Type-2 Fuzzy Sets

John Harding, Carol and Elbert Walker

New Mexico State University www.math.nmsu.edu/~JohnHarding.html
jharding@nmsu.edu

AMS meeting, Akron, October 2012

Overview

The truth value object for type-2 fuzzy sets is the algebra M of all functions from the unit interval to itself. Here we consider a range of topics related to this algebra.

Overview

1. Definition of M .
2. Basic properties of M.
3. The variety $V(M)$ generated by M.
4. Decidability of the equational theory of $\mathrm{V}(\mathrm{M})$.
5. Towards an equational basis of $V(M)$.
6. A brief excursion to projectives.
7. Convex normal functions - a subalgebra of M.
8. Other orders and the finite analog.

1. Definition of M

Definition \mathbb{I} is the unit interval.
Definition M is the set of all functions $f: \mathbb{I} \rightarrow \mathbb{I}$ equipped with operations $\sqcup, \sqcap, \star, \overline{0}, \overline{1}$ given by

$$
\begin{aligned}
(f \sqcup g)(x) & =\sup \{f(y) \wedge g(z): y \vee z=x\} \\
(f \sqcap g)(x) & =\sup \{f(y) \wedge g(z): y \wedge z=x\} \\
f^{*}(x) & =\sup \{f(y): \neg y=x\}
\end{aligned}
$$

The constants $\overline{0}(x), \overline{1}(x)$ are characteristic functions of $\{0\},\{1\}$.

Note These are convolutions of $\wedge, \vee, \neg, 0,1$ on \mathbb{I} in the sense that polynomial multiplication is a convolution.

2. Basic properties of M

Definition For $f: \mathbb{I} \rightarrow \mathbb{I}$ let

1. $f^{L}=$ the least increasing function above f.
2. $f^{R}=$ the least decreasing function above f.

Note L and M are not part of the type of M, neither are pointwise meet and join \wedge, \vee. Enriching M this way would be of interest.

2. Basic properties of M

Using these auxiliary operations L, R and pointwise join and meet, we have much tidier expressions for our operations.

Proposition

1. $f \sqcup g=(f \vee g) \wedge f^{L} \wedge g^{L}$.
2. $f \sqcap g=(f \vee g) \wedge f^{R} \wedge g^{R}$.

The operation * on M is computed directly to be $f^{*}(x)=f(1-x)$.

While this makes working with M more tractable, we can do better.

2. Basic properties of M

Definition A bisemilattice is an algebra $(L,+, \cdot)$ where

1. + and are commutative and associative.
2. $x+x=x$ and $x \cdot x=x$.

It is a Birkhoff system if it also satisfies $x+(x \cdot y)=x \cdot(x+y)$.
Notes
A bisemilattice is two unconnected semilattice operations on the same set. It can be described by any two Hasse diagrams on the set. In a Birkhoff system, the semilattice operations are connected.

A lattice is a Birkhoff system where $x+(x \cdot y)=x=x \cdot(x+y)$.

2. Basic properties of M

Definition A De Morgan bisemilattice is an algebra ($L,+, \cdot, *, 0,1$) consisting of a Birkhoff sysytem with additional operations where

1. $*$ is period two.
2. $(x+y)^{*}=x^{*} \cdot y^{*}$.
3. 0 and 1 are units for + and . respectively.

Birkhoff systems have a large literature, and have been studied since the late 60's. De Morgan bisemilattices are more recent, since about 2000 (Brzozowski).

3. The variety $V(M)$ generated by M

Brzozowski showed ...

Theorem $(\mathrm{M}, \sqcap, \sqcup, *, \overline{0}, \overline{1})$ is a De Morgan bisemilattice.

Notes
M is not a lattice, and the partial orders given by its semilattice operations \sqcup and \sqcap do not agree. We will call these orders the join and meet order of M.

3. The variety $V(M)$ generated by M

Definition A variety of algebras is a class of algebras defined to be those satisfying some set of equations.

Examples Abelian groups, rings, lattices, Birkhoff systems and De Morgan bisemilattices all form varieties.

For any algebra A , there is a smallest variety containing it, the class of all algebras satisfying the same equations as A.

Definition $V(A)$ is the variety generated by A.

3. The variety $V(M)$ generated by M

Proposition Let \mathcal{F} be a set of homomorphisms from A to B and

1. For each $x \neq y$ in A there is $f \in \mathcal{F}$ with $f(x) \neq f(y)$.
2. Some $f \in \mathcal{F}$ is onto.

Then $V(A)=V(B)$.

Strategy To find $\mathrm{V}(\mathrm{M})$ find a simpler algebra B and family \mathcal{F} of homomorphisms that separates point, to show $V(M)=V(B)$. We use this repeatedly to get ever simpler such B.

