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Foreword

I’d like to describe an ongoing project.

Some portions are well developed and settled.

I’d also like to discuss future directions and obstacles. I would be
happy to have suggestions.
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The role of projection operators

In the standard Hilbert space formulation of QM, projections play
a central role. Our key ingredients.

Q = the orthomodular lattice of projections of H
S = the convex set of states

O = the observables

B = the Borel algebra of R
G = a Lie group
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The role of projection operators

The Spectral Theorem

Observables correspond to σ-homomorphisms E ∶ B → Q

Gleason’s Theorem

States correspond to σ-additive s ∶ Q → [0,1]

Wigner’s Theorem

Unitary and anti-unitary maps of H correspond to auto’s of Q

There are a number of areas where Wigner’s theorem is pertinent.
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Wigner’s Theorem

The dynamical group of the system

This is a continuous group homomorphism U ∶ R→ Aut(H). The
unitary Ut is the time evolution operator from t0 to t.

Stone’s Theorem

The dynamical groups are exactly given by Ut = e iht for some
H ∈ O called the Hamiltonian or energy operator. This may be
viewed as an abstract form of Schrödinger’s equation.
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Wigner’s Theorem

Group Representations

A continuous homomorphism ∏ ∶ G → Aut(H).

These include dynamical groups, the finite symmetry groups one
considers for crystals, SO(3) from considerations of shapes of
orbitals, the Lorentz group for free particles, and so forth.

Wigner’s theorem relates this to ∏ ∶ G → Aut(Q).

Note: Do not forget the topology — on G and H and Q.
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Wigner’s Theorem

The Fundamental Theorem of Projective Geometry

The subspaces of a vector space V form a projective geometry P
and the auto’s of P correspond to skew-automorphisms of V.

Wigner’s theorem is a direct analog. This underscores the
geometric view of quantum theory.

7 / 28



Program

• Try to replace H with another structure X .

• To build an omp Q from X .

• To use this as a basis of developing aspects of QM.
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How to build Q and from what?

Rather than view projections as closed subspaces or summands, we
view them as corresponding to direct products H ≃ H1 ×H2.

Theorem One can build an omp Q from the direct product
decompositions of virtually any type of structure X where

• the orthocomplement of X ≃ A ×B is X ≃ B ×A

• X ≃ A × (B × C) ≤ X ≃ (A ×B) × C .

Note A superposition is not u + v , but rather (u, v).

9 / 28



Examples

Some examples of the structures X to which this theorem applies
are the following.

• sets

• sets with valuation v ∶ X → [0,∞)
• G-sets

• groups, rings

• normed groups

• graphs

• topological spaces

• vector bundles (with inner product)

• An abstract object in a suitable type of category
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Constructing Q for these examples

For normed groups and vector bundles, it is similar to the Hilbert
space setting.

For groups Q is built as complementary pairs of its modular lattice
of normal subgroups. Rings and modules are similar.

For sets, G-sets, sets with valuation, Q is constructed from ordered
pairs of equivalence relations.

Note In some cases such as vector bundles and normed groups, Q
forms a topological omp in the sense of Wilce.
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The Spectral Theorem

For Q constructed from X , there is plausible physical reasoning for
construction of observables.

• Call n-ary decompositions X ≃ A1 ×⋯×Xn n-ary experiments.

• Members of Q are binary experiments or questions.

• Finite Boolean B ≤ Q correspond to n-ary experiments.

• Arbitrary B ≤ Q correspond to sheaf rep’s of X in good cases.
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The Spectral Theorem

A Boolean subalgebra of Q consists of compatible questions that
can be asked simultaneously such as “is it here” or “here”. We call
a Boolean subalgebra of Q an observable quantity.

To assign numbers to on observable quantity we give a numerical
value to each outcome. We call this a scaling.

s s s s s
3.2 8.7 1.5 9.0 6.1

A1 A2 A3 A4 A5
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The Spectral Theorem

Let B be an infinite Boolean subalgebra with Stone space Z.

A scaling of B is a measurable map ϕ ∶ Z→ R.

Z

Ai

An observable is an observable quantity together with its scaling.
We obtain a calculus of compatible observables working in C(Z)
with A +B, A2, eA as in the Hilbert space setting.
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States

A state is a (σ) additive map s ∶ Q → [0,1]

States give probabilities for questions in the usual way. We also
obtain other properties as in the Hilbert space setting.

