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Completions

Definition A completion of a poset P is a pair (C,e) where C is a
complete lattice and e: P — C satisfies x < y < e(x) < e(y).

Often we are interested in completions that preserve some set of
existing joins and meets. A primary instance is when P is a lattice,
when we nearly always desire to preserve finite joins and meets.
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Completions

Abstract Characterizations

Often we give a concrete way to make a completion (C,e) of P,
then give an abstract characterization of it.

This means giving properties of (C,e), then showing if (C',€’) is
another completion with these properties, then there is a unique
isomorphism ¢ : C - C" making the following commute.
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Completions

Example of a completion and its abstract characterization

The first example of a completion was completing the rationals Q
to the reals R, really the extended reals.

This was done first by Dedekind around 1870 using “cuts” and a
few years later using Cauchy sequences by Cantor.

Few people view real numbers as either cuts or Cauchy sequences
of rationals, but rather via their abstract characterization in terms
of the rationals.
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The MacNeille Completion

Theorem For a poset P, there is a completion (C,e) of P that
satisfies

1. each element of C is a join of elements of e[P]

2. each element of C is a meet of elements of e[P]

Further, any two such completions are isomorphic up to unique
isomorphism. They are called MacNeille completions.

Notes Item (1) is called “join dense” and (2) is “meet dense”.
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The MacNeille Completion

Example Here is a join and meet dense completion

L

Example And one that is neither join or meet dense.

d
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Constructing the MacNeille Completion

Definition For a poset P and Ac P set

U(A) = {u: uis an upper bound of A}
L(A) = {v:vis a lower bound of A}

The sets A with A= LU(A) are called normal ideals of P.

Theorem The set of all normal ideals M(P) is a complete lattice
and e: P - M(P) where e(a) = |a is a join and meet dense
completion of P, thus a MacNeille completion of P.
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The MacNeille Completion

Pf Each principal ideal |x is a normal ideal, so e(x) = |x is well
defined, and clearly x <y iff e(x) c e(y).

One shows that A is normal iff it is the intersection of principle
ideals |x, namely the x € U(A). Therefore M(P) is closed under
intersections, so is a complete lattice, and we have meet density.

Since a normal ideal is a downset, it is the union of the principal
ideals it contains, hence is the join of the principal ideals it
contains. So this completion is join dense.
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The MacNeille Completion

Proposition For a completion e: P - C of a poset P
1. meet dense = preserves existing joins

2. join dense = preserves existing meets

Pf 1. Suppose A< P and \V A =x. Since e(a) < e(x) forall aec A
we have VVe[A] < e(x).

To show that e(x) <V e[A] we use meet density. It is enough to
show that any element e(y) above V e[A] is above e(x).

But Ve[A]<e(y) gives e(a) <e(y) for each ac A, so a<y for
each a€ A, so x <y, and hence e(x) < e(y).

44



MacNeille Completions

Corollary MacNeille completions are join and meet dense, so
preserve all existing joins and meets.

Proposition Join and meet dense completions of P are unique up
to isomorphism.

Pf Suppose (C,e) is a join and meet dense completion of P. For
eachceCset A={x:e(x)<c}and B={y:c<e(y)}.

Use meet density to show that A= L(B) so is a normal ideal of P

and join density to get a bijection between C and the normal ideals.
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MacNeille Completions

MacNeille completions have great order theoretic properties, but
are poorly behaved with respect to preserving equations.

Theorem The varieties of lattices that are closed under MacNeille
completions are

1. the variety of 1-element lattices

2. the variety of all lattices

So the MacNeille completion of a distributive lattice need not be
distributive, and that of a modular lattice need not be modular.
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Ideal Completions

Theorem The embedding e : L — Z(L) into its ideal lattice given by
e(a) = la is a completion and ZL satisfies the same equations as L.

Pf We discussed this in Lecture 1.

Proposition For a lattice L, the completion (Z(L), e) satisfies

1. it is join dense
2. if e(a) <V S then e(a) <V S’ for some finite S’ ¢ S

Further, these conditions characterize the ideal completion.
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Ideal Completions

Pf (1) Each ideal is the union of the principal ideals it contains,
hence is their join. So it is join dense.

(2) Let S be a set of ideals. Then \/ S is the ideal generated by
them. So if lac VS it follows that a belongs to the join of finitely
many of these ideals.

Let (C,e) be another completion with these properties. For c € C
let A={a:e(a)<c}. Then Ais an ideal of L, and the second
condition shows that every ideal of L arises this way. Join density
gives that different elements of C give different ideals.
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Ideal Completions

Since it is join and meet dense, the MacNeille completion preserves
existing joins and meets.

The ideal completion is join dense so preserves existing meets, and
condition (2) says that it destroys all but essentially finite joins.

