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1 Introduction

Conditional probability P(A | B) is a basic element of undergraduate courses. Still,
there is opportunity to push the topic in new directions, see for example the work of
Nguyen and Walker on an algebra of conditional events [16] and in a different vein,
the role of conditional probability in a quantum setting [8].

In this note we consider the familiar notion of conditional expectation. We review
the basics as it is used in classical probability theory. We then pass to its formulation
in terms of function spaces and operator algebras as developed by Umegaki [24] and
others roughly in the 1960’s. We then move to discuss more recent developments of
the past 15 years related to categorical treatments, as well as order-theoretic ties that
link to classical and quantum logic.

This note is a gentle introduction to several current streams of research that are
linked to conditional expectation in the quantum setting. The interested reader can
pursue the topic in greater details through the following sources: [2, 13, 24] for
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the operator algebra perspective, [4, 11, 17, 18] for the categorical perspective, and
[6, 7] for the order-theoretic and logical perspective.

2 Classical conditional expectation

The results in this section are standard features of probability theory. We direct the
reader to [15, Sec. 27] for a more detailed account.

Assume (2,.7, P) is a probability space. For events A, B € .% with the probabil-
ity P(B) # 0, the conditional probability of A given B is

P(A|B) = M
P(B)

Clearly P(- | B) is a probability measure on (£2,.%). Suppose that X : Q — Ris an
essentially bounded (e.b.) random variable. The expected value of X with respect to
the measure P(-|B) is called the conditional expectation of X with respect to the
event B and written E[X | B]. Our restriction to e.b. random variables is for simplicity
and because this is the setting that will be employed later in this note. There is a
generalization of this notion of conditional expectation.

Definition 1. Let (2,.7, P) be a probability space, X : Q — R be an e.b. random
variable, and 4 < .% be a sub c-algebra. A conditional expectation of X with respect
to ¢ is an e.b. random variable Y : Q — R that is ¥-measurable and for all B € ¥

E[X|B] = E[Y|B].

It is known [23, p. 210] that there is at least one such conditional expectation Y
and that any two agree almost surely (a.s.). It is usual to denote a particular such, or
the equivalence class of such, by E[X |¥].

Example 1. If 4 is the o-algebra {0, Q}, then E[X |¥] is the constant function that
takes value E[X]. More generally, if the event B belongs to .%#, then for the o-
algebra &4 = {0,B,B°,Q} we have E[X |¥] is the function taking constant value
E[X |B] on B and constant value E[X | B“] on B¢. So conditional expectation with
respect to a ¢-algebra generalizes conditional expectation with respect to an event.

Often, we call applying a process such as conditional expectation with respect to
a sub o-algebra, “conditioning” on that o-algebra.

Example 2. Suppose ¢ and ¢’ are independent sub o-algebras of %, meaning that
each event in ¢ is independent of each event in ¢'. If X is an e.b. ¢’-measurable
random variable, then for any B € &4 we have that X is independent of B, and it
follows (see [3, 4.1.4]) that E[X | B] is E[X]. Thus, E[X |¥] is the constant function
E[X]. In other words, conditioning on ¢ provides no information for a ¢’-random
variable.
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Given a sub c-algebra 4 < .7, we consider E[-|¥] as a mapping from the e.b.
random variables on £ that are measurable with respect to .# to the e.b. random
variables that are measurable with respect to ¢. This conditional expectation has a
number of properties, among which are the following:

Proposition 1. Conditional expectation E[-|9 ] has the following properties:

1. It is linear;

2. It is unital, meaning that it takes the constant function 1 to itself;

3. It is positive, meaning that it takes positive random variables to positive ones;
4. It is the identity when applied to -measurable random variables;

5. IfY is e.b. and G -measurable, then E[XY |9 =YE[X|¥].

Conditional expectations are adapted to conditioning with respect to a random
variable Y : (Q,.%) — (Q', F') by taking the o-algebra % of pre-images of events
in #'. One then writes E[X |Y | in place of E[X | % |.

Conditional probability

The general definition of conditional expectation can be used to treat conditional
probability. In the following we use 14 for the indicator function of a set A C Q.

Definition 2. Let (2,.%, P) be a probability space and ¢ < .% be a sub c-algebra.
Then the conditional probability of an event A € &7 with respect to ¢ is given by

PY(A) = E[14|9)].

