#### Lattice Theory Lecture 2

#### **Distributive** lattices

#### John Harding

New Mexico State University www.math.nmsu.edu/~JohnHarding.html

jharding@nmsu.edu

Toulouse, July 2017

### Distributive lattices

| Distributive law | for all $x, y, z$  | $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ |
|------------------|--------------------|----------------------------------------------------|
| Modular law      | if $x \leq z$ then | $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ |

Definition The lattices  $M_5$  and  $N_5$  are as follows:



Note  $M_5$  is **M**odular, not distributive, and  $N_5$  is **N**on-modular. Both have 5 elements.

### Recognizing distributive lattices

Theorem Let L be a lattice.

- 1. L is modular iff  $N_5$  is not a sublattice of L
- 2. L is distributive iff neither  $M_5, N_5$  is a sublattice of L

Proof The " $\Rightarrow$ " direction of each is obvious. For 1 " $\Leftarrow$ " if *L* is not modular, there are x < z with  $x \lor (y \land z) < (x \lor y) \land (x \lor z)$  (why?) Then the following is a sublattice of *L*.



#### Exercise

Give the details that the figure on the previous page is a sublattice.

Do the 2 " $\Leftarrow$ " direction.

The lattice  $N_5$  is "projective" in lattices, meaning that if L is a lattice and  $f: L \rightarrow N_5$  is an onto lattice homomorphism, then there is a one-one lattice homomorphism  $g: N_5 \rightarrow L$  with  $f \circ g = id$ .

#### Complements

Definition Elements x, y of a bounded lattice L are complements if  $x \wedge y = 0$  and  $x \vee y = 1$ .

In general, an element might have no complements, or many.



### Complements

Theorem In a bounded distributive lattice, an element has at most one complement.

Pf Suppose y, z are complements of x. Then

$$y = y \land (x \lor z) = (y \land x) \lor (y \land z) = y \land z$$
$$z = z \land (x \lor y) = (z \land x) \lor (z \land y) = y \land z$$

Surprisingly, a finite lattice where each element has exactly one complement is distributive! But not so in the infinite case.

### Boolean algebras

Definition A Boolean algebra  $(B, \land, \lor, ', 0, 1)$  is an algebra of type 2,2,1,0,0 where

- 1. B is abounded distributive lattice
- 2. x' is a complement of x for each  $x \in B$

Note The difference between a complemented distributive lattice and a Boolean algebra is what we consider to be a subalgebra. A subalgebra of a Boolean algebra must include complements.

# Properties of Boolean algebras

Proposition In any Boolean algebra

1. 
$$(x \land y)' = x' \lor y'$$
  
2.  $(x \lor y)' = x' \land y'$ 

3. 
$$x'' = x$$

Note These are called De Morgan's laws.

Exercise Prove these. For (1) show  $x \wedge y$  and  $x' \vee y'$  are complements.

### Complements

Definition For L a lattice and  $a, b \in L$  with  $a \leq b$  the interval [a, b] is the sublattice of L given by

$$[a,b] = \{x : a \le x \le b\}$$

Proposition Each interval [a, b] in a complemented distributive lattice *L* is complemented with the complement of *x* being the element  $x^{\#}$  given by

$$x^{\#} = (x' \wedge b) \vee a$$

We say that L is relatively complemented when its intervals are complemented. The above result works for modular lattices too.

### Complements

Definition For a bounded distributive lattice L, let its center C(L) be the set of all complemented elements of L.

Proposition The center of L is a sublattice of L.

Proposition  $c \in C(L)$  gives an isomorphism  $\varphi : L \rightarrow [0, c] \times [0, c']$  where

$$\varphi(x) = (x \wedge c, x \wedge c')$$

Further, each direct product decomposition of L arises this way.

Pf Define  $\psi : [0, c] \times [0, c'] \rightarrow L$  by  $\psi(p, q) = p \lor q$  and show it is inverse to  $\phi$ . For the further comment, if  $L = A \times B$ , then c = (1, 0) is in C(L).

