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Introduction

Today we consider alternative ways to view distributive lattices and
Boolean algebras. These are examples of what are known as
dualities.

Dualities in category theory relate one type of mathematical
structure to another. They can be key to forming bridges between
areas as different as algebra and topology.

Stone duality is a primary example. It predates category theory,
and is a terrific guide for further study of other dualities.
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Various Dualities in Lattice Theory

Birkhoff Duality: finite distributive lattices ↔ finite posets

Stone Duality: Boolean algebras ↔ certain topological spaces

Priestley Duality: distributive lattices ↔ certain ordered top spaces

Esakia Duality: Heyting algebras ↔ certain ordered top spaces

We consider the first two. In both cases, prime ideals provide our
key tool.
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Prime Ideals

Recap ...

Definition For D a distributive lattice, P ⊆ D is a prime ideal if

1. x ≤ y and y ∈ P ⇒ x ∈ P
2. x , y ∈ P ⇒ x ∨ y ∈ P
3. x ∧ y ∈ P ⇒ x ∈ P or y ∈ P or both.

P is called trivial if it is equal to either ∅ or all of D.

P
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Prime Ideals for Finite Distributive Lattices

Proposition In a finite lattice L, the non-empty ideals of L are
exactly the principal ideals ↓a = {x ∶ x ≤ a} where a ∈ L.

Pf Since ideals are closed under binary joins, if I is a non-empty
ideal in a finite lattice, the join of all of its elements again lies in I ,
and is clearly the largest element of I .

Which elements a have ↓a a prime ideal?
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Prime Ideals for Finite Distributive Lattices

Definition Let a be an element of a lattice D.

1. a is meet irreducible if x ∧ y = a ⇒ x = a or y = a

2. a is meet prime if x ∧ y ≤ a ⇒ x ≤ a or y ≤ a

Proposition In a distributive lattice, these are equivalent.

1. a is meet irreducible

2. a is meet prime

3. ↓a is a prime ideal

Pf Exercise.
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Prime Ideals for Finite Distributive Lattices

Definition For a lattice D set

1. M(D) = {a ∶ a is meet irreducible and a ≠ 1}
2. J(D) = {a ∶ a is join irreducible and a ≠ 0}

We consider both as posets partially ordered by the order of D.

D M(D) D J(D)

7 / 44



Prime Ideals for Finite Distributive Lattices

Proposition There are mutually inverse order isomorphisms

M(D) J(D)
j

m

Pf Obvious from the connection between prime ideals and prime
filters.

a

j(a)

m(b)

b
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Object Level Birkhoff Duality

Definition For a poset P, a set S ⊆ P is a downset if

a ≤ b and b ∈ S ⇒ a ∈ S

Let D(P) be all downsets of P partially ordered by set inclusion.

Proposition For P a poset, its downsets D(P) are a complete,
completely distributive lattice.

Pf It is easy to see that the intersection and union of an arbitrary
collection of downsets is a downset. So D(P) is a subset of the
power set P(P) closed under arbitrary intersections and unions.
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Object Level Birkhoff Duality

Definition Let FDist be the class of finite distributive lattices and
FPos be the class of finite posets. We then have maps

FDist FPos
J

D

Here J(D) is the poset of join irreducibles of the finite distributive
lattice D and D(P) is the distributive lattice of downsets of P.
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Object Level Birkhoff Duality

Theorem For a finite distributive lattice D, and finite poset P there
are isomorphisms φ ∶ D → D(J(D)) and ψ ∶ P → J(D(P)) where

1. φ(x) = {a ∈ J(D) ∶ a ≤ x}
2. ψ(a) = ↓a

Pf (1) This is surely a downset. Since each element is the join of
the join irreducibles beneath it, x ≤ y ⇔ φ(x) ⊆ φ(y). To see it is
onto, for a downset A let x = ⋁A. Since members of J(D) are join
prime, if a ∈ φ(x) then a ≤ b for some b ∈ A. So φ(x) = A.
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Object Level Birkhoff Duality

Theorem For a finite distributive lattice D, and finite poset P there
are isomorphisms φ ∶ D → D(J(D)) and ψ ∶ P → J(D(P)) where

1. φ(x) = {a ∈ J(D) ∶ a ≤ x}
2. ψ(a) = ↓a

Pf (2) Surely ↓a is a downset, and since a union of downsets
cannot contain ↓a without one of them having a in it, ↓a is join
irreducible in D(P). Its easy to see that these are the only join
irreducibles. Then a ≤ b ⇔ ↓a ⊆ ↓b gives the rest.

