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Abstract There is current interest in using ideas from quantum mechanics in the
study of economics. We give an overview of an approach to quantum mechanics
rooted not necessarily in Hilbert space, but in the primitive mathematical idea of
direct products. This approach includes the standard von Neumann Hilbert space
approach. It provides a conceptually simpler understanding of issues from standard
quantum mechanics, and offers possibilities beyond the standard Hilbert space for-
mulation. These further possibilities may be of particular interest in consideration
of economics where the aim is to exploit quantum principles rather than specific
physical situations.

1 Introduction

The standard mathematical treatment of quantum mechanics took its modern form
through the work of Dirac [4] and von Neumann [24]. It was von Neumann who
fully expressed the theory in terms of Hilbert spaces. A considerable amount of
sophisticated mathematics is put into the first steps of the mathematical formulation
of the quantum theory of an electron.

In quantum computing, one is content with finite-dimensional Hilbert spaces Cn.
But even to consider position and momentum of a single electron, one requires an
infinite-dimensional Hilbert space H . This is a complex vector space with inner
product u · v, that gives a norm ‖u‖ =

√
u ·u, that in turn gives a metric d(u,v) =

‖u−v‖ under which the vector space is a complete metric space. Observables, such
as position and momentum, correspond to self-adjoint operators on H ; and states
correspond to density operators on H .
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A number of substantial mathematical results are the backbone of the theory.
The spectral theorem [17, 21] relates a self-adjoint operator to a family of projec-
tion operators of H . Gleason’s theorem [5, 6, 16, 20] relates density operators to
probability measures on the collection P(H ) of all projection operators. Wigner’s
theorem [23, 25] relates symmetries of the system to automorphisms of P(H ),
and Stone’s theorem [17, 22, 23] relates the time evolutions of the system to these
symmetries.

In this sea of mathematical terminology and results, the question we should not
lose is “why?” Why should we attach a Hilbert space to a system, why are self-
adjoint operators used for observables, and so forth. The most popular answer to
these questions is is because it works; but this is not really an answer at all, it is an
instruction to not ask the question.

Mackey [18, p. 61-71] gave a simple set of six physically motivated axioms that
showed that the collection Q of Yes/No questions that can be asked of a physical
system form a type of structure known as an orthomodular poset (OMP). This is a
structure (Q,≤,′ ,0,1) comprised of a family of Boolean algebras “glued together”,
and allows one to reason about events as is done in a Boolean algebra, but allowing
for the possibility that certain events might not have a conjunction or disjunction.
Mackey’s seventh axiom was completely unmotivated, and simply stated that the
OMP of questions are the projections Proj(H ) of a Hilbert space H .

In this note, we show how simple properties of direct products can be used to
construct an OMP of questions from virtually any type of structure such as a set, or
group, or topological space, in place of a Hilbert space. Using the premise of direct
products as basic, we give operationally motivated constructions of observables and
dynamics. When applied to a Hilbert space, this recreates standard quantum theory.
In terms of motivation of the use of direct products — a Yes/No question splits the
system into a product of two, one where the event occurs, one where the alternate
occurs.

This note is a compendium of results obtained and presented in detail in a series
of papers [7, 8, 9, 10, 11, 12, 13, 14, 15].

2 Direct product decompositions of Hilbert spaces

We first consider the relationship between projections and products for a Hilbert
space. A projection operator P has a closed subspace A as its range, and each closed
subspace is the range of a unique projection. A fundamental property of closed
subspaces is that each vector w ∈H can be uniquely expressed as w = u+ v for
some vectors u ∈ A and v ∈ A⊥, where A⊥ is the set of vectors orthogonal to all
vectors in A. Thus H is in bijective correspondence with the set of ordered pairs
(u,v) where u ∈ A and v ∈ A⊥, hence with A× A⊥. This is the idea behind the
following result.
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Theorem 1. A closed subspace A of a Hilbert space H gives a direct product
decomposition H ' A×A⊥, and a direct product decomposition H 'H1×H2
gives a closed subspace A = {(u,0) : u ∈H1}.

w = (3,2)

3u

v
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Fig. 1 A closed subspace A inducing a direct product decomposition

We are interested not just in the set of projections of H , but also in its structure
as an OMP.