Theorem Suppose B is an observable quantity with Stone space Z.
Then each state s gives a measure µs on Z. Further, the observable
consisting of B scaled by ϕ has expected value in state s

∫ ϕdµs
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States

The previous result made use of states on Q. Existence?

Theorem If X is a set with valuation, normed group, or vector
bundle, then Q has a full set of states.

Note For any infinite set X, there are no states on Q. There are
however an abundance of “partial states”.

Note No attempt has yet been made at Gleason’s Theorem in this
setting, except for vector bundles. This seems difficult.
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Wigner’s Theorem

For Q built from a vector space V , elements of Q are ordered pairs
(S ,T ) of complementary subspaces of V . Ovchinnikov gave a
version of Wigner’s Theorem for such Q.

Theorem Automorphisms of Q are pairs (α,β) where α is an auto
and β a dual auto of the subspace lattice of V .

Note The fundamental theorem of projective geometry describes
such α and β in terms of skew automorphisms of V .

Note Similar results hold for groups, rings, and modules but we
don’t have the description of α and β.
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Wigner’s Theorem

I’d like a version of Wigner’s Theorem for Q built from a set X.

Conjecture Aut Q is isomorphic to Aut X.

When ∣X ∣ has one or two prime factors, or equals 8, the conjecture
is false. The only case I know it is true is when ∣X ∣ = 27.

When ∣X ∣ = 27 Q is huge, and the proof is many pages of difficult
combinatorial arguments. It shows a lot about Q such as it being
highly transitive. This is open for X infinite.
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Group representations

Definition A representation of G is a group homomorphism

Π ∶ G → Aut X

If our objects X lie in some category C, then a representation of G
is a functor from the 1-element category G to C.

The representations of G in C are a category CG with morphisms
natural transformations. Products of rep’s, etc have meaning.
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Group representations

Classically, irreducible representations give physically quantities.
Irreducible representations of S0(3) give shapes of orbitals, etc.

The correct notion in the more general setting seems to be that of
subdirectly irreducible representations.

Theorem Representations of G in Set are G -sets. The subdirectly
irreducible representations are the G -sets G/H where H is a meet
irreducible subgroup.

It would be of interest to compare set representations of finite
symmetry groups to the usual linear representations.
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Dynamical groups

A basic feature of the standard Hilbert space approach is the
unitary representation

E ∶ R→ Aut C where Et(z) = e itz

If the energy observable H has eigenvalues λ1 = 3 and λ2 = 5

Then the dynamical group U of the system has

Utv = e3itv1 + e5itv2

where v = v1 + v2 is the eigenstate superposition for v .
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Dynamical groups

This suggests the following approach to the general situation.

Consider a category C such as sets, and the category CR of sets
with a base dynamical group. An object in CR is

EA ∶ R→ AutA

Then take the decompositions Q of an object in this category.
These will be the decompositions that are compatible with the
group actions.
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Dynamical groups

Now suppose that some observable we call the Hamiltonian has
the following decomposition and scaling.

q q q q q
3 8 1 9 6

A1 A2 A3 A4 A5

Then the dynamical operator U of the system takes has

Ut(a1, . . . , a5) = (EA1
3t (a1), . . . ,EA5

6t (a5) )
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Tensor products

For systems with structures X1,X2 and logics Q1,Q2 we want a
structure X for the compound system so that for its logic Q:

1. There is f ∶ Q1 ×Q2 →Q
2. This f preserves orthogonal joins in each argument

3. For states σi of Qi , there is a state ω of Q with

ω(f (q1,q2)) = σ1(q1)σ2(q2)
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Tensor products

Incorporating tensor products with the rest of the program remains
a problem area. In some cases close to Hilbert space it seems that
progress can be made with modest compromises

• vector bundles with inner product

• normed abelian groups (torsion free)

Another path is via categorical QM ...
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Tensor products

Let C be a dagger symmetric monoidal category with biproducts.

Theorem For an object A ∈ C

1. The biproduct decompositions Q(A) form an orthoalgebra.

2. Q(A⊗B) has many properties of a tensor product of logics.

Note This likely has many extensions (no dagger, products)

Note This fits with the scheme CR for dynamics and CG for rep’s.
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Tensor products

The problem in merging decompositions with the categorical
approach is the scalars.

The decomposition approach fundamentally uses the reals in its
scalings, measures, and dynamics.

While the categorical approach has its scalars C(I , I ), I can’t
connect to this in the ways needed.
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Thanks for listening.

Papers at www.math.nmsu.edu/∼jharding


