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ABSTRACT

This thesis considers certain classes of ortholattices defined by
implications which are weaker forms of the orthomodular law.

All classes considered are shown to be varieties, and equational
characterizations are given. The relationships between these classes
are also determined.

Furthermore, in the lattice of ortholattice varieties, an iso—
morphic copy of the lattice of self-dual lattice varieties is con-—
structed between the smallest of our classes and the orthomodular

lattices.
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INTRODUCTION

Dealing with orthocomplemented lattices, the variety of
orthomodular lattices is defined by the equation x v (x’ ~ (x v y)) =
X v y. For an orthomodular lattice (OML) 1, define the relation C by
aCb if (a~b) v (a~b’) = a and define the function 7%(a,b) =
(avb) ~(avb’)~(a’”vb) ~(a’” v“b’). It is shown (Chapter 1, [2])
that the following seven statements are equivalent.
2 L is an OML.

2. For all a,b ¢ L if aCb then bCa.

3 For all a,b ¢ L if aCb then a’Cb.

4, For all a,b ¢ L aCb iff a -~ (a’ ~b) = a v b.

5. For 'all a,b ¢ L aCb iff 7(a,b) = 0.

6. The ortholattice 06 (Figure 1) is not a subalgebra of L.
7. For all a,b ¢ L if a <b them av- (a’ ~b) = b.

We define the following predicates Pl(a,b) through P7(a,b).
Pl(a,b) iff aCb
P2(a,b) iff bCa
P3(a,b) iff a - (a’ ~b) = a v b

P4(a,b) iff b v (b’ ~ a)

i
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P5(a,b) iff a ~ (a
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P6(a,b) iff b ~ (b’ v a) = a~b

Pi(a,bj iff 9(a,b) = 0 .



Using the above predicates, define Ki 5 to be the class of all

ortholattices L in which Pi(a,b) implies Pj(a,b) for all a,b ¢ L.
We next give equational characterizations of all classes K.1 7

]
which is a somewhat surprising result, as classes which are defined by

jmplications are not in general varieties (page 219, [11).




SECTION 1

In this section, explicit equational characterizations of the

classes K.
1,J

are given.

For the convenience of the reader,

results have been summarized in the following table.

i i 2 3 4 b 6 7
1 OL OML OML OL El OML E2
2 OML OL OL OML OML El1 E2
3 éML OML OL OML OML E3 E4
4 OML OML OML OL E3 OML E4
5 OML OML OML E3 OL OML E4
6 OML OML E3 OML OML OL E4
7 OML OML OML CML OML OML OL

(3]

the



For this table OL represents the variety of ortholattices, OML

represents the variety of orthomodular lattices, and En represents the

variety of ortholattices which universally satisfy the equation En,

where
El: ({a~b) v (a~b’)) ~ (((a” “b’) ~{(a’” “b)) «b ) =
((a~b) v (a~b’)) ~b
E2: 7({(a~b) v (a~Db’), b) =0
E3: b~ (av(a’ ~b)) ~(b/ vwa) =b ~ a
E4: 7(a, b~ (a~ (a” ~b))) =0
Justification of these results for each class Ki . 1s given

below. One should note that each class contains OML, and that the
classes Ki ; are trivially the class of all ortholattices (OL).
L i

Proof. The statement aCb -+ bCa is equivalent to the orthomodular law.

B, o= OML

3~

Proof. The statement a { b -+ a -~ (a” ~b) = b is equivalent to the
orthomodular law. For L ¢ X and a,b ¢ L with a { b, we have

aCb. So a~ (a’ ~b) =avb=>b, and L ¢ CML.



w

K ,a =%

Proof. For an arbitrary L ¢ OL and a,b € L with aCb, by
definition of C (a~b) v (a~b’) =a. So av~vb=>bv (a~b)~

(a~b’) =b v (b’ ~a), which gives L ¢ Kl a4

Kl 5 is the variety of ortholattices generated by the equation c ~
?

(¢’ “b) =c~b, forc=(a~b)~ (anb’). Furthermore, Kl 5 is

not equal to OL or OML.

Proof. For L ¢ OL, if ¢~ (¢’ v b) =c~b for all a,b ¢ L, then
aCb would imply a ~ (a’ “b) =a~b, as aCb gives a =c, by
1,8 Conversely, assume L ¢ K1,5' Then as ¢ £ a,

and c2>a~b, a~b’, we have c~b=a~b and c ~ b’ =an~b’.

definition. So L ¢ K

So (c~b) v (e~nb’) =¢c, and cCb. But, L ¢ K 5 S0 €~ (¢’ v b) =

1

c ~ b.