We construct one more completion that destroys all but essentially
finite joins and meets. It cannot be either join or meet dense.
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Canonical Completions

We use ¢ to mean “is a finite subset of”

Theorem For a bounded lattice L there is a completion (C,e) that
preserves finite joins and meets where

1. each c e C is a join of meets of elements of e[L]
2. each c € C is a meet of joins of elements of e[L]
3. Ne[S] < Ve[T] = 35'c S, T'c T with Ae[S'] < Ve[T']

These conditions characterize the completion up to isomorphism.
It is called the canonical completion of L and written L.
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Recap

MacNeille completion M(L)
Join and meet dense, preserves all existing joins and meets
Ideal completion Z(L)

Join dense, not meet dense. Preserves existing meets and finite
joins. Destroys all non-finite joins. Preserves all lattice equations.

Canonical completion L?

Not join or meet dense. Elements are joins of meets and meets of

joins. Preserves finite joins and meets, destroys all non-finite ones.
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Canonical Completions

We outline how to build the canonical completion L?. We need
some ideas of independent interest.

Definition For a relation R from X to Y, its polars are maps

¢
P(X) —/—— P(Y)

given by v

®(A) = {y:aRy forall ac A}
V(B) = {x:xRbforall be B}

Note Polars are an example of a Galois connection, maps ¢,V
between power sets with Ac W(B) < B c ®(A).
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Galois Connections

Galois connections are miniature versions of adjunctions in
category theory

The A with A=W®(A) are the Galois closed subsets of X and
the B with B = ®W(B) are the Galois closed subsets of Y

The Galois closed sets G(X) and G(Y') are complete lattices
and ®, V¥ are anti-isomorphisms between them

The MacNeille completion was constructed as the Galois
closed sets of the polars of the relation < from a poset P to P.
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Construction of the Canonical Completion

Definition For a bounded lattice L let

Z ={Il:1is an ideal of L}
F = {F:Fis afilter of L}

Then let R be the relation from Z to F with IRF < InF = @.

Theorem Let G be the Galois closed elements of the polars of the
relation R and e: L - G be given by e(a) = ®W({la}). Then e is
an embedding and (G, e) is a canonical completion of L.

Pf This one is more involved and we skip it.
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A Template for Completions

One can choose other setss of downsets Z’ and upsets F’ of L
rather than the set of all ideals and filters of L and proceed as in
the construction of the canonical completion.

To get an embedding, one wants that the downsets in Z’ and the
upsets in F’ separate points.

One will get a completion G(Z', F") that preserves those existing
joins in L under which each member of Z’ is closed, and preserve

those existing meets in L under which each member of F’ is closed.
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A Template for Completions

Many common completions come about this way.
e M(L) has Z' and F' all principal ideals and filters
e Z(L) has 7' all ideals and F" all principal ideals
If we take Z' and F’ to be all ideals and filters closed under existing

countable joins and meets, we get a completion that preserves all
existing countable joins and meets and destroys all others.
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Overview

At this point it is difficult to see the reason for the canonical
completion L?

When restricted to lattices, both MacNeille and ideal completions
have better order-theoretic properties than L? and the ideal
completion is as good as can be at preserving equations.

Question why a canonical completion? Because we want to
complete lattices with additional operations.



Extending Operations

Let f: L — L be order preserving and (C, e) be a completion of L.

There are several common ways to extend f to C. To simplify
notation, assume L is a sublattice of C, so e = id.

Definition Define extensions of f to C as follows

1. f~(c) = V{f(x):x<c}
2. f*(c) = AN{f(x):c<x}
3. f9(c) = V{AN{f(x):xe K}:KcLand AK<c}
4. f™(c) = AN{V{f(x):xeU}:Ucland c<VU}

The f~ extension will work best with join dense completions, f*
with meet dense. The 79 and f™ work with joins of meets and
meets of joins, so are intended for canonical completions.
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Extending Operations

These definitions extend to n-ary operations that preserve order in
some coordinates and reverse it in others. Call these monotone
operations.

Example Heyting negation — is order reversing in the first
coordinate, preserving in the second.

(=) (c,d) = \V{(x,y):c<xand y <d}

Terminology The MacNeille completion with lower extension f~ is
the lower MacNeille completion, and so forth.
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Completions and Extra Operations

We want completions of lattices with additional operations that
preserve structure, usually equations.

Primary examples are

e Boolean algebras (B,")

e Heyting algebras (H,—)

e modal algebras (B, <)

e Boolean algebras with additional operations (B, (f;);)

We try to give a bit of a feel for this large subject.
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Ideal Completions

Again, ideal completions are great if you have only order preserving
operations.

Proposition Let (L, (f;);) be a lattice with additional order
preserving operations. Then its lower ideal completion satisfies all
equations it satisfies.

However, the following is fatal for use of ideal completions past the
order preserving setting.

Proposition The ideal completion of a Boolean algebra (B,") is
Boolean iff B is finite.

26
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MacNeille Completions

Theorem Let (B,’) be a Boolean algebra with Stone space X.

1. Its lower and upper MacNeille completions agree
2. They are Boolean
3. They are isomorphic to Reg(X)

Here Reg(X) is the family of regular open subsets of X. These are
the sets that are equal to the interior of their closures.
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MacNeille Completions

Theorem Let (H,—) be a Heyting algebra with Stone space X.

