-or-miss topology π on F (X) is compact
Hausdorff [2, Thm. 1], (F (X),π,⊆) is a Nachbin space [4, p. 57], the lower topol-
ogy π` of this Nachbin space is the hit topology τ♦, and the upper topology πu is the
miss topology τ�. Moreover, if X is compact Hausdorff, then it is easy to see that
the hit-or-miss topology coincides with the Vietoris topology [5, Sec. III-4]. The
next result is well-known.

Proposition 2.5. The map e : X → F (X) that sends x to its closure {x} has the
following properties.

(1) e is 1-1 iff X is T0.
(2) If U ∈ O(X), then e−1(♦U ) =U; hence e is continuous with respect to τ♦.
(3) If X is T1 and K ∈K (X), then e−1(�K) = X \K; hence if X is Hausdorff, then

e is continuous with respect to τ�.
(4) If X is Hausdorff, then e is continuous with respect to π .

An embedding of a space X into a space Y is a 1-1 map e : X → Y that is a
homeomorphism from X to the image e(X) given the subspace topology from Y .
Classically, a compactification of a space X is an embedding of X into a compact
Hausdorff space Y where the image of X is dense in Y . Smyth [7] introduced sta-
ble compactifications to generalize the classical theory of compactifications to the
setting of T0-spaces. Using [1, Thm. 3.5] Smyth’s definition can be formulated as
follows.

Definition 2.6. A stable compactification of a T0-space X is an embedding of X into
a stably compact space Y where the image of X is dense in the patch topology of Y .

A related notion is that of an order-compactification of an ordered topological
space (X ,π,≤). This consists of a Nachbin space (Y,π,≤) and a mapping e : X→Y
that is both a topological embedding and an order embedding.

Definition 2.7. (see, e.g., [4, p. 57]) For X a locally compact T0-space, its Fell com-
pactification H(X) is the closure of the image of X in the hit-or-miss topology of
F (X).
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Since X is locally compact, the hit-or-miss topology is compact Hausdorff, so
the closed subset H(X) of F (X) is a compact Hausdorff space. When X is a non-
compact locally compact Hausdorff space, e : X → H(X) is an embedding, and the
Fell compactification is the one-point compactification of X (see [2, p. 475]). When
X is non-Hausdorff, e : X → H(X) is no longer an embedding. So in this setting
the term Fell compactification is somewhat of a misnomer. However, there are two
ways to rectify this, by altering the topology of either F (X) or X .

Proposition 2.8. If X is locally compact T0, then the Fell compactification H(X)
with the restriction of the hit topology is a stable compactification of X.

Proof. Since X is locally compact, (F (X),π,⊆) is a Nachbin space, and since
H(X) is a closed subset, it naturally forms a Nachbin space as well. The upper
topology of F (X) is the hit topology τ♦, and it follows that the restriction of τ♦ to
H(X) is its upper topology. So under the restriction of τ♦ we have that H(X) is a
stably compact space. By definition, H(X) is the closure of the image of X under the
topology π , hence this image is dense in the patch topology of the stably compact
space H(X). ut

Proposition 2.9. Let (X ,τ) be a locally compact T0-space, ≤ its specialization or-
der, and σ the smallest topology on X making e : X →F (X) continuous with re-
spect to the hit-or-miss topology. Then τ ⊆ σ and e : (X ,σ ,≤)→ (H(X),π,⊆) is
an order-compactification of (X ,σ ,≤).

Proof. By Proposition 2.5(2), τ ⊆σ . Also, since e is 1-1 by Proposition 2.5(1), e is a
topological embedding of (X ,σ) into (H(X),π). Therefore, e : (X ,σ)→ (H(X),π)
is a compactification of (X ,σ). To see that it is an order-compactification, observe
that e(x)⊆ e(y) iff clτ{x} ⊆ clτ{y} iff ↓x⊆ ↓y iff x≤ y. ut

3 The Fell compactification of a poset

Throughout this section P is a poset with partial ordering≤. The collection of upsets
of P is closed under arbitrary intersections and arbitrary unions, and in particular
forms a topology on P called the Alexandroff topology. We denote it τA. Clearly the
closed sets of τA are the downsets of P. It is known [?], and easily seen, that τA is T0
and that the specialization order on P given by τA is the given partial ordering ≤ of
P. The following is easily seen.

Proposition 3.1.
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4 The lattice of order-compactifications of a chain

Describe all order-compactifications of a chain by means of proximities; show there
is always a least one, so it is a complete lattice. Give examples showing how Fell
can sometimes be the least one, sometimes the largest one, sometimes neither.

Acknowledgements Thank Vladik for the opportunity.
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