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Foreword

Sorry, but I will use the F – word.

I know that some don’t think it belongs in talks.

Fuzzy sets
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Basic idea

Ask an expert what they think of the statement

70 F is Cold

They say they believe this to the “degree” 0.4.
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Fuzzy sets

Repeat this for each temperature in X = {50,60,70,80,90} and we
get a fuzzy subset of X , a map Cold ∶ X → [0,1]
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Figure: A fuzzy subset of X for Cold
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Interval valued fuzzy sets

Rather than a number for degree of belief, an interval. In interval
valued fuzzy subset is a map Cold ∶ X → {(a,b) ∶ a ≤ b}.
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Figure: An interval valued fuzzy subset of X for Cold

5 / 37



Type-2 fuzzy sets

To describe the statement 70 is Cold, experts give a function
f ∶ [0,1]→ [0,1].

0.4

Expert(s) are confident that 70 is Cold with truth degree 0.4, not
confident that 70 is Cold with degree 0.9.
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Type-2 fuzzy sets

A type-2 fuzzy subset is Cold ∶ X → {f ∣ f ∶ [0,1]→ [0,1]}
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Figure: A type-2 fuzzy subset of X for Cold
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Truth value algebras

The truth value algebras for fuzzy sets, interval valued fuzzy sets,
and type-2 fuzzy sets are

I = [0,1]

I[2] = {(a,b) ∶ a ≤ b ∈ I}

M = {f ∣ f ∶ I→ I}

I and I[2] sit in M as characteristic functions of points and intervals
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Operations

To make computations with fuzzy sets we use operations on these
algebras.

Both I and I[2] are bounded distributive lattices with negation, De
Morgan algebras.

Sometimes in place of ∧ one uses a t-norm △, a commutative,
associative, order preserving operation with 1 as an identity. For
example, regular multiplication on I.
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Operations on M

Definition (Zadeh) Define the following operations on M

1. (f ⊓ g)(x) =⋁{(f (y) ∧ g(z)) ∶ y ∧ z = x}

2. (f ⊓ g)(x) =⋁{(f (y) ∧ g(z)) ∶ y ∨ z = x}

3. f ∗(x) = f (1 − x)

4. 0(x) = 1 if x = 0 and 0 otherwise

5. 1(x) = 1 if x = 1 and 0 otherwise
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Operations on M

Are they natural?

Are they useful?

Are they tractable?
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Operations on M

Are they natural?

They are convolutions like (f ⋆ g)(x) = ∫ 1
0 f (t)g(x − t)dt

They are all convolutions of the operations of I using ∧ and ⋁

They are also related to the complex algebra of I.
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Operations on M

Are they useful?

Both I and I[2] embed as subalgebras into M.

They allow the categorical mathematics to build fuzzy controllers
for a natural subset of type-2 fuzzy sets.

The answer depends on whether such controllers work well.

13 / 37



Operations on M

Are they tractable

Yes.

We see how to calculate them easily, determine algebraic properties
of M, solve its free word problem, determine its automorphisms.

For a natural subalgebra of M we show it is a frame, that t-norms
lift to it, develop nice topological properties, and use this in a
categorical setting to work with fuzzy controllers.
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Working with ⊓ and ⊔

These are not pointwise operations, but they can be computed
pointwise with the aid of two auxiliary operations.

Definition For f ∶ I→ I let f L and f R be the least increasing and
least decreasing functions above f .

Theorem

1. f ⊓ g = (f ∨ g) ∧ f R ∧ gR

2. f ⊔ g = (f ∨ g) ∧ f L ∧ gL
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Equations

Theorem M satisfies the equations for De Morgan algebras except
that absorption and distributivity are weakened to the following.

1. x ⊓ (x ⊔ y) = x ⊔ (x ⊓ y)

2. (x ⊓ y) ⊔ (x ⊓ z) ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z) ⊓ (y ⊔ z)

M is not a lattice.

The unbalanced distributive laws do not hold.

M is a type of thing known as a De Morgan Birkhoff system.
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Complex algebras

Definition For a bounded chain C with negation ∗ define C+ to be
the power set of C with operations

1. A ⊓B = {a ∧ b ∶ a ∈ A,b ∈ B}
2. A ⊔B = {a ∨ b ∶ a ∈ A,b ∈ B}
3. A∗ = {a∗ ∶ a ∈ A}
4. 0 = {0}
5. 1 = {1}
6. A ∧B = A ∩B

7. A ∨B = A ∪B

8. AL = A ↑ (the upset of A)

9. AR = A ↓ (the downset of A)
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Varieties

Theorem If C has at least 5 elements, then M and C+ generate
the same variety.

The variety generated by M is generated by a 32 element algebra.
So its free word problem is solvable. Using the UA calculator, we
can find smaller algebras that generate the same variety.

Corollary The variety generated by (M,⊓,⊔) is generated by

qa

qb

qc

qd

q aq c
q bq d

⊓ ⊔
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Automorphisms

Theorem Automorphisms α and β of I given an automorphism Γ
of M, and all automorphisms of M arise this way.