Note that for a given event A, we have that P¥ (A) is a function from Q to [0, 1]. If
we fix ® € 2, we obtain a function P,/ : % — [0, 1]. One might hope that each such
P is a probability measure. This is not generally the case. Recalling that E[ 14 |¥ ]
is defined only up to a.s. equivalence, the issue is whether choices can be made in a
uniform manner to allow the Pff to be probability measures. It turns out that this is
the case when (2, %, P) is a standard Borel probability space.

Definition 3. Given measurable spaces (2,.%) and (', #'), a Markov kernel is a
mapping k : Q x #' — [0, 1] that satisfies

1. k(®, -) is a probability measure k, for each @ € Q;
2. k(-,A”) is measurable for each A’ € .F'.

A conditional probability is called regular if it is a Markov kernel.

Proposition 2. If (Q2,.%,P) is a standard probability space and 4 < F, then the
conditional probability PY is regular:

The notion of conditional probability can be extended to the setting of a random
variable. In the following, suppose (2, .%#, P) is a probability space, 4 < .# is a sub
c-algebraand X : (2, %) — (Q',.%") is arandom variable.



4 John Harding

Definition 4. The conditional probability of X with respect to ¢ is the function
Py | - 2 x F' — [0,1] given by setting for each A" € 7'
tix g (@,A") = P (X7 (A")).

If pty | is a Markov kernel, then by definition for each @ € Q we have iy |4 (@, -)

is a probability measure that we can integrate over. We often write dfiy |4 leaving
the value of @ implied.

Proposition 3. If the spaces involved are standard Borel spaces, then | |4 is a
Markov kernel. Further, if X is real-valued, then

E[X|¥9] :/RXdNXW a.s.

So Markov kernels arise from random variables between standard Borel mea-
surable spaces. Further, all such arise this way. To see this, it is convenient to
further extend our terminology. Suppose (£,.%,P) is a probability space and
X:(2,%)— (Q,F)and Y : (Q,F) — (Q",F#") are random variables. We
write [y |y for the conditional probability iy | where ¢ is the sub o-algebra of 7
induced by Y.

Proposition 4. If k : (Q',.F') — (Q",.F") is a Markov kernel between standard
Borel spaces, then there is a standard Borel space (2,5 ,P) and random variables
X:(Q,7) = (Q,F")andY : (Q,F) — (Q",F") such that k = iy y.

This result is established by taking (£2,.%#) to be the product of the measurable
spaces (Q',.Z") and (2",.%"), choosing a probability measure P’ on (Q',.#’), and
letting P be the probability measure on (,.%) defined on rectangles A’ x A” by

P(A' x A") = / k(' A")dP.
A/

Then the natural projections 7’ : Q' x Q" — Q" and 1" : Q' x Q" — Q" are random
variables and a.s. PX(Y~!1(A")(w) = k(7' (®),A"”). In effect, Markov kernels arise
as conditionals of one projection with respect to another.

Remark 1. We can view a Markov kernel k : (2,.7) — (Q',.%’) as type of non-
deterministic mapping from Q to ' where k(®,A’) is the probability that @ is
mapped by k within A’. A measurable function f: (2, %) — (Q',.7") is viewed
as a deterministic mapping. Set 8, to be the point mass at @’ for each @’ € Q'.
We can describe f by the Markov kernel k; where k¢ (®,A") = &7()(A’). The situ-
ation is somewhat akin to that of functions and relations between sets. A function is
viewed as a deterministic map between X and Y while a relation is seen as a sort of
possibilistic or many-valued map from X to Y. We will return to this topic later.
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3 An operator algebra viewpoint

We view the contents of the previous section from the viewpoint of commutative
operator algebras, in particular von Neumann (vN) algebras. For this discussion, we
won’t need the details of the theory of vN algebras, but we remind the reader of a
few basic facts. For a complete account, see any standard book on operator algebras
such as [14].

Example 3. For a Hilbert space 7, its collection Z(.#) of bounded operators is
a motivating example of a VN algebra. It is in particular a complex vector space
endowed with a means to multiply AB (compose) elements; a unit 1 for this multi-
plication, namely the identity operator; and a unary operation A* of adjunction.

A vN algebra can be defined as a subalgebra of Z(.) that is closed in what is
known as the weak operator topology. Our attention in this section will be directed
towards commutative, or abelian, vN algebras, ones whose multiplication is com-
mutative, and these have an explicit description. We begin with a simple example.