Definition An ideal of a lattice L is a subset  $I \subseteq L$  where

- 1. if  $y \in I$  and  $x \leq y$ , then  $x \in I$
- 2. if  $x, y \in I$  then  $x \lor y \in I$

Definition A filter of a lattice L is a subset  $F \subseteq L$  where

1. if 
$$x \in F$$
 and  $x \leq y$ , then  $y \in F$ 

2. if  $x, y \in F$  then  $x \wedge y \in F$ 

Definition Let  $\mathcal{I}(L)$  be the set of ideals of L partially ordered by  $\subseteq$ .

Definition For any L its ideal lattice  $\mathcal{I}(L)$  is a complete lattice with meets given by intersections. The join of two ideals I and J is

 $I \lor J = \{x : x \le a \lor b \text{ for some } a \in I, b \in J\}$ 

Pf We check that the intersection of ideals is an ideal. Then the ideals are a closure system, hence a complete lattice. We check that the description above is an ideal, and then must be the smallest ideal containing I, J.

Exercise Do the details.

Definition For a lattice *L* and  $a \in L$ , the principal ideal and principal filter generated by *a* are  $\downarrow a = \{x : x \le a\}$  and  $\uparrow a = \{x : a \le x\}$ .

Proposition  $\phi(a) = \downarrow a$  is a lattice embedding of L into  $\mathcal{I}(L)$ .

Pf Clearly 
$$\downarrow a \cap \downarrow b = \downarrow (a \land b)$$
 and  $\uparrow a \lor \uparrow b = \uparrow (a \lor b)$ 

Definition An ideal of L is trivial if it is either empty or all of L.

Proposition If *L* is distributive, so is  $\mathcal{I}(L)$ .

Pf Let I, J, K be ideals. Always  $I \lor (J \land K) \subseteq (I \lor J) \land (I \lor K)$ .

- If  $x \in RHS$ , then
- $x \in I \lor J$  and  $x \in I \lor K$
- exist  $a_1, a_2 \in I$ ,  $b \in J$ ,  $c \in K$  with  $x \le a_1 \lor b$  and  $x \le a_2 \lor c$

• 
$$a = a_1 \lor a_2 \in I$$

- $x \leq (a \lor b) \land (a \lor c) = a \lor (b \land c)$
- *x* ∈ LHS.

A fancier version of this shows ...

Theorem For any lattice L, the ideal lattice  $\mathcal{I}(L)$  satisfies exactly the same equations as L.

There are several results constructing  $\mathcal{I}(L)$  as a homomorphic image of a subalgebra of an ultrapower of *L*.

Note These results are for lattice equations. For a Boolean algebra B, its ideal lattice  $\mathcal{I}(B)$  need not be complemented.

For certain lattices, ideals play a role similar to that of normal subgroups for groups.

Proposition For I an ideal of a distributive lattice L, there is a congruence  $\theta_I$  of L where

$$\theta_I = \{(a, b) : a \lor x = b \lor x \text{ for some } x \in I\}$$

If L is sectionally complemented, these are all of its congruences.

Exercise Prove the first statement using the definition of a congruence. The second is a bit harder.

# Prime ideals

Definition An ideal P of a lattice L is prime if for any  $a, b \in L$ 

$$a \land b \in P \implies a \in P \text{ or } b \in P$$

Proposition An ideal P is prime iff  $L \setminus P$  is a filter.



A prime ideal and its complementary filter split the lattice in two.

### Prime ideals

Definition Let 2 be the 2-element lattice

Proposition For *P* a prime ideal of a distributive lattice *D*, there is a homomorphism  $\varphi_p: D \to 2$  where

$$\varphi_p(x) = \begin{cases} 0 & \text{if } x \in P \\ 1 & \text{if } x \notin P \end{cases}$$



### The Prime Ideal Theorem

Theorem Let *I* be an ideal of a distributive lattice *D*, and *F* be a filter of *D* with  $I \cap F = \emptyset$ . Then there is a prime ideal *P* with  $I \subseteq P$  and *F* disjoint from *P*.



