The Fell compactification of a poset

G. Bezhanishvili, J. Harding

Abstract Each poset P naturally forms a locally compact T_0 -space in its Alexandroff topology. We may therefore consider the hit-or-miss topology on the closed sets of P and the associated Fell compactification of P. Here we give a purely order-theoretic description of the Fell compactification of P. We note that the Fell compactification naturally gives rise to a stable compactification of P, and place this in the general theory of stable compactifications. When P is a chain, we show that this stable compactification is simply the sobrification of P, and is the least stable compactification of P.

1 Introduction

Say nice things about Hung, then transition into his interests in hit-or-miss topology, etc. Discuss the history and some connections, then transition to the Fell compactification. Connect with stable compactifications and Nachbin compactifications.

2 Preliminaries

Here we consider topological spaces that are not necessarily Hausdorff. A *compact space* is the one in which every open cover has a finite subcover, and a *locally compact space* is one in which compact sets form a neighborhood base.

In a topological space, a closed set is *irreducible* if it cannot be written as the union of two proper closed subsets. A space *X* is *sober* if each irreducible closed set

Department of Mathematical Sciences, New Mexico State University, Las Cruces NM 88003, e-mail: guram@nmsu.edu, hardingj@nmsu.edu

is the closure of a unique singleton. Sober spaces are T_0 . A set that is an intersection of open sets is *saturated*.

Definition 2.1. (see, e.g., [3, Def. VI-6.7]) A space is *stably compact* if it is compact, locally compact, sober, and the intersection of any family of compact saturated sets is compact.

For a stably compact space (X, τ) , the *co-compact topology* τ^k on X has as opens the complements of compact saturated sets, and the *patch topology* $\pi = \tau \vee \tau^k$ is the smallest topology on X containing the original and co-compact topologies.

Definition 2.2.

- 1. An *ordered topological space* (X, π, \leq) is a set X with a partial ordering \leq and topology π .
- 2. An ordered topological space (X, π, \leq) is a *Nachbin space* if π is compact and \leq is closed in the product topology.

Remark 2.3. The study of ordered topological spaces in general, and of Nachbin spaces in particular was pioneered by Nachbin in the 1940s (see [6]); the name Nachbin space appears to originate from [1, Def. 2.5].

Every Nacbin space is Hausdorff. A Nachbin space has an *upper topology* π_u , and a *lower topology* π_ℓ . To define these, we recall that a subset S of a poset is an *upset* if $x \in S$ and $x \le y$ implies $y \in S$, and is a *downset* if $x \in S$ and $y \le x$ implies $y \in S$. Then π_U is defined as open upsets of (X, π, \le) and π_ℓ is defined as open downsets. Both (X, π_u) and (X, π_ℓ) are stably compact spaces. We use $\uparrow S$ for the smallest upset containing S, $\downarrow S$ for the smallest downset containing S, and for $x \in S$ we use $\uparrow x$ for $\uparrow \{x\}$ and $\downarrow x$ for $\downarrow \{x\}$.

The *specialization order* of a topological space is defined by setting $x \le y$ if x is in the closure of y. This is a partial ordering on X iff X is T_0 . For a stably compact space (X, τ) with specialization order \le and patch topology $\pi = \tau \lor \tau^k$, we have that (X, π, \le) is a Nachbin space with upper topology τ and lower topology τ^k . This provides a 1-1 correspondence between stably compact spaces and Nachbin spaces (see, e.g., [3, Sec. VI-6]).

We next turn to the definition of the well-known hit-or-miss topology. For a topological space X, let $\mathcal{O}(X)$ be the set of open sets, $\mathscr{F}(X)$ the set of closed sets, and $\mathscr{K}(X)$ the set of compact sets in X.

Definition 2.4. Let *X* be a topological space.

1. For $S \subseteq X$, define

$$\square_S = \{ F \in \mathscr{F}(X) \mid F \cap S = \varnothing \} \text{ and } \lozenge_S = \{ F \in \mathscr{F}(X) \mid F \cap S \neq \varnothing \}.$$

- 2. Let τ_{\square} be the topology on $\mathscr{F}(X)$ given by the subbasis $\{ \lozenge_K \mid K \in \mathscr{K}(X) \}$.
- 3. Let τ_{\Diamond} be the topology on $\mathscr{F}(X)$ given by the subbasis $\{\Diamond_U \mid U \in \mathscr{O}(X)\}$.
- 4. Let $\pi = \tau_{\square} \vee \tau_{\lozenge}$.

We call τ_{\Diamond} the *hit topology*, τ_{\Box} the *miss topology*, and π the *hit-or-miss topology*.

It is easily seen that for any collection $\{S_i \mid i \in I\}$ of subsets of X, we have

$$\bigcap_{i\in I}\Box_{S_i}=\Box_{\bigcup_{i\in I}S_i} \text{ and } \bigcup_{i\in I}\Diamond_{S_i}=\Diamond_{\bigcup_{i\in I}S_i}.$$

Therefore, the subbasis for τ_{\square} is actually a basis, and the hit-or-miss topology has a basis of sets of the form

$$\{\Box_K \cap \Diamond_{U_1} \cap \cdots \cap \Diamond_{U_n} \mid K \in \mathcal{K}(X) \text{ and } U_1, \dots, U_n \in \mathcal{O}(X)\}.$$

If X is locally compact, then the hit-or-miss topology π on $\mathscr{F}(X)$ is compact Hausdorff [2, Thm. 1], $(\mathscr{F}(X), \pi, \subseteq)$ is a Nachbin space [4, p. 57], the lower topology π_{ℓ} of this Nachbin space is the hit topology τ_{\Diamond} , and the upper topology π_{u} is the miss topology τ_{\square} . Moreover, if X is compact Hausdorff, then it is easy to see that the hit-or-miss topology coincides with the Vietoris topology [5, Sec. III-4]. The next result is well-known.

