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Introduction

Quantum structures is a broad term for a range of areas involving
mathematical structures related to quantum mechanics (QM).

These structures are studied for their connections to QM, and for
their own interest. Many are related to other areas. Often, they are
non-commutative, or non-distributive versions of classical objects.

I'll talk about some of my results in this area. A bit of a mixture,
hopefully something of interest for various tastes.
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Introduction

To start, two ideas from physics that influence matters.
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Two key aspects of QM — superposition

If particles behaved

classically, the pattern they

produsce on & screen woubd

be the sum of pattems

created by passing through
each individual slit —

Particles are quantum,
| thouwgh, and produce an
interference pattern that
-
PARTICLES 1 SCREEN cannot be explained by

classical bogic
SUTA
SLITH

If observed, a single particle will pass through one of the two slits.
If not observed, it passes through both.

People say it is a superposition of the two alternatives.



Two key aspects of QM — entanglement

Taking a measurement
of this qubit causes it

to collapse into one of
. two states . . .
. . and the change is

instantly reflected in
this qubit.

If two particles have interacted (created from the same source),
then a measurement on one particle instantaneously affects the
other, no matter the distance. “Spooky action at a distance”.
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Definitions

Next, definitions of some basic quantum structures, orthomodular
posets and lattices.

In some non-trivial ways, these structures are tied to superposition.

Explaining this will be one of our aims.

6
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Definitions
Definition An ortholattice (OL) is a bounded lattice with unary
operation L that satisfies the following.

1. xAxt=0and xvxt=1.
2. x<y=yt<xh

3. xt =x.
An orthomodular lattice (OML) is an OL that satisifes
4. x<yt=xv(xvy)t=y"

An orthomodular poset (OMP) is a poset satisfying similar
conditions, except we require joins only for x,y with x < y*.
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Examples

This oML is built from three 8-element Boolean algebras.
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Examples

This oML is built from three 8-element Boolean algebras.
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Examples

This oML is built from three 8-element Boolean algebras.

Theorem Every OL is the union of its Boolean subalgebras. The
OMLs are exactly the OLs where x < y iff x < y in some Boolean
subalgebra.
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Examples

This oML is built from three 8-element Boolean algebras.

Theorem Every OL is the union of its Boolean subalgebras. The
OMLs are exactly the OLs where x < y iff x < y in some Boolean
subalgebra.

So oMLs are locally classical (Boolean algebras). This is common
of many quantum structures.
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Examples

The motivating example of an OML is the projection lattice P(H)
of a Hilbert space.

More generally, the projections of any von Neumann algebra A
form an OML that nearly determines A ...

Theorem (Dye) The OML of projections of A determines A up to
Jordan isomorphism.

von Neumann algebras and C* algebras are again locally classical,
being built from function rings C(X).
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Result | — varieties of OMLSs

The algebraic study of OMLs for their own sake is quite interesting,
a bit like the study of modular lattices. Still open ...

e |s the free word problem for OMLs decidable?
e Can every OML be embedded in a complete OML?

One of my results in this area ...

16
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Result | — varieties of OMLSs

Theorem Let A be in a variety V generated by a class of oMLs of
finite height at most n. Then there is a sheaf S of OMLs over a
Boolean space X such that

1. Ais isomorphic to the global sections of S.

2. The stalks of S have height at most n on a dense open set.

Further, the MacNeille completion of A is the algebra of sections
over dense open sets, modulo equivalence on a dense open set,
hence belongs to V.

Note This applies, for example, to the variety generated by P(R3).
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The QM motivation for OMLs

The work of von Neumann is still the textbook treatment of QM ...

To each system one associates a Hilbert space H

Pure states are vectors in H, general ones density operators.

Observables (ex. position) are self adjoint operators A on H

Time evolution is given by a family of unitary operators on H.

Going from H to P(H) is a lot of fancy mathematics ...
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The QM motivation for OMLs

Spectral Theorem

Self adjoint operators on H (observables) correspond to o-additive
homomorphisms from Borel(R) - P(H).

Gleason's Theorem
States on H correspond to o-additive maps P(H) — [0,1].
Wigner's Theorem

Automorphisms of P(#H) correspond to unitary and anti-unitary
operators on H.
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The QM motivation for OMLs

Borel (R) P(H)

spectral theorem Gleason's theorem

[0,1]

oo A(B) = probability that a measurement of the observable A will
yield a result in the Borel subset B when the system is in state o

The old quantum logic program aimed to explain why (if?) the omL
in the middle should be P(H).
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The QM motivation for OMLs

o
Q — [0,1]
————

spectral theorem Gleason's theorem

Borel (R)

oo A(B) = probability that a measurement of the observable A will
yield a result in the Borel subset B when the system is in state o

The old quantum logic program aimed to explain why (if?) the omL
in the middle should be P(H).
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The QM motivation for OMLs

o
Q — [0,1]
————

spectral theorem Gleason's theorem

Borel (R)

oo A(B) = probability that a measurement of the observable A will
yield a result in the Borel subset B when the system is in state o

The old quantum logic program aimed to explain why (if?) the omL
in the middle should be P(#). Some results ...



Why the omL P(H)?

e Birkhoff & vN argued that P(#) gave the Yes/No questions
of a system, and these give a non-distributive logic.

e Mackey gave plausible physical arguments why the questions
Q of a quantum system form an OMP.

e Amemiya & Araki showed the closed subspaces of an inner
product space form an OML iff the space is a Hilbert space.

Everyone knew of “toy” OMLs, but there was a feeling that
orthomodularity captured an essential aspect of Hilbert spaces.
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Result Il — options for Q

Change our viewpoint! Orthomodularity comes not from Hilbert
spaces, but what we do with them. Projections of H correspond to
direct product decompositions H ~ Hi x Ho.