Example 4. For the Hilbert space C2, its bounded operators can be described as the
collection M, of complex 2 x 2 matrices. This is a non-commutative vN algebra.
Its subalgebra D, of diagonal matrices is a commutative VN algebra. Note that D,
can be described as the collection of all maps from a 2-element set into the complex
numbers by listing a 2 x 2 diagonal matrix by its diagonal entries.

Definition 5. Let L*(2,.%, 1) be all a.e. equivalence classes of essentially bounded
measurable complex-valued functions on the measure space (Q,.%, ).

Note that L*(£,.%, 1) has a vector space structure through pointwise addition
and scalar multiplication of functions, a multiplication of pointwise multiplication
of functions, a unit 1 for multiplication given by the constant function of value 1, an
adjoint of taking pointwise complex conjugate of a complex-valued function, and a
norm given by the essential supremum || f||. of a function. The following is well
known, see e.g. [14].

Theorem 1. Each L™ (Q, .7, u) for a measurable space (Q,.% , 1) is an abelian vN
algebra and every abelian vN algebra is isomorphic to one of this form.

Remark 2. Because of this theorem, the study of vN algebras is often called non-
commutative measure theory.

Definition 6. An element a of a vN algebra is self-adjoint if a = a*, a projection
if it is self-adjoint and @ = a2, and positive if it is equal to bb* for some b. A map
between VN algebras is positive if it takes positive elements to positive ones.

Example 5. In the vN algebra L*(Q,.%, i) self-adjoint elements are the real-valued
functions. Projections are the functions taking values 0, 1, and these are given by
measurable sets.
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Definition 7. A state on a vN algebra &7 is a positive linear functional ¢ : &/ — C
with ¢(1) = 1. A state is normal if it is continuous with respect to the o-weak
topology and is faithful if the only positive element mapped to O is 0.

Example 6. If o = L*(Q,.%,P) is the vN algebra associated with the probability
space (£2,.%,P), then integration f — [, fdP is a normal faithful state on <7.
There may be other normal states on <7, and these will be given by probability
measures Q on (Q,.%) that are absolutely continuous Q << P with respect to P.

Conditional expectation

Having seen how some basic concepts in probability translate to the setting of
abelian VN algebras, we turn our attention to conditional expectation. These results
are standard, and can be found in [2, p. 132ff]. For a probability space (2,.%,P) and
asub o-algebra ¥ <.%#, we have an abelian vN algebra &/ = L*(Q,.%,P) and a vN
subalgebra of it # = L*(2,%, P). An e.b comples random variable on (2,.%, P) is
simply an element f € 7. It follows that conditional expectations E[-|¥ | are given
by mappings

E[-|9]: o — A.

Basic properties of conditional expectation give that this map is linear, positive, and
restricts to the identity on 4, hence is idempotent and unital. For Y = E[f|¥], the
definition of conditional expectation gives E[ f|2] = E[Y | 2], hence

/QfdP:/QE[ﬂ%]dP.

Thus, if ¢ is the state on ./ given by the probability measure P, for each f € o/ we
have ¢ (f) = ¢(E[f|¥]). For the following, see e.g. [2, p. 132].

Definition 8. Let .7 be an abelian vN algebra with normal unital faithful state ¢ and
2B be a vN subalgebra of 7. A conditional expectation of .7 onto % with respect
to ¢ is a an idempotent onto mapping E : &/ — B of norm 1 with ¢ = ¢ oE.

Every abelian vN algebra with a normal unital faithful state ¢ can be realized
as L*(Q,¥,P) for some probability space (2, %, P), and every vN subalgebra
of it can be realized by taking some sub o-algebra & < .#. Then there is a unique
conditional expectation of .7 onto % with respect to ¢ and it is given by the classical
conditional expectation E[-|¥]. See [2, p. 135].

4 A categorical viewpoint

We next view our discussion of conditional expectation and conditional probability
via Markov kernels through the lens of category theory. The intent here is to sketch
an outline in broad strokes, focusing on the overall picture, with the understanding
that the reader may not have much prior exposure to category theory. With this in
mind, we begin with a brief review.
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Very often in mathematics, one considers a type of structure of a certain sort, a
set, or topological space, or group, etc. These structures usually come equipped with
a notion of a map, or process, that relates one of these things to another, for exam-
ple functions between sets, continuous maps between topological spaces, or group
homomorphisms between groups. Category theory takes the view that processes
between the particular kinds of objects are of primary importance, and essentially
forgets the details of the internal structure of the things under consideration. For an
account of the following, and of category theory in general, see e.g. [21].