Definition 1. An orthomodular poset (OMP) [18, 20, 23] is a structure (Q,≤,′ ,0,1)
that consists of a partially ordered set with least element 0, largest element 1, and an
order reversing unary operation ′ : Q→Q of period two called orthocomplementa-
tion such that the following hold.

1. if x≤ y′, then x,y have a least upper bound that is denoted x⊕ y
2. x⊕ x′ = 1
3. if x≤ y then x⊕ (x⊕ y′)′ = y

We say that x,y are orthogonal when x≤ y′.

Example 1. The closed subspaces of a Hilbert space H form an orthomodular poset
Closed(H ). The partial ordering is set containment ⊆, the orthocomplementation
A′ is given by the orthogonal subspace A⊥, the least element 0 is the trivial subspace
{0}, and the largest element 1 is the whole space. When S ⊆ T⊥, the least upper
bound of S and T is their span S⊕ T . It turns out that the closed subspaces are a
lattice, that is, that any two closed subspaces have a least upper bound and greatest
lower bound, but in physical considerations it is difficult to give meaning to these
for arbitrary closed subspaces.

Closed subspaces of H correspond to direct product decompositions of H . So
we can consider the OMP structure in terms of direct product decompositions. The
least closed subspace {0} and largest closed subspace H correspond to the direct
product decompositions

H ' {0}×H and H 'H ×{0}
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The orthocomplement of the decomposition H ' A× A⊥ for A is given by the
decomposition for A⊥, which is H ' A⊥×A⊥⊥. Since A⊥⊥ = A, this is the decom-
position H ' A⊥×A. Orthocomplements of decompositions are very simple, we
just switch the order of the factors.

The situation for the ordering A ⊆ B of closed subspaces is the most interesting
of all. Consider the example shown in Figure 2 of H being R3 with X ,Y,Z being
the three coordinate axes. Let A be the closed subspace X consisting of the x-axis,
and let B be the x,y-plane. Then indeed A⊆ B. Note that H ' X×Y×Z is a ternary
direct product decomposition. Since A⊥ = Y ×Z and B = X×Y , we have

H ' A×A⊥ is H ' X× (Y ×Z)

H ' B×B⊥ is H ' (X×Y )×Z

The partial ordering ≤ of binary decompositions is given by all instances of the
following that arise from a ternary decomposition H ' X×Y ×Z

H ' X× (Y ×Z) ≤ H ' (X×Y )×Z

That every instance of A ⊆ B is captured by this follows from the third condition
in Definition 1, known as the orthomodular law. If A ⊆ B, then B = A⊕C where
C = (A⊕B⊥)⊥. So H = A×C×B⊥ is the required ternary product decomposition.

Y

Z

X

Fig. 2 A ternary decomposition given rise to a comparability between binary decompositions

3 Direct product decompositions in a general setting

In the previous section, we showed that one can naturally define the structure of
an OMP on the binary direct product decompositions H 'H1×H2 of a Hilbert
space so that the resulting structure is isomorphic to the OMP of closed subspaces
Closed(H ) that plays such a vital role in standard quantum theory. This can be
extended to many types of structure. We begin by considering matters for a set X .
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Definition 2. A n-ary direct product decomposition of a set X is an indexed family
of sets X1, . . . ,Xn and a bijection α : X → X1× ·· ·×Xn. This n-ary direct product
decomposition is equivalent to another β : Y1×·· ·×Yn if for i = 1, . . . ,n there are
bijections γi : Xi→ Yi so that β = (γ1×·· ·× γn)◦α . See Figure 3.