12 / 44



Object Level Birkhoff Duality

So there is a complete correspondence between finite distributive
lattices and finite posets.

Example

D J(D)

a b

c

a b

c

Then J(D) has six downsets.

∅ {a} {b} {a,b} {b, c} {a,b, c}

And D(J(D)) ≃ D
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Full Birkhoff Duality

Definition A category C consists of

1. a collection of objects A,B,C , . . .

2. a collection of morphisms or arrows f ∶ A→ B between objects

3. a rule to compose arrows g ○ f when f ∶ A→ B and g ∶ B → C

4. for each object A, an identity morphism 1A ∶ A→ A

We require that composition is associative when defined, and that
if f ∶ A→ B then 1B ○ f = f = f ○ 1A.
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Full Birkhoff Duality

Definition Consider the categories

1. FDist = finite distributive lattices + bounded lattice homo’s

2. FPos = finite posets + order preserving maps

We extend the correspondence between finite distributive lattices
and finite posets to include also the morphisms between objects of
the same kind. This is full Birkhoff duality.
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Full Birkhoff Duality

Proposition Let f ∶ D → E be a homomorphism between finite
distributive lattices and a ∈ J(E)

1. f −1[↑a] is a prime filter of D

2. there is a least element b ∈ D mapped above a and b ∈ J(D)

This gives a map J(f ) ∶ J(E)→ J(D)

Pf

f −1[↑a]

b a

(1) is an exercise and (2) follows from (1).
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Full Birkhoff Duality

Proposition Given an order preserving map h ∶ P → Q between
finite posets, there is a distributive lattice homomorphism
D(h) ∶ D(Q)→ D(P) given by

D(h)(A) = h−1[A]

Pf The preimage of a downset is a downset. Preimages preserve
unions and intersections, and these are the lattice operations in the
lattices D(P) and D(Q) of downsets.
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Full Birkhoff Duality

We extended our correspondence on objects to morphisms.

FDist FPos
J

D

If f ∶ D → E in FDist then J(f ) ∶ J(E)→ J(D) in FPos

If h ∶ P → Q in FPos then D(h) ∶ D(Q)→ D(P) in FDist

Theorem J and D give a dual equivalence, or duality, between the
categories FDist and FPos.
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Dualities

We won’t give the formal definition of a dual equivalence or duality
here. Basically, it means that there is a correspondence for objects,
and also a correspondence for morphisms between objects. It is a
dual equivalence because we switch the direction of the arrows.

In practice, it means that problems you can formulate about finite
distributive lattices and the homomorphisms between them can be
reformulated (and solved!) as problems about finite posets and
order preserving maps. And vice versa.

Example Is there a finite distributive lattice whose automorphism
group is Z5? Its probably easier to solve this for a finite poset.
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Stone Duality

Definition Let Boo be the category of Boolean algebras and the
homomorphisms between them.

Stone duality is between Boo and a category BSpace of certain
topological spaces and the continuous maps between them.
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Review of Topology

Definition A topological space (X , τ) is a set X with a collection τ
of subsets of X that we call open sets such that

1. ∅,X are open

2. the intersection of two open sets is open

3. the union of arbitrarily many open sets is open

A set C whose complement is open is called closed, and a set that
is both open and closed is called clopen.

Proposition The clopen sets Clopen(X ) of a topological space X
form a Boolean subalgebra of the power set P(X ).
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Review of Topology

Proposition Let X be a set and R ⊆ P(X ) be closed under finite
unions and intersections. Then there is a topology on X given by

τ = {A ∶ A is an arbitrary union of members of R}

Recall, for a Boolean algebra B, and a ∈ B

β(B) = {P ∶ P is a non-trivial prime ideal}
β(a) = {P ∶ a /∈ P}

Definition For a Boolean algebra B its Stone space is (X , τ) where
X = β(B) and τ is determined by R = {β(a) ∶ a ∈ B}.
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Outline of Stone Duality

We have means to associate to a Boolean algebra a topological
space and conversely.