#### The Prime Ideal Theorem

Pf Let  $\mathfrak{X} = \{J : I \subseteq J \in \mathcal{I}(L) \text{ and } J \cap F = \emptyset\}.$ 

- $\mathfrak{X}$  is non-empty and closed under unions of chains
- By Zorn's Lemma  $\mathfrak X$  has a maximal member P
- *P* is an ideal,  $I \subseteq P$  and  $P \cap F = \emptyset$
- Suppose a, b ∉ P
- by maximality  $\downarrow a \lor P, \downarrow b \lor P \notin \mathfrak{X}$
- exist  $x_1, x_2 \in P$  with  $a \lor x_1 \in F$  and  $b \lor x_2 \in F$
- $x = x_1 \lor x_2 \in P$
- $(a \lor x) \land (b \lor x) = (a \land b) \lor x \in F$
- since  $P \cap F = \emptyset$  then  $a \wedge b \notin P$ .

# The Prime Ideal Theorem

If we consider the case of propositional statements ...

An ideal of statements is a collection that we can sensibly decide to assign value FALSE. A filter is a collection we can sensibly assign the value TRUE.

The prime ideal theorem says that we can do both together while assigning  $T_{RUE}$  or  $F_{ALSE}$  to every proposition in a consistent way! This is a bit remarkable if you think of it.

Definition For a distributive lattice D, let  $\beta(D)$  be the set of all non-trivial prime ideals of D.

Definition For D a distributive lattice and  $a \in D$  set

$$\beta(a) = \{P \in \beta(D) : a \notin P\}$$

Proposition For D a distributive lattice and  $a, b \in D$ 

1. 
$$\beta(a \land b) = \beta(a) \cap \beta(b)$$
  
2.  $\beta(a \lor b) = \beta(a) \cup \beta(b)$ 

Exercise Prove this proposition.

Theorem Any distributive lattice D is isomorphic to a sublattice of the power set  $\mathcal{P}(X)$  of the set  $X = \beta(D)$ .

Pf The map  $\beta: D \to \mathcal{P}(X)$  preserves  $\land$  and  $\lor$ . It remains to show it is one-one.

- Let *a* ≠ *b*
- Either  $a \notin b$  or  $b \notin a$
- Assume b ≰ a
- Then ↓a and ↑b are a disjoint ideal and filter
- There is a prime ideal P with  $\downarrow a \subseteq P$  and  $\uparrow b \cap P = \emptyset$
- a ∈ P and b ∉ P
- $\beta(a) \neq \beta(b)$

Proposition For any set X, the power set  $\mathcal{P}(X)$  is isomorphic to the power  $2^X$ , all functions from X to 2 with pointwise operations.

Pf Let  $\chi$  be the map from  $\mathcal{P}(X)$  to  $2^X$  sending a subset  $A \subseteq X$  to its characteristic function  $\chi_A$  where

$$\chi_A(x) = \begin{cases} 0 & \text{if } x \notin A \\ 1 & \text{if } 1 \in A \end{cases}$$

Theorem Any distributive lattice D is isomorphic to a sublattice of the power  $2^X$  where  $X = \beta(D)$ .

# Prime ideals for Boolean algebras

Exercises Let I be a non-trivial ideal of a Boolean algebra B. Show that the following are equivalent.

- 1. *I* is prime
- 2. For each  $x \in B$  exactly one of x, x' belongs to *I*.
- 3. *I* is a maximal non-trivial ideal.

Thus  $\beta(x') = \beta(B) \setminus \beta(x)$ .

Pf Exercise.

For Boolean algebras of equivalence classes of logical statements, prime ideals correspond to consistent assignments of truth and falsehood to the statements.

### Prime ideals for Boolean algebras

Corollary Let *B* be a Boolean algebra *B* and  $X = \beta(B)$ .

- 1. *B* is isomorphic to a subalgebra of the power set  $\mathcal{P}(X)$ .
- 2. *B* is isomorphic to a subalgebra of the power  $2^X$ .

Remark This is much like Cayley's theorem for groups that says every group G is isomorphic to a subgroup of the group of permutations of a set.

Remark This theorem was proved independently by Stone and Birkhoff in the 1930's. Stone was an analyst and this result plays a key role in functional analysis.

The result that each distributive lattice and each Boolean algebra is a subalgebra of  $\mathcal{P}(X)$  has useful consequences.