Definition 9. A category C is a collection of two sorts of things; objects, written
with capitals A,B,C, ..., and morphisms f : A — B between objects; together with
a rule to compose a morphism f : A — B with a morphism g : B — C, to produce
a morphism go f : A — C. It is required that this composition is associative when
defined, and that for each object A there is an identity morphism 14 : A — A that acts
as a identity on both sides for appropriate compositions.

Example 7. As mentioned, there is a category Set of sets whose objects are sets,
whose morphisms are functions between sets, and whose composition is the usual
composition of functions. There is also a category Rel whose objects are sets, whose
morphisms are the binary relations between sets, and whose composition is usual
composition of relations.

There are a number of categories of measurable spaces and of VN algebras that
are relevant here. For the following, we note that a homomorphism between vIN
algebras is a linear map that preserves multiplication and the involution .

Definition 10. Let Prob be the category of probability spaces and measurable maps
between them, and let AbvN be the category of abelian VN algebras and the normal
unital vN algebra homomorphisms between them.

There is a close connection between these categories. As we have seen, every
probability space (£2,.%#, P) gives rise to an abelian vN algebra L*(Q,.%, P) as well
as a unital normal faithful state ¢ on it, and each abelian vN algebra with such a state
arises in this way. Further, each measurable function g : (Q,.#,P) — (Q', %', P')
gives a normal unital vN algebra homomorphism g : L*(Q',. %', P') — L*(Q,% ,P)
where g takes an essentially bounded f: (Q',.%', P') — C to the essentially bounded
map g(f) : (2,%#,P) — C given by f o g. Moreover, each such normal unital vN
algebra homomorphism arises in this way.

Markov kernels and positive maps

We next describe a related categorical formulation that involves the conditional
probabilities and Markov kernels discussed earlier.

Definition 11. If k: (Q, %, P) —» (Q',.7',P)and ¢ : (Q', F' P) — (Q", F" P")
are Markov kernels, then their composite £ok : Q x F" — [0,1] is given by

Cok(w,A") :/ (o, A") dke
Q/
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It is known that £ o k is a Markov kernel, that this composition of Markov kernels
is associative when defined, and that there is a Markov kernel acting as the identity
on a space (2,.%,P), namely k(x,A) = 14(x). Thus, we may define

Definition 12. Mark is the category whose objects are probability spaces and whose
morphisms are Markov processes.

Recall from the previous section the definitions of a normal, positive, unital linear
map between abelian VN algebras. These are called channels. It is easily seen that
the composition of channels is a channel and the identity map is a channel. Thus,
we may define

Definition 13. Let AbChan be the category whose objects are abelian von Neumann
algebras that have a normal unital state and whose morphisms are channels.

Again, there are ties between the categories Mark and AbChan. We have already
discussed the relationship between their objects, we discuss the relationship between
their morphisms.

Definition 14. For k : (Q2,.%,P) — (Q',.%',P’) a Markov kernel and f: Q' — C
an e.b. map, define

T(N) = [ (@) dko.

This yields an e.b. map from £ — C. However, in general we can have f and
g agree a.s. with respect to P but 7;(f) and T;(g) not agree almost surely since
the measures kg need not be related to P'. However, if each k, << P, this does
not occur and we can view T; as a mapping Ty : L*(Q',.%',P') — L*(Q,.%,P).
Further, in this case 7}, is a channel.

Conversely, under sufficient conditions on the probability spaces, one can show
that a normal unital positive map T : L*(Q',.#',P') — L*(Q,.%,P) arises in this
way from a Markov kernel k defined by setting k(w,A) = T[14](o).

Remark 3. There is a great deal more that can be said about categories formed from
measurable spaces and Markov kernels. We direct the reader to [17, 4] and the other
works cited in these.

5 Passage to the quantum setting

Here we paint in broad strokes an outline of the formulation of quantum mechanics
in terms of vIN algebras for those unfamiliar with the subject. In many ways, it is
a sort of non-commutative version of probability theory. To begin, to each physical
system, we associate a Hilbert space 7.