The non—orthomodular lattice of figure 1 is an element of K1 5’

and the ortholattice of figure 2 is not included in K1 5°

5y =0

Proof. The statement a { b= a v (a’ ~b) =b 1is equivalent to the

orthomodular law. For L ¢ K1 5 and a,b ¢ L with a < b, we have

b’ £ a’ and therefore b’Ca’. As L ¢ K a’ ~ (av~vb’) =b’, and

1,8
also a - (a’" ~b) =b, so L ¢ OML.




51 7 is the variety of ortholattices generated by the equation 7(c,b)

= 0, where c = (a~b) v~ (a~b’). Furthermore, Kl 7 is not equal

to OL or OML.
Proof. Assume L 1is an ortholattice, and 7{(c,b) = 0 for all a,b ¢ L.
If aCb, them ¢ = a, and 7(a,b) =0, giving L € K1 7 Assuming

Le¢K as c¢Cb (shown in the proof for Kl 5), 7(c,b) = 0 for all

1,7°
a,b ¢ L.

The non—orthomodular lattice of figure 1 is an element of K1 79

and the ortholattice of figure 3 is not an element of K1 7-

?

K, 1=k

Proof. By symmetry with K1 o
3

K, o= OML

Proof. By symmetry with Kl a
]

LR

Proof. By symmetry with Kl 3

K, 5=k

Prcof. By symmetry with K1 5



52’5_3_}{_1,5
Proocf. By symmetry.

52,7_=_K1,7

Proof. By symmetry.

Ky, 1 =ML

Proof. The statement a { b -+ av (a’ ~b) =b 1is equivalent to the

orthomodular law. For L ¢ with a,b e L and a { b,

K31
b~ (b/ ~a)

a v~ b, so bCa. Using the proof of K1 4’ we then have

av- (a’” ~b) b, and therefore L ¢ OML.

Ky o = OML

Proof. The statement a {b-+av~ (a”" ~b) =b 1is equivalent to the

orthomodular law. For L ¢ K with a,be¢ L and a b, a’ ~

3,2"
(a~b) =a’ ~vb, so bCa’ and bCa. Using the proof of K1 4 e then

H

have a - (a’ ~b) = b, and then L ¢ OML.

OML

Ky 4=

Proof. The statement a { b=+ a -~ (a’" » b) = b is equivalent to the

orthomodular law. For L ¢ K s
3,4

a) =bva, so av (a’ ~b) =avb, and so L ¢ OML.

with a,b ¢ L and a {b, b+ (b’ ~




53’ 5—=-OML

Proof. The statement a { b+ a -~ (a’ ~b) = b is equivalent to the

orthomodular law. For L ¢ K with a,b e L and a b, a’ v (a ~

3,5°

b’) =a’ v b’, so a’ ~(avb’) =a’” ~b’” and alsoa v (a’ ~b) = a v

b. Therefore 1 ¢ OML.

33 6 is the variety of orthclattices generated by the equation b ~ e ~
9

(b’ v a) =b ~a, where e =a v (a’ ~b). Furthermore K3 6 is not

equal to OL or OML.

Proof. Assume L 1is an ortholattice, and for all a,b ¢ L, b ~ e ~ (b’
va)=b~a. Ifav(a’" ~b)=a-b, thene=a-vb, and b ~e ~
(b’ va) =bA~(avb)~ (b’ va) =b~ (b’ va). Then, b ~ (b’ v a) =
b ~ a, and therefore L ¢ K3,6' Assume L ¢ K3,6' As a’ ~b e, av

(a’ ~b~re)=e, so e{av(a”"~bnre)favi(bre) e, and

we

1]

therefore a v (a’ ~ (b ~ e)) av (b~re). Then, as L ¢ K

3.6"
obtain b~e~ (b’ v e’ v a) =b ~e~a, and therefore b~ e ~ (b’ «

a) = b ~ a. The ncn—orthomocdular lattice of figure 1 is an element of

K3 8 and the ortholattice of figure 2 is not ccntained in K3 5
53 " is the variety of ortholattices generated by the equation 7(a, b
~e) =0, where e =a v (a’ ~b). Furthermore, KB 5 is not equal to




Proof. Assume L is an ortholattice, and for all a,b ¢ L, 7(a, b ~ e)

€ K3,7. Assume L ¢ K3,7. As in the proof of KB,G’ av (a’" ~ (b~ e))
=av (b~e). Then, as L ¢ K3 7 We obtain 7(a, b ~ e) = 0. The
non—orthomodular lattice of figure 1 is contained in K and the

0. If av~v (a’" ~b) =avb, thenme=avb, and b~e=b. So L

377

ortholattice of figure 2 is not contained in K3 7

By 1=

Proof. By symmetry with K3 o»

§4’2 = OML
Proof. By symmetry with K3 1

3

E; 5=.OML

Proof. By symmetry with KS 4

b

L 5=% ¢
Proof. By symmetry.