Proposition 2.5. The map $e: X \to \mathscr{F}(X)$ that sends x to its closure $\overline{\{x\}}$ has the following properties.

- (1) e is 1-1 iff X is T_0 .
- (2) If $U \in \mathcal{O}(X)$, then $e^{-1}(\lozenge_U) = U$; hence e is continuous with respect to τ_\lozenge .
- (3) If X is T_1 and $K \in \mathcal{K}(X)$, then $e^{-1}(\square_K) = X \setminus K$; hence if X is Hausdorff, then e is continuous with respect to τ_{\square} .
- (4) If X is Hausdorff, then e is continuous with respect to π .

An *embedding* of a space X into a space Y is a 1-1 map $e: X \to Y$ that is a homeomorphism from X to the image e(X) given the subspace topology from Y. Classically, a *compactification* of a space X is an embedding of X into a compact Hausdorff space Y where the image of X is dense in Y. Smyth [7] introduced stable compactifications to generalize the classical theory of compactifications to the setting of T_0 -spaces. Using [1, Thm. 3.5] Smyth's definition can be formulated as follows.

Definition 2.6. A *stable compactification* of a T_0 -space X is an embedding of X into a stably compact space Y where the image of X is dense in the patch topology of Y.

A related notion is that of an *order-compactification* of an ordered topological space (X, π, \leq) . This consists of a Nachbin space (Y, π, \leq) and a mapping $e: X \to Y$ that is both a topological embedding and an order embedding.

Definition 2.7. (see, e.g., [4, p. 57]) For X a locally compact T_0 -space, its *Fell compactification* H(X) is the closure of the image of X in the hit-or-miss topology of $\mathscr{F}(X)$.

Since X is locally compact, the hit-or-miss topology is compact Hausdorff, so the closed subset H(X) of $\mathscr{F}(X)$ is a compact Hausdorff space. When X is a noncompact locally compact Hausdorff space, $e:X\to H(X)$ is an embedding, and the Fell compactification is the one-point compactification of X (see [2, p. 475]). When X is non-Hausdorff, $e:X\to H(X)$ is no longer an embedding. So in this setting the term Fell compactification is somewhat of a misnomer. However, there are two ways to rectify this, by altering the topology of either $\mathscr{F}(X)$ or X.

Proposition 2.8. If X is locally compact T_0 , then the Fell compactification H(X) with the restriction of the hit topology is a stable compactification of X.

Proof. Since X is locally compact, $(\mathscr{F}(X), \pi, \subseteq)$ is a Nachbin space, and since H(X) is a closed subset, it naturally forms a Nachbin space as well. The upper topology of $\mathscr{F}(X)$ is the hit topology τ_{\Diamond} , and it follows that the restriction of τ_{\Diamond} to H(X) is its upper topology. So under the restriction of τ_{\Diamond} we have that H(X) is a stably compact space. By definition, H(X) is the closure of the image of X under the topology π , hence this image is dense in the patch topology of the stably compact space H(X). \square

Proposition 2.9. Let (X, τ) be a locally compact T_0 -space, \leq its specialization order, and σ the smallest topology on X making $e: X \to \mathscr{F}(X)$ continuous with respect to the hit-or-miss topology. Then $\tau \subseteq \sigma$ and $e: (X, \sigma, \leq) \to (H(X), \pi, \subseteq)$ is an order-compactification of (X, σ, \leq) .

Proof. By Proposition 2.5(2), $\tau \subseteq \sigma$. Also, since e is 1-1 by Proposition 2.5(1), e is a topological embedding of (X, σ) into $(H(X), \pi)$. Therefore, $e: (X, \sigma) \to (H(X), \pi)$ is a compactification of (X, σ) . To see that it is an order-compactification, observe that $e(x) \subseteq e(y)$ iff $cl_{\tau}\{x\} \subseteq cl_{\tau}\{y\}$ iff $\downarrow x \subseteq \downarrow y$ iff $x \subseteq y$. \square

3 The Fell compactification of a poset

Throughout this section P is a poset with partial ordering \leq . The collection of upsets of P is closed under arbitrary intersections and arbitrary unions, and in particular forms a topology on P called the Alexandroff topology. We denote it τ_A . Clearly the closed sets of τ_A are the downsets of P. It is known [?], and easily seen, that τ_A is T_0 and that the specialization order on P given by τ_A is the given partial ordering \leq of P. The following is easily seen.

Proposition 3.1.

4 The lattice of order-compactifications of a chain

Describe all order-compactifications of a chain by means of proximities; show there is always a least one, so it is a complete lattice. Give examples showing how Fell can sometimes be the least one, sometimes the largest one, sometimes neither.

Acknowledgements Thank Vladik for the opportunity.

References

- Bezhanishvili, G., Harding, J.: Stable compactifications of frames. Cahiers Topologie Géom. Différentielle Catég. 55, 37–65 (2014)
- Fell, J.M.G.: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space. Proc. Amer. Math. Soc. 13, 472–476 (1962)
- 3. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous lattices and domains. Cambridge University Press, Cambridge (2003)
- Hoffmann, R.E.: The Fell compactification revisited. In: Continuous lattices and their applications (Bremen, 1982), *Lecture Notes in Pure and Appl. Math.*, vol. 101, pp. 57–116. Dekker, New York (1985)
- 5. Johnstone, P.T.: Stone spaces. Cambridge University Press, Cambridge (1982)
- Nachbin, L.: Topology and order. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London (1965)
- 7. Smyth, M.B.: Stable compactification. I. J. London Math. Soc. 45(2), 321–340 (1992)