Definition 15. Let & () be the collection of projection operators of 7.
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Informally, the Hilbert space plays somewhat the role of a sample space and the
projections, which correspond to closed subspaces, play the role of a o-algebra of
subsets of the sample space. The projections &?(#°) carry many properties of a
o-algebra, and we investigate these in the following section.

Observables

Observables of a physical system are self-adjoint operators on #. While observ-
ables need not be bounded operators, they can be described via the spectral theorem
through bounded operators. It is not required that all self-adjoint operators are ob-
servables of the system, and generally the observables are assumed to be the self-
adjoint operators that are affiliated with a vN subalgebra ¥ of the algebra ()
of all bounded operators. Thus, to a physical system is associated a vN algebra.

States

States of a system are intended as a complete as possible description of the behavior
of the system. They are given by normal unital positive maps ¢ : ¥ — [0,1] on the
vN algebra attached to the system. Every vN subalgebra of () is generated as
a vN algebra by its projections, and it follows that every state is determined by its
restriction to the projections ¢ : Z(¥') — [0, 1]. This restriction has many properties
of a probability measure, including being o-additive, and under mild conditions,
each such o-additive measure on Z(¥) yields a state on #". So informally, states
on ¥ correspond to probability measures on a measurable space.

Compound systems

In classical probability, one combines two measurable spaces (Q,.%#) and (Q',.F")
by taking the product 2 x Q' of their underlying sets with the o-algebra .% @ #'
generated by all rectangles in the familiar way. Probability measures P and P’ give
a product probability measure on this product space, but there are many other prob-
ability measures on this product space that do not arise this way. For any probability
measure on the product space, we can form its marginals in the familiar way.

Given two physical systems represented by vN algebras ¥ and ¥”, we can con-
sider the pair of systems as a physical system in its own right and attach to it the vN
algebra ¥’ ® ¥ formed by taking the tensor product. A pair of states ¢ and ¢’ on
these vN algebras yields a product state ¢ ® ¢’ on the coupled system, but there are
states on the coupled system that are not of this form — these are called entangled
states. States on the compound system have marginals on each component system.

Processes

The simplest processes between quantum systems represented by ¥ and ¥’ are
given by unitary operators U : ¥ — ¥’ between them. More general processes are
given by what are called quantum channels C : ¥ — ¥”. These are linear maps that
are unital, normal, and completely positive. Positivity for a vN algebra is reference
to elements of the for aa®, which are called positive elements. Completely positivity
of C means that the tensor product C® 1: ¥ @ % — ¥' @ W is positive for the
identity map 1: % — # for any vN algebra # . Every positive map between abelian
vN algebras is completely positive, so quantum channels generalize the channels
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between abelian VN algebras discussed earlier and which correspond to Markov
processes between their associated probability spaces.

The moral of the story

The category of vN algebras with channels between them and tensor products to
treat compound systems can be viewed as a sort of quantum analog of the cate-
gory of probability spaces and Markov kernels, using product spaces for compound
systems. This is one of many instances of a process known as mathematical quan-
tization that relates features in an area of mathematics involving non-commutative
structures to ones in a classical area of mathematics, such as the analogy between
vN algebras and measurable spaces. See [25] for more examples of mathematical
quantization.

6 The logical viewpoint

We next return to our original consideration of conditional expectations and view
them from a quantum perspective. In the 1950’s, Tomiyama [22] introduced the
notion of conditional expectation for vN algebras, which we put in the form below.

Definition 16. A conditional expectation for a vN algebra 7 is a normal, unital,
positive linear mapping E : ¥ — . onto a subalgebra of % that satisfies for all
aj,ax € VandbeW

E(aibay) = a1E(b)a;.

These conditions imply that a conditional expectation is completely positive,
hence a channel, idempotent, and contractive, meaning ||E(a)|| < ||a||. The mat-
ter of existence of conditional expectations for vN algebras is delicate. We consider
only the following setting [13, Theorem 7, Proposition 15] and note that a tracial
state is a state with t(ab) = t(ba) for all a,b.

Theorem 2. If ¥ is a vN algebra with a faithful tracial state and .¥ <V is a
vN subalgebra, then there is a unique conditional expectation E : V — & that
preserves this state.

The vN algebra M,, of n X n complex matrices is isomorphic to Z(C"). It has a
faithful tracial state given by the usual trace of a matrix. Another instance of a vN
algebra with a faithful tracial state is that of a type II; factor, the vN algebras that
are continuous geometries in the sense of von Neumann, see e.g. [14]. To further
explore properties of conditional expectations we first consider properties of the
structure of the projections & (¥) of a vN algebra 7.

