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Organization

Part I — a combinatorial conjecture

Part II — what the conjecture has to do with top Boolean algebras.
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Part I

A Combinatorial Conjecture — a Better Boolean Bogoliuboff!
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The conjecture

X is a finite set, partitioned into n pieces S1, . . . ,Sn.

U is a collection of subsets of X such that for any A ⊆ X , at least
one of the 2n sets built from A belongs to U.

A1

A2 A3

An

S1 S2 Sn

A

Then there are two sets in U whose union contains all but at most
one element from each Si .
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The conjecture — weakened

Our conjecture asks to prove there are 2 sets in U whose union
contains all but at most one element from each Si .

Lemma There are 4 sets in U whose union contains all but at
most 22n elements of X .

Proof This follows from the proof of Bogoliuboff’s Lemma for
finite abelian groups and uses group characters. It gives no
understanding of why it is true (at least to me).

5 / 22



The conjecture — why we care

The conjecture admits a much nicer statement than the lemma. It
seems more likely to admit a simple combinatorial proof.

The Lemma is sufficient for all we say later, but its lack of an
elementary proof is what concerns us. In algebraic form ...

Lemma Let F be a finite Boolean algebra, S ≤ F and U ⊆ F be
such that U + S = F . Then there are ∣S ∣2 coatoms of F whose
meet belongs to U +U +U +U.
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Part II — Topological Boolean algebras

Definition A topological Boolean algebra is a Boolean algebra B
equipped with a topology making the basic operations continuous.

Theorem (Pappert Strauss) The compact Hausdorff topological
Boolean algebras are exactly the 2X where 2 is discrete.

Proof (key step) B is a topological abelian group. By Pontryagin
duality it has continuous characters χ ∶ B → C separating points.
For each x ∈ B, x + x = 0, so χ maps into {−1,1}. Then χ−1[−1]
and χ−1[1] are disjoint clopen sets. ...
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Aim

We would like an elementary proof of this result using only basic
concepts of Boolean algebras and topological lattices. Others have
been interested in this problem ...

• Marcel Erné

• Mamuka Jibladze

• Dito Pataraia

We achieve this using basic order theoretic arguments and ideas
from Dikranjan’s An Elementary proof of the Peter Weyl Theorem.

8 / 22



Basics

Proposition Let x ∈ B and V ⊆ B be open with 0 ∈ V .

1. x ↓ and x ↑ are closed.

2. V ↓ is open.

3. x +V open.

4. The closure ΓV ⊆ V +V .

5. V a downset ⇒ V +V = V ∨V .

6. V a downset ⇒ ∃ an open downset U with U +U ⊆ V .
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Basics

Proposition Let x ∈ B and V ⊆ B be open with 0 ∈ V .

1. x ↓ and x ↑ are closed.

2. V ↓ is open.

3. x +V open.

4. The closure ΓV ⊆ V +V .

5. V a downset ⇒ V +V = V ∨V .

6. V a downset ⇒ ∃ an open downset U with U +U ⊆ V .

Proof 1 x ↓= f −1[{x}] where f (⋅) = ⋅ ∨ x .
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Basics

Proposition Let x ∈ B and V ⊆ B be open with 0 ∈ V .

1. x ↓ and x ↑ are closed.

2. V ↓ is open.

3. x +V open.

4. The closure ΓV ⊆ V +V .

5. V a downset ⇒ V +V = V ∨V .

6. V a downset ⇒ ∃ an open downset U with U +U ⊆ V .

Proof 2 x ∈ V ↓⇒ x ≤ v for some v ∈ V . Set f (⋅) = ⋅ ∨ v . Then
f (x) = v ∈ V . V is open, so continuity of f gives an open x ∈ W
with f (W ) ⊆ V . Then W ⊆ V ↓.
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Basics

Proposition Let x ∈ B and V ⊆ B be open with 0 ∈ V .

1. x ↓ and x ↑ are closed.

2. V ↓ is open.

3. x +V open.

4. The closure ΓV ⊆ V +V .

5. V a downset ⇒ V +V = V ∨V .

6. V a downset ⇒ ∃ an open downset U with U +U ⊆ V .

Proof 3 f (⋅) = x + ⋅ is continuous and its own inverse, therefore is
a homeomorphism.
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Basics

Proposition Let x ∈ B and V ⊆ B be open with 0 ∈ V .

1. x ↓ and x ↑ are closed.

2. V ↓ is open.

3. x +V open.