Γ(f ) = β ○ f ○ α

One half of this is quite difficult to prove.
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Convex normal functions

Definition For f ∈ M we say it is

1. convex if f = f L ∧ f R (it goes up then down)

2. normal if sup f = 1

1

There is an argument that the functions used for assigning type-2
degrees of belief to Cold could be assumed convex normal.
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Convex normal functions

Note It was fuzzy engineers that came up with the name convex.
It is not the notion used in calculus for a couple hundred years.

Theorem The convex normal functions L are a subalgebra of M
that is a lattice, hence an actual De Morgan algebra.
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Straightening

Working with L is still a challenge because its operations are not
pointwise. For f ∈ L define its straightening by flipping up its
increasing part.
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Straightening the order

Definition Let D be the De Morgan algebra of all g ∶ [0,1]→ [0,2]
that are decreasing and have 1 in the closure of their image.

Theorem L is isomorphic to D.

Now things are pointwise, so easy to work with.
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Agreement almost everwhere

The top and bottom of L agree almost everywhere. But their
straightened versions do not!

1 s
0 1

1 s
0 1

Definition Two members of L agree convexly almost everywhere
(c.a.e.) if their straightened versions agree almost everywhere.
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Agreement almost everywhere

Theorem Agreement c.a.e. is a congruence on L. The quotient
algebra has the following properties.

1. It is complete, and completely distributive.

2. ∫ 1
0 ∣f (x) − g(x)∣dx is a metric on it.

3. It is a compact Hausdorff topological De Morgan algebra.

It is easy to argue why members of the quotient algebra L (c.a.e.)
should serve as truth values for things such as Cold.
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Lifting t-norms

The operations ⊓ and ⊔ were lifted from those of I by convolution.
We can so lift any operation on I to M.

Theorem Let △ be a continuous t-norm on I. Then

1. Its convolution ▲ is a operation on L

2. ▲ has the properties of a t-norm on L

3. Agreement (c.a.e.) is a congruence with respect to ▲
4. In L (c.a.e.) f ▲⋁gi = ⋁(f ▲ gi)
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Fuzzy controllers

An example

We have a room with a device in it to heat and cool the room and
a sensor that measures approximate temperature.

X = {50,60,70,80,90} possible temperatures

Y = {−2,−1,0,+1,+2} settings of the device

A setting of -2 puts lots of cold air in the room, +2 lots of hot air.
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Fuzzy controllers

Make linguistic variables Cold, Nice, and Hot for temperature;
Air and Furnace for settings. Experts give fuzzy sets for these.

1

50 60 70 80 90

Cold

1

50 60 70 80 90

Nice

1

50 60 70 80 90

Hot

1

-2 -1 0 1 2

Air

1

-2 -1 0 1 2

Furnace
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Fuzzy controllers

We represent the fuzzy sets for temperature as a matrix

1

50 60 70 80 90

Cold

1

50 60 70 80 90

Nice

1

50 60 70 80 90

Hot

P =
⎛
⎜
⎝

1 .5 0 0 0
0 .5 1 .5 0
0 0 0 .5 1

⎞
⎟
⎠

50 60 70 80 90

Cold 1 .5 0 0 0
Nice 0 .5 1 .5 0
Hot 0 0 0 .5 1
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Fuzzy controllers

And do the same for adjustments

1

-2 -1 0 1 2

Air

1

-2 -1 0 1 2

Furnace

Q = ( 1 .7 .3 0 0
0 0 .3 .7 1

)
-2 -1 0 1 2

Air 1 .7 .3 0 0
Furnace 0 0 .3 .7 1
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Fuzzy controllers

We are given a rule base that says what should be done in each
case.

R = ( 0 1 1
1 0 0

)
Cold Nice Hot

Air 0 1 1
Furnace 1 0 0
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Fuzzy controllers

Then if our sensor gives a reading of 80 for temperature we make a
column vector T̂ with a 1 in the spot for 80 and 0’s elsewhere and
compute QTRP(T̂ )

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0
.7 0
.3 .3
0 .7
0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

( 0 1 1
1 0 0

)
⎛
⎜
⎝

1 .5 0 0 0
0 .5 1 .5 0
0 0 0 .5 1

⎞
⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

.5

.3

.2
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

The result is a fuzzy subset of Y = {−2,−1,0,1,2} that we then
“defuzzify” to get an adjustment to the device.
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Fuzzy controllers

Matrix multiplication computes entries as sums of products.

This multiplication was done using ⋅ as product and ⋁ as sum. It
can be done using any continuous t-norm △ as product and ⋁ as
sum. This requires

x △⋁ yi = ⋁(x △ yi)

to obtain associativity of matrix multiplication.
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Symmetric monoidal categories

Ordinary fuzzy controllers live in the symmetric monoidal category
of matrices over (I,△,⋁).

Objects: sets
Morphisms: matrices composed by multiplication

Tenor product is ordinary product of sets and Kronecker products
of matrices. It allows to have more dependent or independent
variables in the controller.
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Type-2 fuzzy controllers

Do exactly the same with the category of matrices over (L,▲,⋁).
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Quantum

Quantum processes are also modeled in such symmetric monoidal
categories.

Nobody is saying that fuzzy controllers and quantum processes are
the same thing.

But they do have some commonality, and having them in the same
setting should allow more direct comparisons.
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Thanks for listening.

Papers at www.math.nmsu.edu/∼jharding