Orthomodular lattices

We recall that a lattice is a partially ordered set with ordering < where any two
elements have a least upper bound a Vb and a greatest lower bound aAb. A complete
lattice is a lattice where every subset A has a least upper bound \/A and a greatest
lower bound A A. A bounded lattice has a least element 0 and a largest element 1.
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Definition 17. A orthomodular lattice (OML) L is bounded lattice with a unary op-
eration | that satisfies

Cx<y=yh<xh

xt=x

xAxt=0and xVxt=1;

Cx<y=xV(xtAy) =y

B

Example 8. Every Boolean algebra (BA) is an OML. The motivating non-Boolean
example is provided by the closed subspaces of a Hilbert space. These form a com-
plete OML with greatest lower bounds given by intersections, least upper bounds
by the closure of the span of the union, and the operation L given by orthogonal
complement. Since closed subspaces correspond to projections, the projections of
PB(A) form a complete OML. More generally, the projections (%) of any vN
algebra ¥ form a complete OML.

Events and first-order logic

We switch perspective, and speak about matters related to logic, and in particular to
first-order logic. Again, we give an overview in broad terms, assuming little prior
familiarity with the topic except at a naive level.

Consider the situation where we can talk about the field of real numbers and its
ordering. We consider formulas in at most the two variables x and y. Some examples
of such formulas are

x<y x+y=x (x <y) OR (y* < x) Ix(x < y).

To each such formula ¢, we associate the subset S(¢) of R? consisting of all
those pairs (x,y) that make the formula true. The set associated to the first formula
above is the half-plane below the diagonal, and to the second a parabola. Note that
S(¢) OR ¢) is the union of S(¢;) and S(¢). Similarly, applying S to a conjunction
¢1 AND ¢ is given by an intersection, and to a negation — ¢ by the set complement.
Applying S to a quantified statement Jx ¢ is performed by extending the set S(¢)
horizontally to create a cylinder. For example, S(x* < y) is all points lying above the
parabola y = x? and its clyindrification S(3x (x* < y)) is the upper half-plane.

S(x* <y)

In this approach, we have a Boolean algebra of sets, namely the powerset &2 (RR?)
of the plane, to model events, and use the operations of union, intersection, and nega-
tion as is usual in probability theory. We also have new operations of cylindrification
along the x and y axes to treat existential quantification 3x¢ and Jy¢. One treats
universal quantification by treating 3x¢ as ~Vx—¢.
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Monadic and cylindric algebras

In the 1960’s, Halmos [5] and independently Henkin and Tarski [9, 10], used these
ideas to make an algebraic treatment of fist order logic formulated in terms of
Boolean algebras with additional unary operations.

Definition 18. A quantifier 3 on a Boolean algebra B is an operation that satisfies

1. 30=0and J1 =1,
2. a < da = Jda,
3. 3(aVvb)=3Fa Vv 3Ib,
4. 3-d¢ = ~39¢.

In the example described above where we consider first-order formulas in the
variables x,y for the ordered field of real numbers, we consider the Boolean algebra
2(RR?) with two quantifiers 3, and Jy. Roughly, a monadic algebra is a Boolean al-
gebra with one quantifier and a diagonal-free cylindric algebra is a Boolean algebra
with a family of commuting quantifiers meaning that 3;3;a = 3; 3;a. This reflects
the fact that 3x3y ¢ is logically equivalent to 3y3x ¢. Diagonals on a cylindric al-
gebra reflect the equality relation used in logical formulas and we do not discuss
these here.

Definition 19. For a complete Boolean algebra B, a complete subalgebra of B is a
subset C C B that is closed under formation of arbitrary joins and meets in B as well
as complementation in B.

This allows us to work with quantifiers in a very simple way.

Lemma 1. For a complete Boolean algebra B, the range C of a quantifier 3 on B
is a complete subalgebra of B, and each complete Boolean subalgebra C < B is the
range of a unique quantifier on B.

The idea is that for a complete subalgebra C < B, we obtain a quantifier by setting
Ja = the least element in C that lies above a.

Quantum monadic algebras

We define a quantifier on an OML by applying Definition 18 verbatim, but to an op-
erator on an OML rather than to one on a Boolean algebra. By Lemma 1, quantifiers
on complete OMLs are in bijective correspondence with complete subalgebras. For
the following the reader should consult [6, 7].