= OML

R4,

Proof. By symmetrv with KB 5

54’7_=i<3,7
Proof. As 7(a,b) = 7(b,a), and symmetry.



= oML

5 s

Proof. The statement a { b+ a v~ (a’ ~b) =b is equivalent to the

orthomodular law. For 1L ¢ K5 1’ and a,b ¢ L with a { b, we have
L

b~ (b’ ~va’) =b ~ a’, and therefore bCa’ and bCa. Then, as in the

proof of K1 g 2 (a’” ~b) =b, and L ¢ OML.

Kg 5= OML

Proof. The statement a { b -+ a v (a” ~b) =b is equivalent to the
orthomodular law. For L ¢ K5 o and a,b ¢ L with a { b, we have

an~f{a’” vb) =an~b, and therefore bCa. Then, as in the proof of

Kl 4 2 (a’” ~b) = b, and L ¢ OML.
Ky 5= OML

Proof. By duality with K3 5°
)

—5 A 3 6
Proof. By duality.

i o200

Proof. By duality with KB 4

—5 s 3 7
Proof. As 7(a,b) = 79(a’,b’), and duality.
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6 1—OML = OML

Proof. By symmetry with K5 9

56,2 = OML

Proof. By symmetry with K5 1

Ka’aﬂs’s

Proof. By symmetry with K5 4

6 4—=-ML OML

Proof. By symmetry with K5 3

6 5= OML = OML

Proof. By symmetry with K5 5
b

Ly =tq.n

Proof. As 7(a,b) = 7(b,a), and symmetry with K5 7t
]

.IL,’ 1—=OML

Proof. The statement a {( b -+ a v (a” ~b) = b is equivalent to the

orthomodular law. For L ¢ X and a,b ¢ L with a £ b, we have

1.7

7(b,a) = 0, and therefore, bCa. As in the proof of K av (a’ ~

1,4°
b) = b, so 1L ¢ OML.
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—7’2—_—
Proof. As 7(a,b) = 7(b,a), and symmetry with K7 1"

3

K, 3= OML

Proof. The statement a { b -+ a~ (a’ ~b) =b is equivalent to the

orthomodular law. For L ¢ K7.3 and a,b ¢ L with a { b, we have

7(a,b) = 0, and therefore, a v (a’” ~b) =b. Then L ¢ OML.

By 4= ML

Proof. As 7(a,b) = 7(b,a), and symmetry with K7 3

b

Proof. As #(a,b) 7(a’,b’), and duality with K7 3

3

Proof. As 7(a,b)

7(a’,b’), and duality with K7 4




SECTION 2
In this section we discuss the relation of the six varieties dis—

cussed above to the lattice of ortholattice varieties.

Proposition The class K is properly contained in K

3,6 1,8

Proof. Take L ¢ K3 5’ and a,b ¢ L such that aCb. By definition of
3

C, {a~b)-~v(anb’) =a, so bv (b’ ~na) =bva. As L ¢ KB 5’

we then have a ~ (a’ v b) = a~b, which gives L ¢ Kl 5" Figure 4

gives an example of an ortholattice which is an element of Kl 5° but

not of KB,S'

Proposition. The class K3 - is properly contained in K, e

Proof. Take L ¢ K3 75 and a,b ¢ L such that aCb. Then, as in the

proof of K above, we have b v (b’ ~a) =b -va, and as L ¢ K

1,4
7(a,b) = 0. So L €K

3.7

Figure 3 gives an example of an ortholattice

1,7
which is an element of K1,7 but not of K3’7.
Propositicn. Both of the classes KB 5 and Kl 5 are incomparable to
each of n3,7 and K1’7.
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Proof. Figure 2 gives an example of an ortholattice which is contained
in K3’7 but not in K1’5, so K3’7 ¢ K1,5' Figure 3 gives an example
of an ortholattice which is contained in K3 5 but not in Kl e
? 3
For the remainder of this section, we demonstrate that an iso-
morphic copy of the lattice of self-dual lattice varieties can be em—
bedded in the lattice of ortholattice varieties beneath K N K

3,6 3,7

having OML as a zero. Figure 8 summarizes our results.