Example 2. Let X = {a,b,c,d} be a 4-element set. Up to equivalence, there is
one binary decomposition of X ' {∗}×X as the product of a 1-element set and
a 4-element set X ; one binary decomposition X ' X × {∗} as the produce of a
4-element set and a 1-element set; and 6 binary decompositions X ' {p,q}×{r,s}
as the product of two 2-element sets. The specific elements in the two 2-element
sets are of no importance. In each of these six decompositions, each of a,b,c,d is
represented as an ordered pair in {p,q}×{r,s}. The decomposition is specified by
stating which element has the same first component as a, and then which has the
same second component as a.

X

X1×·· ·×Xn

Y1×·· ·×Yn

· · ·

α

β

γ1 γn

Fig. 3 Equivalence of n-ary decompositions

Definition 3. Let X be a set. For an n-ary decomposition α : X → X1× ·· · ×Xn,
let [α : X → X1×·· ·×Xn] be the class of all equivalent decompositions. Let Q(X)
be the set of all equivalence classes of binary decompositions of X , which we call
questions.

Definition 4. For a set X , put structure (Q(X),≤,′ ,0,1) by setting

1. 0 = [X ' {∗}×X ] and 1 = [X ' X×{∗}]
2. [X ' X1×X2]

′ = [X ' X2×X1]
3. [X ' X1× (X2×X3)]≤ [X ' (X1×X2)×X3] for each [X ' X1×X2×X3]

In this definition, we have suppressed the specific bijections, but they are the
obvious ones. For [α : X → X1×X2], the orthocomplement is [α ′ : X → X2×X1]
where α ′(x) = (x2,x1) if α(x) = (x1,x2).

Theorem 2. For a set X, the structure (Q(X),≤,′ ,0,1) is an OMP.

This theorem is established in [8] where it is generalized to other types of struc-
ture such as groups, rings, modules, G-sets, topological spaces, uniform spaces,
normed groups, topological groups, and so forth. For a group G, an n-ary direct
product decomposition consists of an indexed family G1, . . . ,Gn of groups and a
group isomorphism α : G→ G1× ·· ·×Gn. The idea for other types of structures
are similar, using appropriate notions of products and isomorphisms.
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4 Questions

It was Mackey’s original argument [18] that showed that the questions of a quantum
system should form an OMP. Here we consider matters for the OMP of questions
Q(X) for a set X , but our comments apply equally to the questions of of group,
topological space, and importantly, to the OMP Q(H ) of questions of a Hilbert
space H that is used so extensively in standard treatments of quantum mechanics.

Definition 5. An n-ary experiment of a physical system is an experiment that has n
mutually exclusive and exhaustive outcomes labelled Outcome 1, . . ., Outcome n.
A question is a binary experiment. We usually use Yes for Outcome 1, and No for
Outcome 2 of a question.

Remark 1. An n-ary experiment might consist of n detector bulbs placed in different
areas with the guarantee that exactly one bulb will go off. If one wishes to push
against this definition and say there will always be the possibility that more than
one, or none, of the bulbs will flash, then view an experiment with n bulbs as a 2n-
ary experiment, with one outcome for each possible set of bulbs that can flash. One
might also wish to consider experiments with infinitely many outcomes. We don’t
believe these are physical, and will treat them later as limits of families of finitary
experiments.

The fundamental idea of the decompositions approach is that one associates
to a physical system a mathematical object such as a set X , and that each n-ary
experiment of the system corresponds to an equivalence class of n-ary direct prod-
uct decompositions [X ' X1×·· ·×Xn].

Definition 6. Let e be an n-ary experiment [X ' X1×·· ·×Xn]. Then for a sequence
σ = S1, . . . ,Sk of pairwise disjoint sets with union {1, . . . ,n} define σ(e) to be the
k-ary experiment [X ' Y1×·· ·×Yk] where Yj = ∏i∈S j Xi.