• Given B form its Stone space (X , τ)
• Given (X , τ) take Clopen(X )

For an arbitrary topological space (X , τ), such as the real line, we
won’t realize it as the Stone space of Clopen(X ). So we must
narrow the class of topological spaces we consider.
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Stone Spaces

Definition For a top space (X , τ) a subset K ⊆ X is compact if
whenever K is contained in the union ⋃I Ai of a family of open
sets, the union of finitely many of these open sets contains K .

Definition A top space (X , τ) is a Boolean space if

1. X is compact

2. Each open set is a union of clopen sets

3. For any x ≠ y in X there is a clopen A with x ∈ A, y /∈ A

If you know the words, (X , τ) is a compact zero-dimensional
Hausdorff space.
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Stone Spaces

Proposition For a Boolean algebra B, its Stone space (X , τ) is a
Boolean space.

Proof Since X ∖ β(a) = β(a′) each β(a) is clopen, and since τ is
generated by such sets, each open set is a union of clopen ones.
So X is zero-dimensional.

Elements of X are prime ideals. If P ≠ Q ∈ X there is a with a ∈ Q
and a /∈ P. Then P ∈ β(a) and Q /∈ β(a). So its Hausdorff.
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Stone Spaces

Pf For compactness, suppose X = ⋃I Ai is a union of open sets.
Since each open is a union of ones from R, we may assume
consider just the case when Ai ∈R, so that X = ⋃I β(ai). Let

J = the ideal generated by the ai where i ∈ I

If the ideal J does not contain 1, the prime ideal theorem applied
to J and {1} says there is a non-trivial prime ideal P containing J.
Then P /∈ β(ai) for each i ∈ I a contradiction.

Since 1 ∈ J there are ai1 , . . . , ain with 1 = ai1 ∨⋯ ∨ ain . Then

X = β(1) = β(ai1) ∪⋯ ∪ β(ain)
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Stone Spaces

Proposition For a Boolean algebra B with Stone space (X , τ), B is
isomorphic to Clopen(X ).

Pf We have β ∶ B → Clopen(X ) preserves finite meets, finite joins,
and complements, so is a Boolean algebra homomorphism. If a ≠ b
then there is a prime ideal containing one of a,b and not the other,
so β is one-one.

For onto, let A ∈ Clopen(X ). It is known that closed subspaces of
a compact space are compact, so A is compact. Since A is open it
is a union of sets of the form β(a), hence by compactness is a
finite union of such sets. Thus

A = β(a1) ∪⋯ ∪ β(an) = β(a1 ∨⋯ ∨ an)
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Stone Spaces

Definition A map f ∶ X → Y between topological spaces is
continuous if the preimage of each open set in Y is open in X .

Definition A bijection f ∶ X → Y between topological spaces is a
homeomorphism if f and its inverse f −1 are continuous.
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Stone Spaces

Proposition Let (X , τ) be a Boolean space and x ∈ X . Set

Px = {A ∈ Clopen(X ) ∶ x /∈ A}

Then Px is a prime ideal of the Boolean algebra Clopen(X ) and the
map Φ ∶ X → β(Clopen(X )) with Φ(x) = Px is a homeomorphism.

Pf Exercise.
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Stone Duality

At this point we have an object level correspondence

Boo BSpace
β

Clopen

We extend it to a full duality. Here Boo is the category of Boolean
algebras and their homomorphisms, and BSpace is the category of
Boolean spaces and the continuous maps between them.
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Stone Duality

Proposition Let f ∶ B → C be a Boolean algebra homomorphism
and P be a prime ideal of C . Then f −1[P] is a prime ideal of B.
So there is a map

β(f ) ∶ β(C)→ β(B) given by β(f )(P) = f −1[P]

This map β(f ) is continuous.

Pf

f −1[P]
f

P

As an exercise, show β(f )−1[β(a)] = β(f (a)) to see that Φ is
continuous.
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Stone Duality

Proposition If h ∶ X → Y is a continuous map, then for each clopen
A ⊆ Y we have h−1[A] is clopen in X . So there is a map

Clopen(h) ∶ Clopen(Y )→ Clopen(X ) taking A to h−1[A]

This map is a Boolean algebra homomorphism.