Example To show that the following holds in each Boolean algebra

$$x \le y \Leftrightarrow x \land y' = 0$$

its enough to verify it for  $\mathcal{P}(X)$  where it is  $S \subseteq T \Leftrightarrow S \cap T' = \emptyset$ .

The result that each is a subalgebra of  $2^X$  is also useful. We switch focus and look at familiar ideas from logic from this perspective.

Definition A term  $t(x_1, ..., x_n)$  in the language of lattices is an expression built from  $\land, \lor$  and the variables  $x_1, ..., x_n$ .

Example 
$$t(x, y, z) = ((x \land y) \land x) \lor z$$

Definition For a term  $t(x_1, ..., x_n)$  and lattice A, the interpretation of t in A is the function  $t^A : A^n \to A$  where  $t^A(a_1, ..., a_n)$  is the value of the term when its inputs are  $a_1, ..., a_n$ .

Example  $t^A(a, b, c) = ((a \land b) \land a) \lor c$ 

### Truth tables

Definition A truth table is an interpretation of a term in 2.

Example For  $t(x, y, z) = ((x \land y) \land x) \lor z$ 

# Decidability

Definition Terms s, t are equivalent if their interpretations  $s^A, t^A$  are equal in any distributive lattice A. We then write

$$s(x_1,\ldots,x_n) \equiv t(x_1,\ldots,x_n)$$

Theorem s, t are equivalent iff  $s^2 = t^2$ .

Pf " $\Rightarrow$ " is vacuous. " $\Leftarrow$ " For A a distributive lattice,  $A \le 2^X$ . Evaluating s, t in A is componentwise. As s = t in 2, s = t in A.

Remark One says that the equational theory of distributive lattices is decidable. It all works for Boolean algebras too.

# Free Algebras

Definition For a set X, a distributive lattice  $\mathcal{F}_D(X)$  is called a free distributive lattice over X if

- 1.  $\mathcal{F}_D(X)$  is generated by X
- 2. for any distributive lattice D and set mapping  $f: X \rightarrow D$



there is a homomorphism  $\overline{f} : \mathcal{F}_D(X) \to D$  extending f.

### Free Algebras

This is a key notion in algebra, logic, algebraic topology, and computer science. Free groups and free Boolean algebras are defined similarly.

# Constructing Free Algebras

Definition Let  $\mathcal{T}(X)$  be all terms for distributive lattices whose variables are from X, and let  $\equiv$  be the relation of equivalence of terms.

The following theorem from universal algebra holds with obvious modification for groups, rings, lattices, Boolean algebras, and so forth.

Theorem  $\mathcal{F}_D(X)$  is equal to  $\mathcal{T}(X)/\equiv$ .

So  $\mathcal{F}_D(X)$ , and its Boolean counterpart  $\mathcal{F}_B(X)$ , are key in logic. They literally are logical propositions modulo logical equivalence.

### Free Algebras

For the following, note that the elements of  $2^{2^X}$  are truth tables! Theorem Let X be a finite set.

1.  $\mathcal{F}_D(X)$  is isomorphic to a sublattice of  $2^{2^X}$ 2.  $\mathcal{F}_B(X)$  is isomorphic to  $2^{2^X}$ 

Pf (1) Define 
$$\varphi : (\mathcal{T}(X)/\equiv) \longrightarrow 2^{2^X}$$
 by  $\varphi(t/\equiv) = t^2$ 

(2) Since every truth table can be realized by a Boolean algebra term we have that  $\varphi$  is onto in the Boolean case.

### Free Algebras

Corollary A subalgebra of a distributive lattice or Boolean algebra generated by n elements is finite.

Pf Such a subalgebra is generated by n elements, and is therefore a homomorphic image of a free algebra on n generators.

Open problem Give a formula for the cardinality of  $\mathcal{F}_D(n)$ .

Exercise Give an infinite lattice that is generated by 3 elements.

The distributive laws say

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

Definition A complete lattice D is infinitely meet distributive if it satisfies (1) and infinitely join distributive if it satisfies (2)

1. 
$$x \land \bigvee_I y_i = \bigvee_I (x \land y_i)$$
  
2.  $x \lor \land_I y_i = \land_I (x \lor y_i)$ 

Exercise Show that any finite lattice, any complete chain, and any power set  $\mathcal{P}(X)$  satisfies both.