Theorem For A any set, group, ring, vector space, topological
space, partially ordered topological group, ... its direct product
decompositions Q(A) form an OMP where

1. (AﬁAlXAQ)l = AEAQXAl.
A=~ (A]_ ><A2) X A3.

IN

2. A2A1><(A2><A3)
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Result |l — options for Q

This gives a path to many alternatives to P(#). Among those
close to Hilbert space setting ...

e Q(A) for A a normed group with operators.

e O(A) for A a f.d. vector bundle.

In both cases there is a rich theory for Borel(R) - Q(A) — [0, 1].

A version of Wigner's theorem for Q(X) for a finite set X feels like
the fundamental theorem of projective goemetry.
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Result |l — options for Q

Why decompositions should arise? Dirac used the superposition
principal as motivation for the use of vector spaces in QM.

The superposition process is a kind of additive process
and implies that states can in some way be added to give
new states. The states must therefore be connected with
mathematical quantities of a kind which can be added
together to give other quantities of the same kind. The
most obvious of such quantities are vectors.

We view the superposition of v; and v» not as v; + v», but as the
ordered pair (vq,v2). Does one add non-orthogonal states?
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Recent trends in QM — PVMs

Interest in quantum information changed emphasis from (sharp)
observables to unsharp ones given by projection valued measures.
Models for unsharp questions are effect algebras.

Definition An effect algebra (E,®,0,1) is a set with partial binary
operation @ such that

1. & is commutative and associative.
2. For each x there is a unique x” with x® x’ = 1.
3. x@® 1 defined = x =0.

For a Hilbert space, £(H) = {A: A is self-adjoint and 0 < A< /}.

27 /37



Result Il — Effect algebras in hindsight

Effect algebras were defined for their role in QM. There is a nice
algebraic motivation for the definition of effect algebras.

Theorem

1. The forgetful functor from OMPs to POSETS has an adjoint
given by the Kalbach construction (gluing Boolean algebras
generated by chains of the poset).

2. Effect algebras are algebras for the resulting monad.

| did the first bit, Jenca the second.
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Recent trends in QM — categorical QM

Recent interest in quantum computation has put primary focus on
entanglement of quantum systems. For Hilbert spaces, the space
for the compound system is given by the tensor product H; ® Ho.

For the oMP approach to questions, this is a huge problem since for
OMPs Q1 and Qj, there need not be an OMP with the properties

required to be questions Q1 ® Q> of the compound system.

A recent path is the so-called categorical quantum mechanics. It
owes much to the computer science view of information flow.
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Recent trends in QM — categorical QM

Definition Abramsky and Coecke's categorical QM has

1. A strongly compact closed monoidal category C with tensor ®.

2. Objects in C are quantum systems.

3. Morphisms in C are processes.

Such categories have a graphical calculus (from Penrose) that is
very useful to study protocols. An example ...
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Recent trends in QM — categorical QM

Quantum Teleportation

Unknown qubit

W) ——>

EPR
pair

!
>

Alice

uses 2 classical bits to send 1 qubit

2 bit classical message

N\

.

Bob

—
—

—> )

Teleported qubit

Alice gets one half of an entangled pair, Bob the other. Alice’s half
is measured with a particle in state |V >. One of 4 outcomes is
obtained. Alice tells Bob which one. Bob performs one of 4
adjustments on his half. Bob's half ends up a duplicate of |V >.
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Recent trends in QM — categorical QM

The graphical calculus of strongly compact closed categories gives
the correctness of the teleportation calculus in the following simple
way. It is obviously useful in creating other protocols.

J_\\ % ALICE
— FJJ :/J’ — /

This categorical setup also gives basic reasons why “no-cloning”
theorems, and other basic results.

ALICE |
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Result IV — questions Q in categorical QM

Here C is a strongly compact closed category with biproducts
(the original formulation of categorical QM).

Definition For an object A€C, let Q(A) be the binary biproduct
decompositions of A.

Theorem For objects A, A1, A eC

1. Q(A) forms an OMP.
2. Q(A1®Ap) is (nearly) an omP tensor product Q(A;) ® Q(A2).

This ties categorical QM with the Birkhoff von Neumann appraoch
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Recent trends in QM — the topos approach

Butterfield and Isham have recently created a view of QM based in
topos theory. We just give a flavor.

To a QM system, associate a von Neumann algebra A. Its abelian
subalgebras S give sets of observables that can be simultaneously
observed, and behave classically together.

To each such § associate its dual space. This gives a presheaf X
over the (dual of the) poset of abelian subalgebras of A.

Theorem The Kochen Specker Theorem (one can’t simultaneously
assign values to all observables of a QM system) is equivalent to X
failing to have a global section.

34 /37



Recent trends in QM — the topos approach

Definition For a von Neumann algebra A, let Ab(.A) be its poset
of abelian subalgebras, ordered by inclusion.

Definition For an oMP P, let Bool(P) be its poset of Boolean
subalgebras.

A central ingredient of the topos approach is the Bohr topos,

whose internal logic is the Heyting algebra of downsets of Ab(.A).

Look at nLab on the web for more details.
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Result V. — The Bohr topos

Theorem Let P be an oMP, and A be a von Neumann algebra.

1. P is determined up to isomorphism by Bool(P).
2. A is determined up to Jordan isomorphism by Ab(.A).

Current work Extending to categorical dualities, and finding a nice
way to use orientations to change Jordan isomorphism to
isomorphism.

36

37



Thank you for listening.

Papers at www.math.nmsu.edu/~jharding