We say that an experiment f is built from e if f = σ(e) for some σ , and let B(e)
be the set of all binary experiments, that is, questions, that are built from e. For
example, if e is the 4-ary experiment e = [X ' X1×X2×X3×X4], then some of the
questions built from e are the following.

({1,2},{3,4})e = [X ' (X1×X2)× (X3×X4)]

({3},{1,2,4})e = [X ' X3× (X1×X2×X4)]

Note, that the use of the empty set is allowed. Since the product of the empty family
is a singleton {∗}, we have ( /0,{1,2,3,4})e = [X ' {∗}×X ].

Definition 7. A subset B of an OMP P is a Boolean subalgebra if it is closed under
orthocomplementation, closed under the join x⊕y of orthogonal elements, contains
the bounds 0,1, and with the inherited order forms a Boolean algebra under these
operations.
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If B is a Boolean subalgebra of P, then two elements x,y in B have a join x∨ y
and meet x∧ y, and these are their join and meet as taken in B.

Theorem 3. The finite Boolean subalgebras of the OMP Q(X) are exactly the sets
B(e) of questions built from some common experiment e. Further, if e has n factors
that are not singletons {∗}, then B(e) has n atoms.

In quantum mechanics, two questions are compatible if they lie in a Boolean
subalgebra of the OMP of questions. Physically, this is interpreted to mean that they
can be conducted at the same time. But conducting two binary questions e, f at
the same time is the same as conducting one 4-ary experiment g whose outcomes
are given by the pairs of outcomes Yes-Yes, Yes-No, No-Yes, and No-No to the
questions e, f . This common sense physical reasoning is born in the mathematics.

Proposition 1. Two questions e, f are compatible, i.e. lie in a Boolean subalgebra,
iff there is a unique 4-ary experiment g = [X ' X1×X2×X3×X4] with

e = ({1,2},{3,4})g = [X ' (X1×X2)× (X3×X4)]

f = ({1,3},{2,4})g = [X ' (X1×X3)× (X2×X4)]

In this case their meet and join are given by

e∧ f = ({1},{2,3,4})g = [X ' X1× (X2×X3×X4)]

e∨ f = ({1,2,3},{4})g = [X ' (X1×X2×X3)×X4]

Remark 2. There is similarity between Boolean operations on classical questions,
which are modeled as subsets of an event space, and Boolean operations on compat-
ible quantum questions viewed as binary direct product decompositions. Instead of
taking the union and intersection of sets as in the classical case, we take the union
and intersection of indexing sets of the factors of a direct product decomposition.

There is a further property of questions arising from decompositions that points
to a physical property of quantum mechanics that is not obvious. Of course, this
property applies also to the standard Hilbert space setting, but does not generally
hold for questions modeled by an arbitrary OMP. In alternate terminology, the fol-
lowing result [9] shows that the OMP Q(X) is regular.

Theorem 4. Let X be a set and S be a set of n questions in Q(X). If any two
questions in S can be asked simultaneously, then all of the questions in S can be
asked simultaneously. In fact, they can all be built from an experiment with 2n

outcomes. This holds also for a group, module, topological space, and so forth.

5 States

A finite set of pairwise orthogonal elements in an OMP has a join. An OMP is called
σ -complete if every countable set of pairwise orthogonal elements has a join [20].
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Definition 8. A state on an OMP P is a map s : P→ [0,1] with

1. s(0) = 0 and s(1) = 1.
2. If x is orthogonal to y, then s(x⊕ y) = s(x)+ s(y).

A state on a σ -OMP is countably additive if the second condition applies to joins of
countable pairwise orthogonal families.

Remark 3. Depending on one’s perspective, what we call a state is called a finitely
additive state, and a state refers to a countably additive state. We shall retain the
idea of finite additivity as the primitive notion defining a state. The use of countable
additivity is a means to deal with limiting processes of physical situations. As we
will see, there are other means.