3. The variety $V(M)$ generated by M

Definition Let \mathbb{I}^{+}be the power set of \mathbb{I} with operations

1. $S \sqcup T=\{s \vee t: s \in S$ and $t \in T\}$.
2. $S \sqcap T=\{s \wedge t: s \in S$ and $t \in T\}$.
3. $S^{*}=\{\neg s: s \in S\}$.
4. $\overline{0}=\{0\}$.
5. $\overline{1}=\{1\}$.

We call \mathbb{I}^{+}the complex algebra of \mathbb{I}. This idea is used extensively in logic, and dates back ≈ 100 years to complex algebras of groups.

3. The variety $V(M)$ generated by M

Proposition $\mathrm{V}(\mathrm{M}, \sqcup, \sqcap)=\mathrm{V}\left(\mathbb{I}^{+}\right)$.
Proof The maps $\varphi_{a}: M \rightarrow \mathbb{I}^{+}$with $\varphi_{a}(f)=\{x \in \mathbb{I}: a<f(x)\}$ separate points.

Proposition $\mathrm{V}\left(\mathbb{I}^{+}\right)=\mathrm{V}\left(3^{+}\right)$where 3 is a three-element chain.
Proof Homomorphisms from \mathbb{I} to 3 lift to ones from \mathbb{I}^{+}to 3^{+} providing a separating family of maps.

3. The variety $V(M)$ generated by M

So $V(M, \sqcup, \sqcap)$ is generated by a finite (8-element) algebra 3^{+}With some basic universal algebra, we can show $\mathrm{V}\left(3^{+}\right)$is generated by a 4-element algebra.

Theorem $V(M, \sqcup, \sqcap)$ is generated by the 4-element algebra below.

This kind of bisemilattice is called a bichain.

3. The variety $\mathrm{V}(\mathrm{M})$ generated by M

Similar results hold when all the operations are considered.

Theorem $\mathrm{V}(\mathrm{M}, \sqcup, \sqcap, *, \overline{0}, \overline{1})$ is generated by 5^{+}and by the algebra

Decidability of the equational theory of $\mathrm{V}(\mathrm{M})$

Theorem There is an effective algorithm to determine whether a given equation holds in $\mathrm{V}(\mathrm{M})$.

Proof Check if it holds in the finite algebra that generates $V(M)$.

Notes

For an equation with just \sqcup, \sqcap we use a 4 -element algebra. If there are n variables, its order is 4^{n}. Otherwise, it is 12^{n}, still not bad.

There is another version of this decidability result based on finding a normal form for terms. It seems to be of the same order.

Decidability of the equational theory of $\mathrm{V}(\mathrm{M})$

Corollary M satisfies the generalized distributive law

$$
p \sqcap q=p \sqcup q
$$

where $p=x \sqcap(y \sqcup z)$ and $q=(x \sqcap y) \sqcup(x \sqcap z)$.

Notes
The usual distributive law is $p=q$.
This implies that any subalgebra of M that is a lattice is a distributive lattice, and therefore a De Morgan algebra.

Towards an equational basis of $\mathrm{V}(\mathrm{M})$

As with any variety, $\mathrm{V}(\mathrm{M})$ can be defined by a set of equations. We wish to find such a set. This is still open, but ...

Conjecture $V(M)$ equals the variety S defined by the equations true in all bichains and the generalized distributive law.

Notes

- $\mathrm{V}(\mathrm{M}) \subseteq S \subseteq \mathrm{BiCh}$ (the variety generated by all bichains).
- $V(M)$ and S contain exactly the same bichains.
- S is the splitting variety of a 3 -element bichain.

Fancy tools of universal algebra seem of little help in solving this. A primary trouble is that $V(M)$ is not congruence distributive.

A brief excursion to projectives

There is a lot more to this story. Very briefly ...

Definition P is projective in a variety V if for any $\mathrm{A} \in \mathrm{V}$ and onto $f: \mathrm{A} \rightarrow \mathrm{P}$ there is $\mathrm{B} \leq \mathrm{A}$ with $f: \mathrm{B} \rightarrow \mathrm{P}$ an isomorphism.

Example We show the 2-element bichain C below is projective in the variety of Birkhoff systems.

Say x_{1}, x_{2} are generators of a free Birkhoff system F and they are mapped to 1,2 respectively. We must build a copy of C in F that is mapped isomorphically onto C.