Pf That it is a Boolean algebra homomorphism follows since
inverse image preserves intersection, union, and complementation.
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Stone Duality

Theorem There is a dual equivalence

Boo BSpace
β

Clopen

Pf We leave this to those who know the precise definition of a
duality. But its not difficult with what we now have.

We spend the remainder of this lecture discussing aspects of Stone
duality. Its importance in many branches of mathematics is hard to
overstate. This includes modal logic, but also algebra and
functional analysis.
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Stone Duality

Recall, a coatom is an element that is covered by 1.

Proposition Let B be a finite Boolean algebra with n coatoms.

1. the prime ideals of B are the ↓c where c is a coatom of B

2. the Stone space β(B) is an n-element discrete space

3. B is isomorphic to the power set P({1, . . . ,n})

Pf (1) Each ideal of B is of the form ↓c for some c ∈ B. Since the
interval [c,1] of B is complemented, for c to be meet irreducible
[c ,1] must have 2 elements. (2) Every finite Hausdorff space is
discrete. (3) Every subset of a discrete space is clopen.
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Stone Duality

Example

a b c

↓a ↓b ↓c

B β(B)
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Stone Duality

Example A subset A of N is cofinite if its complement N ∖A is
finite. Let B be the set of all A ⊆ N that are finite or cofinite.

finite

cofinite

It has a coatom N ∖ {n} for each n. Each coatom again gives a
prime ideal Pn. There is one more prime ideal, the whole of the
bottom part “finite” is a prime ideal Pfin.
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Stone Duality

What is the Stone space of the finite/cofinite Boolean algebra?

finite

cofinite

. . .

P1 P2 P3 P4 Pfin

The clopen sets β(A) of the Stone space are as follows:

β(A) =
⎧⎪⎪⎨⎪⎪⎩

{Pn ∶ n ∈ A} if A is finite

{Pn ∶ n /∈ A} ∪ {Pfin} if A is cofinite

This is the one-point compactification of N!
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Stone Duality

A natural question is to describe the Stone space of B = P(N). It
turns out that this is the Stone Cech compactification of N with
the discrete topology.

As far as actually describing this Stone space in a concrete way,
this is one of the more difficult problems you can imagine!
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A Dictionary to Translate

Atoms Atoms a ∈ B ↔ clopen singletons {x} in Stone space

The only prime ideal P with a /∈ P is ↓a′, so β(a) = {↓a′}

Ideals Ideals I ⊆ B ↔ open sets A ⊆ X

Given I then A = ⋃{β(a) ∶ a ∈ I} is open.

Filters Filters F ⊆ B ↔ closed sets K ⊆ X

Given F then ⋂{β(a) ∶ a ∈ F} is closed.
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A Dictionary to Translate

Since duality turns arrows around, products in one category turn to
coproducts in the other.

Product Coproduct

Products in Boolean algebras are easy, and finite coproducts
Boolean spaces are easy — they are disjoint unions.

Example The Stone space of 2 is the one-element space. The
Stone space of 2n is the disjoint union of n one-element spaces,
hence an n-element space.

Example 2N is the power set P(N). Its Stone space is the
Stone-Cech compactification of the union of N 1-element spaces.
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A Dictionary to Translate

Products in Boolean spaces are the usual product of topological
spaces. Coproducts in Boolean algebras pose a challenge.

Free algebras

The free Boolean algebra FB(X ) on a set X of generators is the
coproduct of X copies of the free Boolean algebra FB(1) on one
generator.

We approach this using Stone spaces ...
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A Dictionary to Translate

• Note FB(1) is a 4-element Boolean algebra {0, a, a′,1} so its
dual space is a 2-element discrete space.

• So the dual space of FB(X ) is the space 2X .

• In the finite case, FB(n) is 22
n

from our discussion of truth
tables. Its dual space is 2n as it should be.

• In the infinite case, FB(N) can be approached algebraically,
but dually its Stone space is 2N — the Cantor space!
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A Dictionary to Translate

Completeness

We can consider completeness of a Boolean algebra B in terms of
its Stone space X .

Ideals I of B correspond to open sets A of X . Having B complete
means each ideal I has a least upper bound a. This corresponds to
having the closure of an open set A of X be a clopen set β(a).

We return to completeness in Lecture 5.

43 / 44



Thanks for listening.
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