The idea of a state s : P→ [0,1] is that when restricted to a Boolean subalgebra B
of P it yields a finitely additive probably measure on B. A countably additive state
yields a σ -additive probability measure on any Boolean σ -subalgebra of P. The
physical interpretation of a state is that for a question e we have

s(e) = the probability that e yields a Yes answer when in state s

There are some issues [11] with the existence of a good supply of states in the
decompositions approach. It seems that one must begin with a structure that has
some contact with the real numbers, and to take decompositions that interact well
with this structure. While this is an area that requires more investigation, there are
several directions that show a wide scope beyond the setting of Hilbert spaces [10].

Definition 9. An η-set is a set X with a map η : X → [0,∞) and element 0 ∈ X that
satisfies η(0) = 0. A product of a family (X1,η1,0), . . . ,(Xn,ηn,0) of η-sets is the
set X = X1×·· ·×Xn with η(x1, . . . ,xn) = ∑

n
i=1 ηi(xi) and 0 = (0, . . . ,0).

Theorem 5. For an η-set X, the collection Q(X) of equivalence classes of it binary
direct product decompositions is an OMP.

The following shows that questions of an η-set have a large supply of states.

Theorem 6. Let X be an η-set and x ∈ X with η(x) 6= 0. There is a finitely additive
additive state sx on Q(X) such that for a question e= [X 'X1×X2] with x= (x1,x2)

sx(e) =
η1(x1)

η(x)

The standard Hilbert space approach is related to that of η-sets. Given a Hilbert
space H , define η(x) = ‖x‖2. Then questions given by closed subspaces satisfy
‖x‖2 = ‖x1‖2 +‖x2‖2, a version of the standard Pythagorean theorem. So Q(H ) is
a sub-OMP of that given by considering H as an η-set. We next consider a situation
intermediate to that of η-sets and that of Hilbert spaces.

Definition 10. A norm on a group G is a mapping ‖ · ‖ : G→ [0,∞) with
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1. ‖x‖= 0 iff x = 0.
2. ‖x‖= ‖− x‖.
3. ‖x+ y‖ ≤ ‖x‖+‖y‖.

We have written the operations of G additively, but G need not be abelian.

A norm on a group induces a metric in the usual way. In fact, there are close
connections between normed groups and metric and topological groups [1]. By a
complete normed group, we mean one whose metric is complete. A question of a
normed group is an equivalence class [G' G1×G2] that is simultaneously a group
decomposition and an η-set decomposition with respect to the map η(g) = ‖g‖2.
For details see [8].

Theorem 7. For a normed group G, its questions form an OMP Q(G) and for each
g ∈ G with ‖g‖ 6= 0 there is a finitely additive state sg with

sg(e) =
‖g1‖2

‖g‖2

If G is complete, then Q(G) is σ -complete and the states sg are σ -additive.

6 Observables

To begin, suppose we have an n-ary experiment e = [X ' X1×·· ·×Xn] for a set X ,
or some other structure such as a group, or η-set, and so forth. For i≤ n we have a
question ei = [X ' Xi×∏ j 6=i X j]. Then for a state s : Q(X)→ [0,1] we interpret

s(ei) = the probability of the ith outcome of e when in state s

An n-ary experiment is intended to be a purely physical thing, such as detectors
placed in various regions with exactly one guaranteed to go off. It is common to
introduce a human element into matters as well by associating numerical values to
various outcomes of an experiment. This choice of numerical values is a human
activity, not a physical one. For instance, deflection through a Stern Gerlach divice
may have outcomes labelled as -3/2, -1/2, 1/2, 3/2. This may be for what we consider
to be a good reason, but it is still a matter of human choice in giving these numerical
values of outcomes. In the following, we separate the physical aspects from the
human chosen numerical ones.

Definition 11. A finite Boolean subalgebra of Q(X) is a finite observable quantity.
If A is the set of atoms of a Boolean subalgebra of Q(X), then a map f : A→R is a
scaling of this finite observable quantity.