Definition. An ortholattice L is said to be hyperbenzene if there
exist disjoint non-trivial (i.e. having at least two elements) sub—
lattices M, M’ of L such that M U M’ = L\{0,1}. The unordered pair
{M,M’} is called an associator of L. We also let H represent the

class of all hyperbenzene ortholattices.

Proposition. For L ¢ H, the associator of 1L 1is unique, and there

exists a dual isomorphism between elements of the associator. Define

A(L) as the associator of L.

Proof. Take {M,M’} and {N,N’} associators of L. For a ¢ L\{0,1},
aeM iff a’ e M as a,a’ ¢ M would imply 0 ¢ M. Assume a ¢ M)
N and b ¢ M1 N°. Then we would have b’ ¢ N, and a ~ b’ ¢ N and

hence a ~b ¢ N'. But a’ ¢ N and contrary to our definition a ~ b ~
a’” € N'. It follows that M = N or M = N’, and orthocomplement is a

dual isomorphism between M and M’.
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Proposition. For any non—trivial lattice M, there exists L ¢ H such

that M ¢ A(L).

Proof. Given M, choose M’ to be any lattice disjoint from M such
that there exists a dual isomorphism @ from M to M’. Define the
ortholattice L by L = (MUM U {{MM}, {{MM}}}, ~, v, 7,0,1)
where 0 = {M,M’}, 1 = {{M,M"}}, and ~,v are defined in the natural
way from the partial order { on L which is defined as the union of
the partial orders on M,M’, and {(0,0), (1,1), (0,a), (a,l)!a ¢ MU
M’}. Orthocomplement is defined by a’ = a#(a) for a e M, a’ = a_l(a)

for a€eM, 0/ =1, and 1’ =0. Then L ¢ H and M ¢ A(L).
Proposition H 1is closed under ultraproducts.

Proof. Consider the first order sentence ¢, which is the conjunction
of the sentence saying there exist six distinct elements, with the
sentence Y(x,y)((x =0Uy=0Ux=1UUy=1)U(x~y$0Nxvyt#¢
I1Nx~y =0Nxvy =1DU(x~y=0Nxvy=1Nx~y" #0N x~
y’ #1). Assume L ¢ OL and Lk g, then |[L| 2 6. Choose x ¢
I\{0,1}, then define 8, = {yeLlx~y#$0, x-y#1}, and S; =
{y’lyesx}‘ For y ¢ L\{0,1}, if y£SX then yES}'( as ¢
implies that x ~y’ #0 and x -y’ #1. If y ¢ SX N S; then x ~ y
#0 and x ~ y’ # 0, a contradiction of the assumption L F y. We

then have S U S’ = L\{0,1} =and S NS’ = §. We claim that § is a
X X X X X
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sublattice of L. For y,w ¢ Sx’ Xxv(yrw {xvy<l, If yrws=
0, then (x~y) ~(x~w) =0, but as LF ¢, we would have x 2 (x
~y) v (x~w) =1, a contradiction. So, y~w#0 and x v (y ~ w)
¥ 1 implies, as LF g, x ~ (y ~w) #0, giving y ~w € Sx.
Similarily, fer y, w ¢ Sx’ Y v W E Sx' This proves our claim. By
properties of orthocomplementation, S; is also a sublattice of L.
Therefore, for an ortholattice L, Lk p iff L € H. As first order
sentences are preserved under ultraproducts (Los, page 210, [1]), our

result follows.
Definition. For A ( H, define &% {M|M € a(L) for some L ¢ A}.

Lemma.

1.  For ACH and L¢P (a), AL) C IPu(A*).

2 For FeH and L ¢ S({F}), either L 1is Boolean, or L ¢ H
and A(L) C S({F}Y).

3 For F ¢ H and L ¢ H({F}), either 1 is Boolean, or L ¢ H

and A(L) C H({F}©).

4. For ACH and Me Pu(A*), if LeH with M ¢ A(L) then
L€ IPu(A).
5. For M a non—trivial subalgebra of N, with N ¢ A(G) and if

Me A(L) for some L ¢ H them L ¢ IS({G}).
6. For M a non—-trivial homomorphic image of N, with N ¢ A(G) and

if M e A(L) for some L ¢ H then L ¢ H({G}).
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Proofs. 1. For a family {Li}i where A(Li) = {Mi’ M;}, let L be
the ultraproduct of {Li}I by the ultrafilter %, and € as the
congruence defined by #. For a ¢ L, a = (z]o for some z ¢ Qi Li' We
may assume 2z € Il Mi or z ¢l M; or z=0 or 2z =1, as one of the
sets {i]z(i) ¢ Mi}, {i]z(i) ¢ M;}, {i]z(i) = 0}, {i|z(i) =1} is an
element of % since %A is an ultrafilter. Define N = {[x]glx ¢ Il Mi}
and N’ = {[x]olx e Il M;}. N and N’ are sublattices of L. If O ¢
N, then N’ = {1}, which contradicts the fact that L ¢ H. Similarily
NAN =9, as a e NN N would imply a = [x]e = [y]g for some x ¢
i Mi’ v e 1l M;, and therefore that a = [x ~ y]y = [0]. As NUN’ =
L\{0,1}, A(L) = {N,N’}. We can define a mapping a: N - Hﬁ Mi by
a([x]e) = [xJe1 where f1 = 6N (A Mi)z. As @ 1is an isomorphism, our

claim is established.