Definition 20. A monadic OML consists of a an OML with a quantifier on it. A
diagonal-free cylindric OML consists of an OML with a family of commuting quan-
tifiers on it.

We give two examples to indicate the scope of these notions.
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Example 9. A vN algebra ¥ is a weakly closed subalgebra of the algebra #(.57) of
bounded operators on a Hilbert space . So the projections & (¥') form a subal-
gebra of the complete OML of projections & (), and since ¥ is a vN subalgebra,
it is known that &?(¥') is a complete subalgebra of &(.7). So each vN subalgebra
gives rise to a quantifier on H(5) that determines it. Not every complete subal-
gebra of & () is the projections of a vN subalgebra, so there are quantifiers on
P () that do not arise this way. More generally, given any vN algebra ¥ and any
vN subalgebra .7 < ¥, we get a complete subalgebra Z(.) < Z(¥'), hence a
quantifier on Z(¥).

We note, that this example applies in particular to subfactors of a vN factor, an
area of considerable interest and the setting of the Jones index [12].

Example 10. Suppose that ¢ and % are Hilbert spaces. Then for projections
Pec P () and Q € Z() we have that P® Q is a projection of & ® % . The
collection {1® Q| Q € Z(¥)} is a complete subalgebra of & (5 ® %), hence
gives a quantifier 3, and we similarly obtain a quantifier 3. For a family of
Hilbert spaces 741, ..., .7, this extends in an obvious way to provide a family of n
quantifiers 3; on the projection lattice of /4 ® - - - ® ;. It is shown in [6] that these
quantifiers commute, thus providing a diagonal-free quantum cylindric set algebra.
This example is closely related to Weaver’s quantum set theory [25].

Ties between quantifiers and conditional expectations

Suppose ¥ is a VN algebra. As we have seen, quantifiers on the complete OML
P (V) correspond to complete subalgebras of (). If we assume that ¥ has a
unique faithful tracial state 7, as is the case with M,,(C) or with a type II; factor, then
by Theorem 2 each vN subalgebra . < ¥ has a unique conditional expectation that
preserves 7. Thus, since a vN algebra is generated by its projections, we have

Theorem 3. Let ¥ be a vN algebra with a unique tracial state t. Then the condi-
tional expectations on ¥ that preserve T correspond to the complete subalgebras
S < P(V) that are projection lattices of vN subalgebras of ¥, and these in turn
correspond to the quantifiers on 2 (V') whose range is such a subalgebra of 2 (V).

There is another question of interest related to commuting quantifiers and cylin-
dric OMLs. We first describe a similar notion in the vN algebra setting.

Definition 21. Let 7 be a vN algebra with a unique tracial state 7. A commuting
square of VN subalgebras of ¥ consists of subalgebra #,.,7 < ¥ such that the
conditional expectations E & and E 5 commute, EoSy7 =EgEy,and Z = N T .

S < v

VI VI
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This notion was introduced by Popa [19] in the case when the intersection &%
was trivial, and he then called . and .7 orthogonal subalgebras. Orthogonal sub-
algebras generalize from the abelian vN algebra setting the notion of independent
o-algebras from Example 2. Commuting squares in the form above were introduced
by Popa in [20]. The following is found in [6].

Proposition 5. Let ¥ be a vN algebra with a unique faithful tracial state and
R, , T,V be acommuting square of subalgebras. Then the quantifiers associ-
ated to ./ and J commute.

Commuting squares of subalgebras play a large role in subfactor theory. Even
in what seems like the simplest setting, orthogonal maximal abelian subalgebras
(MASAs) of a matrix algebra M, there is a considerable interest. Here, MASAs cor-
respond to orthonormal bases (ONBs) and two MASAs are orthogonal when these
ONBs are mutually unbiased, meaning the angles between two vectors, one from
each, is constant. It is unknown for instance the maximal size of a collection of
pairwise orthogonal MASAs in the matrix algebra of 6 x 6 matrices, see [1].

Remark 4. It would be of interest to consider the matter of commuting quantifiers
in the general setting of OMLs. In particular, for an OML L, consider an associated
graph whose vertices are the maximal Boolean subalgebras of L, usually called it
blocks, with an edge between vertices iff the conditional expectations associated to
these blocks commutes. What does this graph look like for £2(C")?
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