A brief excursion to projectives

Fix the - operation (the left).

$$
\begin{array}{r}
x_{2} \\
x_{1} x_{2}
\end{array}|\quad| \begin{aligned}
& x_{1} x_{2} \\
& x_{2}
\end{aligned}
$$

Now fix the + operation (the right).

$$
\left.\begin{array}{r}
x_{2} \\
x_{2}+x_{1} x_{2}
\end{array}\right] \quad \left\lvert\, \begin{aligned}
& x_{2}+x_{1} x_{2} \\
& x_{2}
\end{aligned}\right.
$$

We don't have to fix the left again because we can prove it is okay. Indeed, $x_{2}\left(x_{2}+x_{1} x_{2}\right)=x_{2}+x_{2} x_{1} x_{2}=x_{2}+x_{1} x_{2}$.

A brief excursion to projectives

Note Projective + subdirectly irreducible \Rightarrow splitting.
We became interested in projectives to show the one 3-element bichain not contained in the 4-element bichain that generates $V(M)$ is splitting. We hope its splitting variety is $V(M)$.

We thought that every finite bichain would be projective. That is the case with finite chains. However, the 3-element bichain below is not projective (not so easy to show)!

A brief excursion to projectives

Theorem For a finite bichain C, these are equivalent.

1. C is projective in the variety of Birkhoff systems.
2. C does not contain the 3 -element bichain N as a subalgebra.

This then leads to a characterization of finite splitting bichains.
This used nasty computations proved by humans with intuition guided by computer (Prover9).

Convex normal functions - a subalgebra of M

Definition Call $f \in \mathrm{M}$ convex if $f=f^{L} \wedge f^{R}$ and normal if $\sup f=1$.

In plain terms, convex functions are ones that go up then go down.
Concave might be a better name.

Theorem Let L be the convex normal functions. Then

1. L is a subalgebra of M.
2. The orders from \sqcup and \sqcap agree on L.
3. L is a distributive lattice and a De Morgan algebra.
4. L is complete, but not meet or join continuous.

Convex normal functions - a subalgebra of M

There is a nice way to untangle the crazy operations on L .

For a convex normal f, let $S(f)$ be the result of "flipping f up", i.e. taking the reflection in the line $y=1$ of the increasing part.

Convex normal functions - a subalgebra of M

Theorem The flipping map S is an isomorphism from ($\mathrm{L}, \sqcap, \sqcup, \overline{0}, \overline{1}$) to the lattice of decreasing functions from \mathbb{I} to $[0,2]$ whose range has 1 as an accumulation point.

This opens the way to a new idea, defining an equivalence relation of "almost everywhere" on functions. But care is needed.

Warning The bottom and top $\overline{0}, \overline{1}$ of L are the characteristic functions of $\{0\},\{1\}$, so agree almost everwhere.

Convex normal functions - a subalgebra of M

Definition Define a relation on L by setting $f \cong g$ if the flipped up versions $S(f)$ and $S(g)$ agree almost everywhere.

Theorem \cong is a congruence and for D being the quotient L / \cong

1. D is a complete, completely distributive lattice.
2. D has a natural metric (from $\int|f-g| d x$).
3. With this metric D is a compact Hausdorff topological lattice.
4. This topology agrees with the Lawson topology on D.
5. D further carries a continuous De Morgan structure.

Other orders and the finite analog

The key point in defining M is that \mathbb{I} is a complete bounded chain. (We really just need complete).

Definition For finite integers $m, n \geq 0$ let

1. $M(m, n)$ be all maps from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$.
2. $L(m, n)$ be all convex maps from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$.

Again, we define operations $\sqcup, \sqcap, *, \overline{0}, \overline{1}$ to be convolutions of the join, meet, involution, and bounds of the n-element chain.

Proposition The situation is as before. The $L(m, n)$ are subalgebras of the $M(m, n)$ and they form de Morgan algebras.

Other orders and the finite analog

The structures $L(m, n)$ and $M(m, n)$ have interesting combinatorial and order theoretic properties. Briefly (still not finished) ...

Theorem The $L(m, n)$ are related to projectives.

Each $M(m, n)$ has two orders, one from each semilattice operation. As they are finite bounded semilattices, each is a lattice order. But neither order makes the map * on $\mathrm{M}(\mathrm{m}, \mathrm{n})$ an involution.

Theorem The intersection of the meet and join orders on $M(m, n)$ is a (non-distributive) lattice order that makes * an involution.

Note I have no idea why either of these two theorems are true.

Unfinished business

Here are some open problems and other directions...

1. Find an equational basis for $V(M)$.
2. For any complete lattice L and set X, operations on L can be convoluted to operations on LX . Investigate.
3. Which t-norms on the convex normal functions are compatible with the congruence \cong of equivalence almost everywhere?
4. Make sense of the combinatorics of the structures $M(m, n)$.

Many thanks to the organizers!

Thank you for listening.

Papers at www.math.nmsu.edu/~jharding