1. Its upper MacNeille completion is a Heyting algebra

2. The lower one is not

Theorem The only varieties of Heyting algebras that are closed
under MacNeille completions are the 1-element Heyting algebras,
Boolean algebras, and the variety of all Heyting algebras.
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MacNeille Completions

There are scattered positive results about MacNeille completions
and preservation of equations.

e closure algebras

e ortholattices

e a variety generated by a finite orthomodular lattice

But its mostly hit and miss. The few systematic results come from
Monk, Givant and Venema, and Crown, Harding and Janowitz.

Having little structure to preserve is one path. The other is having
lots of structure in the way of operations that are part of Galois
connections, or a strong decomposition theory for your algebras.
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Canonical Completions

These arose with Jénsson and Tarski in the 50's.

Proposition For a Boolean algebra (B,”) with Stone space X

1. Its o and 7 canonical completions agree
2. They are Boolean

3. They are isomorphic to the power set P(X)

Exercise Show that Clopen(X) — P(X) is a canonical extension.
Use Hausdorff to show {x} is the intersection of clopens and view
compactness of X in terms of an intersection of closed sets being
contained in the union of opens.
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Canonical Completions

In the distributive setting, including Heyting algebras, we have ...

Proposition For a bounded distributive lattice D with Priestley
space X, its canonical completion is the set of upsets of X.

The reason for canonical extensions comes from Jénsson and
Tarski's work on Boolean algebras with operators and complex

algebras. This is now known under Kripke frames for modal logic.
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Complex Algebras

Definition A binary relational structure X = (X, R) is a set X with
a binary relation R.

Definition The complex algebra X* is the Boolean algebra P(X)
with unary operation f where

f(A) = {x:aRx for some ac A}

This has extension to structures X = (X, (R;);) with more than
one relation, or with relations of higher arity. Here, an n+ l-ary
relation produces an n-ary operation via relational image.
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Complex Algebras
Example When R is binary, we can represent X = (X, R) as a

digraph!

C./—\\
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Complex Algebras

The complex algebra of X = (X, R) is the power set P(X) with

OA = {x:aRx forsomeacA}

a__— b
C e . o{a) = {a, b}
o{b} = {c}
c O{ct={c}

) O{a, by ={a,b,c}
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Complex Algebras

For a frame X = (X, R) its complex algebra is X* = (P(X), <).

2
Cf/—\. {a, b}
J IR
C.) {a) O
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An Interpretation

Points of X are worlds,
a R b means world a is accessible from world b

Given a valuation of the variables, a proposition p has a set of
worlds P where it is true.

OP all worlds b where some a € P is accessible from them

all b that have a world accessible from them where p is true

all worlds p is possible
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Complex Algebras

This is a primary method to create examples of Boolean algebras
with operators, meaning operations that preserve finite joins in
each coordinate.

Example Modal algebras (B, <) satisfying &<Ca < $a are given by
complex algebras (X, R)™ where R is a transitive relation.

Example Relation algebras arise as complex algebras of groups.
Relation algebras were Jénsson and Tarski's original motivation.
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Complex Algebras and Canonical Extensions

Theorem Let (B, f) be a Boolean algebra with an operator f and
let (B?,f7) be its canonical completion. Let X be the set of
atoms of B? and define R on X by

xRy < y<f?(x)

Then (B?,f?) is isomorphic to (X, R)™".
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Complex Algebras and Canonical Completions

If a variety of Boolean algebras with operators is closed under
canonical completions, each member of the variety is a subalgebra
of a complex algebra X* for some relational structure X.

Such relational structures can often be easier to study than the
algebras in the variety.

This property is sometimes known as strong Kripke completeness.
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Canonical Completions

Fortunately, there are some systematic results about canonical
completions.

Theorem In the setting of bounded lattices with monotone
operations, the canonical completion is functorial and preserves
subalgebras and quotients.

This means that if h: L - M is a homomorphism of lattices with
additional operations, there is an extension to a homomorphism

h? : L9 - M? and this works in a way compatible with composition.
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Canonical Completions

Theorem Let KC be a class of bounded lattices with monotone
operations. If K is closed under canonical completions and
ultraproducts, then the variety generated by K is closed under
canonical completions.

Corollary Any variety generated by a finite bounded lattice with
monotone operations is closed under canonical completions.

This result has many other uses too. Linear Heyting algebras are
those in the variety generated by the class K of chains. They are
closed under canonical completions.
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MacNeille and Canonical Completions

Theorem Let V' be a variety of bounded lattices with monotone
operations. If V is closed under lower or upper MacNeille
completions, then it is closed under lower or upper canonical
completions.

So if we are solely interested in a completion that preserves
equations, the canonical completion is better than the MacNeille
completion. Of course, we may also be interested in order theoretic
properties where the MacNeille completion is likely superior.
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Concluding Remarks

We close with some open questions about completions. All would
be substantial results if solved.

1. Can every Heyting algebra H be embedded into a complete
Heyting algebra that satisfies the same equations as H?

2. Can every orthomodular lattice be embedded into a complete
orthomodular lattice?

3. If Lis a complete lattice and each element of L has exactly
one complement, must L be a Boolean algebra?
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Thanks for listening.

Papers at www.math.nmsu.edu/~jharding