Example The lattice below is complete and distributive, but does not satisfy the infinite meet distributive law.



Then  $x \land \forall y_i = x \land 1 = x$  and  $\forall (x \land y_i) = 0$ .

Proposition The lattice  $\mathcal{O}(X)$  of open sets of a topological space X satisfies the infinite meet distributive law but not necessarily the infinite join distributive law.

Pf In  $\mathcal{O}(X)$  arbitrary joins are  $\bigcup$  and finite meets are  $\cap$ , so the result follows from that for sets.

For the failure of infinite join continuity, consider the topological space  $\mathbb{R}$ . Set  $A = \mathbb{R} \setminus \{0\}$  and  $B_n = (-1/n, 1/n)$ .

$$A \cup \bigwedge B_n = A \cup \emptyset = A \qquad \bigwedge (A \cup B_n) = \mathbb{R}$$

Here  $\bigwedge B_n$  is the interior of its intersection  $\{0\}$ , which is empty.

There is a stronger version of distributivity involving both infinite joins and meets. To see its nature, lets return to when we were 7.

$$(x_{11} + x_{12}) \cdot (x_{21} + x_{22} + x_{23}) \cdot (x_{31} + x_{32} + x_{33} + x_{34}) = (x_{11} \cdot x_{21} \cdot x_{31}) + (x_{11} \cdot x_{21} \cdot x_{32}) + \dots + (x_{12} \cdot x_{23} \cdot x_{34})$$

There are  $24 = 2 \times 3 \times 4$  terms here, one for each choice function.

Definition A complete lattice L is completely distributive if

$$\bigwedge_{I} \bigvee_{J_{i}} x_{ij} = \bigvee_{\alpha \in \prod J_{i}} \bigwedge_{I} x_{i,\alpha(i)}$$

Exercise Show that every finite distributive lattice, every complete chain, and every power set  $\mathcal{P}(X)$  is completely distributive.

Exercise Show that the complete distributive law implies the infinite join and meet distributive laws.

# Complete Boolean Algebras

Proposition In a complete Boolean algebra B

1. 
$$(\forall x_i)' = \land x_i'$$
  
2.  $(\land x_i)' = \lor x_i'$ 

This works without completeness if we assume one side exists.

Pf (1)  $x_i \le y \Leftrightarrow y' \le x'_i$ . So if y is the least upper bound of the  $x_i$ , then y' is the greatest lower bound of the  $x'_i$ . (2) Similar.

# Complete Boolean Algebras

Proposition Every complete Boolean algebra satisfies the infinite meet and join distributive laws.

Pf Exercise. Hint: for  $\bigvee (x \land y_i) = x \land \bigvee y_i$  trivially LHS  $\leq$  RHS. For the other way, it is enough to show that LHS '  $\land$  RHS = 0. Then use LHS'  $\leq x' \lor y'_i$  for each *j* to obtain this.

In the final lecture, one more result will be of key importance.

### Complete Boolean Algebras

Theorem For a complete Boolean algebra B, these are equivalent.

- 1. B is atomic
- 2. *B* is completely distributive
- 3. *B* is isomorphic to a power set  $\mathcal{P}(X)$  for some set *X*.

Pf (Sketch) (1)  $\Rightarrow$  (3)  $\Rightarrow$  (2) are an exercise. To show (2)  $\Rightarrow$  (1) enumerate *B* as  $x_i$  and set  $x_{i0} = x_i$  and  $x_{i1} = x'_i$ .

$$x_j < \bigwedge_{I} x_{i\alpha(i)} \Rightarrow \alpha(j) = 1 \Rightarrow x_j \le x'_j \Rightarrow x_j = 0$$

So  $\bigwedge_I x_{i\alpha(i)}$  is either 0 or an atom.

$$1 = \bigwedge_{I} \bigvee_{2} x_{ij} = \bigvee_{\alpha \in 2^{I}} \bigwedge_{I} x_{i\alpha(i)}$$

#### Thanks for listening.

Papers at www.math.nmsu.edu/~jharding