By Theorem 3, there is a correspondence between finite Boolean subalgebras
of Q(X) with n atoms and n-ary experiments e = [X ' X1×·· ·Xn] with non-trivial
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factors. For such B, its atoms correspond to the questions ei = [X 'Xi×∏ j 6=i X j]. So
a scaling of a finite observable quantity amounts to the same thing as an assignment
of real numbers to the outcomes of an n-ary experiment.

Definition 12. A finite observable O= (B, f ) consists of a finite observable quantity
B and a scaling f of B. The expected value of O in state s is ∑

n
i=1 s(ei) f (ei).

· · ·
e1 e2 en

6.4

8.1 10.4

Fig. 4 A finite observable (B, f ) where B has atoms e1, . . . ,en and the values of the scaling f on
these atoms.

Remark 4. For Hilbert space quantum mechanics, a finite observable O = (B, f )
consists of a family of pairwise orthogonal projection operators P1, . . . ,Pn that sums
to unity paired with a family λ1, . . . ,λn of real numbers. If different numerical values
λi are given to different events Pi, then this information can be conveyed by the self-
adjoint operator A = λ1P1 + · · ·λnPn. The eigenvalues and eigenspaces of A give
back the projections and their scaling.

We take the view that finite observable quantities, which correspond to n-ary ex-
periments, are the truly physical entities. We enrich these finite observable quantities
with a scaling, but this process of attaching numerical values is a human process.
There is a further abstraction of the purely physical to deal with limiting processes.

Definition 13. An observable quantity is a Boolean subalgebra of the OMP Q(X).

Definition 14. For an observable quantity B, a set F of questions in B is consistent
any finite set of questions in F can possibly all have a Yes answer at the same time.
In other words, F is consistent if the meet of any finite set of questions in F is
non-zero. An ideal question is a maximally consistent set of questions in B.

The idea of an ideal question is simple, it is a type of limiting process of families
of every finer collections of questions. Giving a physical example is challenging,
not because of the idea of ideal questions, but because of a general lack of precision
when we talk about physical measurements.

Example 3. Suppose we have a classical situation where a particle is located at some
point along the real line. Any experiment we conduct might only tell us if the particle
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is within some given region. Following in this sprit, there should not be difference
between testing for the region (2,3) and the region [2,3]. A plausible mathematical
setup would be a test for each equivalence class, up to sets of measure zero, of
regions that are finite unions of possibly infinite intervals with rational endpoints.
So our Boolean algebra of questions is the Boolean subalgebra of the algebra of
Lebesgue measurable sets modulo measure zero that is generated by the intervals
(−∞,q) for a rational q. For a real number x, the family of questions consisting of
equivalences classes of intervals (p,q) containing x is then consistent.

Those familiar with Stone duality for Boolean algebras [3] will recognize that
ideal questions of B are the ultrafilters of B. Much is known about this topic. If we
let Z be the set of all ideal questions (i.e. ultrafilters) of B, then there is a topology
on Z that has as a basis all sets of the form

φ(e) = {F : F is an ideal question and e ∈F}

With this topology, Z is a compact Hausdorff space, and the clopen subsets of this
space are exactly the sets φ(e) for e ∈ B.

Definition 15. Let B be a Boolean algebra with Stone space Z. The Borel algebra of
Z is the σ -algebra generated by its open sets, and the small Borel algebra of Z is the
σ -algebra generated by the clopen sets of Z.

Definition 16. Let B be an observable quantity with Stone space Z. A scaling of B is
an extended real valued function f : Z→ R∪{±∞} that is measurable with respect
to the Borel algebra of the extended reals and the small Borel algebra of Z. An
observable is a pair O = (B, f ) consisting of an observable quantity and a scaling.

z

Z

f (z)

R∪{±∞}

Fig. 5 An observable O = (B, f ) where B has Stone space Z and scaling f : X → R∪{±∞}.