4. The closure ΓV ⊆ V +V .

5. V a downset ⇒ V +V = V ∨V .

6. V a downset ⇒ ∃ an open downset U with U +U ⊆ V .

Proof 4 Let x ∈ the closure of V . Since x + V is an open nhbd of
x , then x + V intersects V . Say x + v = y ∈ V . Then x = y + v , so
x ∈ V +V .
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Basics

Proposition Let x ∈ B and V ⊆ B be open with 0 ∈ V .

1. x ↓ and x ↑ are closed.

2. V ↓ is open.

3. x +V open.

4. The closure ΓV ⊆ V +V .

5. V a downset ⇒ V +V = V ∨V .

6. V a downset ⇒ ∃ an open downset U with U +U ⊆ V .

Proof 5 This is just basic Boolean algebra.
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Basics

Proposition Let x ∈ B and V ⊆ B be open with 0 ∈ V .

1. x ↓ and x ↑ are closed.

2. V ↓ is open.

3. x +V open.

4. The closure ΓV ⊆ V +V .

5. V a downset ⇒ V +V = V ∨V .

6. V a downset ⇒ ∃ an open downset U with U +U ⊆ V .

Proof 6 0 ∨ 0 ∈ V so continuity gives an open W with 0 ∈ W and
W ∨W ⊆ V . Let U = W↓. Then U +U = U ∨U = (W ∨W )↓⊆ V .
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Basics

Proposition Let x ∈ B and V ⊆ B be open with 0 ∈ V .

1. x ↓ and x ↑ are closed.

2. V ↓ is open.

3. x +V open.

4. The closure ΓV ⊆ V +V .

5. V a downset ⇒ V +V = V ∨V .

6. V a downset ⇒ ∃ an open downset U with U +U ⊆ V .

One last item that is literally the first theorem one proves about
topological lattices (Johnstone).
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Basics

Proposition Let x ∈ B and V ⊆ B be open with 0 ∈ V .

1. x ↓ and x ↑ are closed.

2. V ↓ is open.

3. x +V open.

4. The closure ΓV ⊆ V +V .

5. V a downset ⇒ V +V = V ∨V .

6. V a downset ⇒ ∃ an open downset U with U +U ⊆ V .

Theorem Each ideal in a compact Hausdorff topological lattice L
has a join, and this join belongs to its closure. Thus L is complete.
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Proof of Pappert Strauss’ Theorem

Theorem If B is a compact Hausdorff topological Boolean algebra,
then B is isomorphic and homeomorphic to 2A for some set A.

Proof For isomorphism, it is enough to show B is atomic. Since B
is complete, this implies B is isomorphic to 2A for A its atoms.

For homeomorphism, let a ∈ A. Then a′↓ and a↑ are closed. It
follows that they are clopen. So the topology of B is finer than the
product topology of 2A. Both are compact Hausdorff, hence equal.

We must prove atomicity . . .
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The proof — atomicity

Suppose x ≠ 0.

Step 1 x ↑ and {0} are disjoint and closed.

Step 2 There are disjoint open C ,D with x ↑ ⊆ C and 0 ∈ D.

Step 3 Set V = D ↓. Then V is open and x /∈ V .

Step 4 Exists open downset U with Γ(U +U +U +U
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

U4

) ⊆ V .
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The proof — atomicity

Step 5 For each b ∈ B we have b +U is open. Use compactness!

Step 6 Exists finite S ≤ B so that {s +U ∶ s ∈ S} covers B.

Step 7 Set F = {F ∶ F is finite and S ≤ F ≤ B}.

Now we use our combinatorial lemma. Let k = ∣S ∣2.

Step 8 For each F ∈ F there are k prime ideals of F whose meet is
contained in U4.

Step 9 By a standard compactness argument from logic, there are
prime ideals P1, . . . ,Pk of B whose meet is contained in U4.
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The proof — atomicity

Step 10 Let I be the ideal P1 ∧⋯ ∧ Pk .

Step 11 I ⊆ U4 and ΓU4 ⊆ V and V ∩ x ↑= ∅.

Step 12 ⋁ I ∈ ΓI ⊆ V (from basics) ⇒ x ≰ ⋁ I .

Step 13 ⋁ I = (⋁P1) ∧⋯ ∧ (⋁Pk) (∧-continuity for BAs)

Step 14 x ≰ ⋁Pi for some 1 ≤ i ≤ k.

In a Boolean algebra, the join of a prime ideal is either 1 or a
coatom. So there is a coatom c of B that does not lie above x .
Therefore its complement c ′ is an atom beneath x .

21 / 22



Thank you for listening.

Papers at www.math.nmsu.edu/∼jharding


