The Logic of Stone Spaces

John Harding and Guram Bezhanishvili

New Mexico State University www.math.nmsu.edu/JohnHarding.html jharding@nmsu.edu

BLAST, Boulder June 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Basics

CL = the variety of all closure algebras (B, C)

 $X^* = (\mathcal{P}X, C)$ where X is a topological space

View subvarieties of **CL** as extensions of Lewis' **S4**

- S4 \leftrightarrow CL
- S4.1 \leftrightarrow CL + ICx \leq CIx
- S4.2 \leftrightarrow CL + Clx \leq ICx
- etc.

Theorem (McKinsey-Tarski) If X is metrizable and has no isolated points, then X^* generates **CL**.

Aim

For a Boolean algebra B with Stone space X, to determine the subvariety of **CL** generated by X^* , i.e. the modal logic of X. We can do this if B is complete or if B is countable.

Note For *B* countable and free, X is the Cantor space, so by the McKinsey-Tarski theorem its logic is **S4**.

Tools

Each quasiorder Q is a topological space where opens := upsets.

Many subvarieties of **CL** are generated by classes of quasiorders.

- **S4** by finite quasitrees.
- **S4**.1 by finite quasitrees with top level simple nodes.
- **S4.2** by the $Q \oplus C$ with Q finite quasitree and C cluster.

$$X \xrightarrow{f} Y \underbrace{\operatorname{cont} + \operatorname{open}}_{\operatorname{interior}} + \operatorname{onto} \Rightarrow Y^* \xrightarrow{f^{-1}} X^*$$
 CL-embedding.

Tools

Each quasiorder Q is a topological space where opens := upsets.

Many subvarieties of **CL** are generated by classes of quasiorders.

- **S4** by finite quasitrees.
- **S4**.1 by finite quasitrees with top level simple nodes.
- **S4.2** by the $Q \oplus C$ with Q finite quasitree and C cluster.

$$X \xrightarrow{f} Y \underbrace{\operatorname{cont} + \operatorname{open}}_{\operatorname{interior}} + \operatorname{onto} \Rightarrow Y^* \xrightarrow{f^{-1}} X^*$$
 CL-embedding.

Example To show the logic of X is **S4**

Enough to find an onto interior $X \xrightarrow{f} Q$ for each finite quasitree Q as X^* will contain a generating set for **S4**.

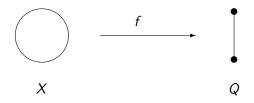
Tools

Our job amounts to finding interior onto maps $X \stackrel{f}{\longrightarrow} Q$.

Lets look at some easy examples ...

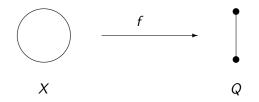
Easiest example

For X the Stone space of B, when is there an interior onto map



Easiest example

For X the Stone space of B, when is there an interior onto map

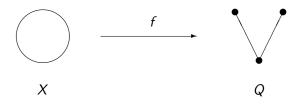


When X has a proper dense open set $U \ (= f^{-1}[top])$. When B has a proper ideal whose join is 1. When B is infinite.

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ

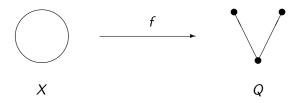
Next easiest example

For X the Stone space of B, when is there an interior onto map



Next easiest example

For X the Stone space of B, when is there an interior onto map



When X has disjoint regular open U, V with $U \cup V$ proper dense. When B has a non-principal normal ideal. When B is incomplete.

The logic of ω^{\ast}

- $eta \omega \;\; = \;\;$ the Stone Cech compactification of ω
- $\omega^* ~=~ {\rm the~remainder}~\beta\omega-\omega$
- ω^* = the Stone space of $\mathcal{P}\omega/Fin$.

Theorem The logic of ω^* is **S4**.

Proof. We need an interior onto map $\omega^* \xrightarrow{f} Q$ for each finite quasitree Q. For this we need a technical result to recursively build a tree of ideals in our Boolean algebra.

Lemma $(\mathfrak{a} = 2^{\omega})$. For P a partition of $b \in \mathcal{P}\omega/Fin$ and $m \ge 1$, there are sets P_1, \ldots, P_m and maps f_1, \ldots, f_m with

1.
$$P_1 \cup \cdots \cup P_m = P$$
 and $P_i \cap P_j = \emptyset$ for each $i \neq j$.

2.
$$f_i$$
: Infinite(P) \rightarrow P_i is 1-1 for each $i \leq m$.

3.
$$f_i(c) \in Support_P(c)$$
 for each $c \in Infinite(P)$ and each $i \leq m$.

Note $(\mathfrak{a} = 2^{\omega})$ is an additional assumption of set theory.

Note We use this to recursively build a tree of ideals.

Corollaries

Theorem The logic of $\beta \omega$ is **S4.1.2**.

Proof. Any interior $\omega^* \longrightarrow Q$ lifts to an interior $\beta \omega \longrightarrow Q \oplus 1$ and this is exactly what we need.

Theorem For B a complete Boolean algebra with Stone space X.

- 1. If B is finite, the logic of X is classical.
- 2. If B is infinite and atomic, the logic of X is S4.1.2.
- 3. Otherwise the logic of X is **S4**.2.

Proof. Such X has a closed subspace homeomorphic to $\beta\omega$. We use this to build our map $X \longrightarrow Q \oplus C$ for the difficult case 3.

Countable Boolean algebras

For B Boolean with Stone space X the following are equivalent

- *B* is countable
- B is generated by a countable chain C
- X is metrizable

The atomless case gives S4 by McKinsey-Tarski.

The scattered case gives $\mathbf{Grz}_{\mathbf{n}}$ for some $n \leq \omega$ by old results.

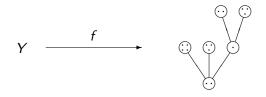
So we may assume *B* is generated by a chain *C* where each interval contains a cover, and the condensation *D* of *C* is \mathbb{Q} . We will show **S4.1** is the logic in this case.

Our setup ...

- D = condensation of C
- Y = Stone space of free Boolean ext of D (so $Y \simeq$ Cantor)

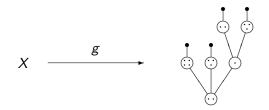
 $Y \leq X$

Lets sketch the idea ...

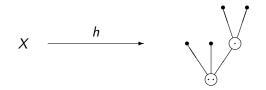


We get this as $Y \simeq Cantor$

The hard part is to use the way Y sits in X to extend to ...



As squishing the top parts is interior we get



The Q we can get on the right are the ones we need to show **S4.1**.

16/17

Questions

Is the assumption $(\mathfrak{a} = 2^{\omega})$ necessary for the ω^* result?

Extend countable results to any B generated by a chain, or tree.

Conjecture

The varieties generated by X^* for a Stone space X are exactly the finite joins of the ones above.

Little question

Does every atomless B have a dense ideal I with B/I atomless?