Proposition 2. For a finitely additive state s : B→ [0,1] on B, there is a unique
probability measure µs on the small Borel algebra of Z such that for each e ∈ B

µs(Φ(e)) = s(e)

Thus µs(e) gives the probability of a Yes outcome to the question e when in state s.
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Proof. The collection F of subsets of Z of the form φ(e) for a question e is a field a
sets. Members of F are clopen subsets of a compact space, so have the finite inter-
section property. So the map µs : F→ [0,1] given by µs(φ(e)) = s(e) is a probability
in the sense of [19, p. 10]. By [19, p. 23], this extends uniquely to a probability mea-
sure on the σ -algebra generated by F , which is the small Borel algebra of Z.

Definition 17. Let O = (B, f ) be an observable, let s be a finitely additive state on
B, and let T be a Borel subset of the extended reals. Then we interpret

µs( f−1(T )) = probability a measurement of O lies in T when in state s∫
Z

f (z)dµs = expected value of O when in state s

Further, there is an obvious functional calculus of observables that are based on the
same observable quantity B.

We relate this to the notion of an observable in standard Hilbert space quantum
mechanics as a self-adjoint operator. First, we make an observation.

Proposition 3. Let B be a complete Boolean algebra with Stone space Z and let
f : Z → R∪{±∞}. If f is continuous, then it is measurable with respect to Borel
algebra of the extended reals and the small Borel algebra of Z.

Proof. It is enough to show that for any real number λ , that A= f−1[−∞,λ ) is in the
small Borel algebra of Z. For each n let An = f−1[−∞,λ − 1/n). Then A =

⋃
n An.

Since f is continuous, each An is open. Also the closure An is contained in the closed
set f−1[−∞,λ − 1/n] which is contained in A. So A =

⋃
n An. Since Z is the Stone

space of a complete Boolean algebra, the closure of an open set in Z is clopen. So
each An belongs to the small Borel algebra, and hence so does A.

Example 4. To each self-adjoint operator A on a Hilbert space H there is a complete
Boolean subalgebra B of the projection lattice and a σ -homomorphism EA from the
Borel algebra of the reals to B given by the spectral theorem [21]. This EA is called
the spectral measure of A. Let fA : Z→ R∪{±∞} given by

fA(z) = inf{λ : EA(−∞,λ ] ∈ z}

Then fA is continuous. In fact [17] shows that the self-adjoint operators affiliated
with the von Neumann algebra generated by B are in bijective correspondence with
the continuous extended real valued functions on Z, and that this correspondence
preserves functional calculus. Since fA is continuous, by Proposition 3 O = (B, f )
is an observable in the sense defined above. A state s in the usual sense in Hilbert
space quantum mechanics gives a σ -additive state on B, and as shown in [10], the
descriptions of the probability that O yields a result in a Borel set T when in state s,
and the description of the expected value of O when in state s, agree with the usual
descriptions in terms of the self-adjoint operator A.
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Remark 5. The usual Hilbert space treatment of observables via self-adjoint opera-
tors fits within our more operationally motivated treatment of observables. But even
in the Hilbert space setting, the operationally motivated approach is more general.
The standard Hilbert space treatment effectively chooses observables O = (B, f )
where B is a complete subalgebra of the projection lattice and f is not only small
Borel measurable, but also continuous. The definition of a self-adjoint operator is
quite technically complex, involving intricacies with domain, and it is not physically
clear why they are the correct notion.

7 Dynamics

Direct product decompositions illuminate dynamics of a quantum system as well. In
this section, we will present the main ideas, and leave many technical details for the
reader to find in [14]. We will again frame matters for sets, but they apply equally
to decompositions of other types of structures as well.

Definition 18. For a set X , let Aut(X) be the group of permutations of X . A one-
parameter group of automorphisms of X is a group homomorphism U :R→Aut(X).
We customarily write Ut for the automorphism U(t).

The idea is that if the element x∈X describes the system at some given time, then
for any time t ∈ R, then after passage of time t, the system will be depicted by the
element Ut(x). This provides dynamics for the system. The group homomorphism
requirement Us+t = Us ◦Ut says that letting t units of time pass, and then letting s
units of time pass, is equivalent to letting s+ t units of time pass. The requirement
that U−t is the inverse of Ut amounts to time reversal.

Remark 6. Time reversal is a standard feature of Hilbert space quantum mechanics.
Our approach can be adapted by considering the monoid End(X) of endomorphisms
of X and a monoid homomorphism V : R+→ End(X).

Definition 19. A set with natural frequencies is an algebra A=(X ,(Et)R) consisting
of a set X and a family of unary operations on X that satisfy Es+t = Es ◦Et , and E0
is the identity. These imply that E−t = E−1

t .

The physical idea of a set with natural frequencies is that a physical system has
some base “vibration” in a certain specified setting. Mathematically, a set with natu-
ral frequencies is simply an algebra in the sense of general algebra [3]. So there are
obvious notions of homomorphisms and isomorphisms between sets with natural
frequencies. There is also a notion of a finite direct product decomposition, which
we spell out in the following.

Definition 20. Let A = (X ,(Et)R) be a set with natural frequencies. A finite direct
product decomposition A' A1×·· ·×An is a family Ai = (Xi,(E i

t )R) for i = 1, . . . ,n
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of sets with natural frequencies and a bijection α : X → X1× ·· · ×Xn so that for
each x ∈ X , if α(x) = (x1, . . . ,xn) then

α(Etx) = (E1
t x1, . . . ,En

t xn)

We will often be sloppy with the notation and simply write Etx=(E1
t x1, . . . ,En

t xn)
in the above. All previous results about direct product decompositions of sets were
valid for general algebras, and in particular apply to sets with natural frequencies.
In particular, we have the following.

Theorem 8. Let A= (X ,(Et)R) be a set with natural frequencies. Then the set Q(A)
of equivalence classes of binary direct product decompositions of A is an OMP under
the operations described previously.

We can then use all other results developed for questions, such as notions of states
and observables, and apply them to sets with natural frequencies. We next come to
the central idea of this section.

Theorem 9. Let A be a set with natural frequencies. Suppose H = (B, f ) is a finite
observable of A where B has n atoms, the scaling f takes values λ1, . . . ,λn on these
atoms, and the n-ary experiment whose questions yield B is given by

h = [A' A1×·· ·×An]

Then there is a one-parameter group of automorphisms of A, written EH , given by

EH
t (x) = (E1

λ1t x1, . . . ,En
λnt xn)

The observable H is called the Hamiltonian and represents the energy of the
system. The idea is that the factors of the system “vibrate” at a speed proportional
to their energy. We require that the dynamics of the system, as given by the one-
parameter group Ut is given in this fashion by the energy, a statement written as an
equation called the time-independent Schrödinger equation

Ut = EH
t

Example 5. Consider the standard Hilbert space setting. Each Hilbert space can be
given a natural frequency Et by setting

Et(v) = e−itv

Hilbert space direct product decompositions are given by closed subspaces, and
these all respect natural frequencies. So the decompositions of H as considered
being equipped with natural frequencies or not are the same. The standard treatment
of time-independent dynamics takes a self-adjoint operator for the energy, called the
Hamiltonian, and then gives dynamics by the time-independent Schrödinger equa-
tion for Hilbert space quantum mechanics
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Ut = e−iHt

When applied to a self-adjoint operator H = λ1P1 + · · ·+ λnPn that is a finite
weighted sum of projectors, this yields exactly the prescription described above be-
cause a vector vi in the range of Pi evolves to e−iλitvi. For a Hamiltonian H given by a
general unbounded self-adjoint operator, one can show [14] that there is a sequence
Hn of finite observables so that for any v ∈H and time t we have

EHn
t (v) −→ e−iHt v

in the topology of H .
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