2. For F ¢ H, A(F) = {N,N’}, and L a subalgebra of F, L] N’,
LN N are disjoint sublattices of L such that (LN N) U (LNN’) =
IN{0,1}. If LNAN and L1 N are non—-trivial, then L ¢ H and

A(L) = {LN N, L N N’}. Otherwise 1L is Boolean.

p: For F ¢ H, A(F) = {N,N’}, and L the image of F under the
homomorphism ¢, ¢[N] and p[N’] are sublattices of L. If 0 ¢ p[N],
then ¢[N’] =1 and ¢[N] =0, so L is Boolean. If ly[N}f = 1,

N\

then }p{N’]} = 1, and again L would be Boolean. If yp(a) = p(b)

for a ¢ N, b ¢ N, then y¢y(a) = ¢(a~b) =0, and L would be




18

Boolean. If L 1is not Boolean, we have p[N], p[N’] disjoint
non—trivial sublattices of L such that ¢[N] U ¢[N’] = L\{0,1},

giving L ¢ H with A(L) = {p[N], p[N’]}.

. . % . ,
4. For M = Ha Mi’ where {Mi}I is a family in A", consider L1’ =
HﬁLi’ where {Li}I is a family in A such that M, € A(Li) for all
ieI. If A(L’) = {N,N’}, the proof of 1 in this lemma gives M
isomorphic to N or N’. Then if L ¢ H with M ¢ A(L), L is

isomorphic to L‘.

5. Let M be a non—trivial subalgebra of N, and G ¢ H such that
N € A(G). Define M’ as {x’ € G|x ¢ M}, and L’ as M UM U {0,1}.
Then L’ is a subalgebra of G, L’ ¢ H and A(L’) = {M,M’}. Then if

LeH with M e A(L), L will be isomorphic to L’.

6. Let M be a non-trivial image of N under the homomorphism .
Assume G ¢ H with A(G) = {N,N’} for some N’. Extend ¢ to a homo-
morphism ?: G- L’ for some L’. Then ?[N] =M and ;[N’] are dis-
Jjoint sublattices of L’ as ;(a) = ;(b) for a ¢ N, b ¢ N would
imply }(b) = E(a ~b) =0, so ?(x wohj.s E(x) =1 for all x ¢ N, a
contradiction of M being non—trivial. Clearly y(N] U p(N’] =
L'\{0,1}, so A(L’) = {M, p(N’]}, and if L ¢ H with M ¢ A(L), then

L 1is isomorphic to L’.
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Proposition For L ¢ H, 4(L) = {M,M'}, L 1is subdirectly irreducible

iff M is subdirectly irreducible.

Proof. Let £(L) and £(M) be the congruence lattices of L and M

respectively. If M is not subdirectly irreducible, there exists a

family {Xi}I in £(M) such that //;\ Xi = AM’ and for all 1i ¢ I,

X, # AM. For each i ¢ I define ¥, = X, U {(c’,d")|(c,d) ¢ Xi} U AL'

Then for all i€ I, Y, € £(L), Yi - AL’ and //;\ Yi - AL' Therefore

L is not subdirectly irreducible. Conversely, assume L is not sub-
directly irreducible. There exists a family {Xi}I in ¢(L) such that
//;\ Xi = AL and for all i ¢ I, Xi # AL' Assume X, n M2 = AM for
some i € I. Then there exists peM, Qg #M such that (p,q) ¢ Xi'

If q =0, then for all r ¢ M (1,r) ¢ Xi’ and Xi N Mz = MZ,
similarily if q=1. If qeM then (1,0 ¢ X, and X N1 =

Therefore, for all 1 ¢ I, Xi $ AM’ //;\ Xi = AM and as Xi € (M), M

is not subdirectly irreducible.

Proposition. For A CH, L ¢ H and M ¢ A(L), L 1is subdirectly

irreducible and contained in the equational class generated by A

(denoted <A>) iff M 1is subdirectly irreducible and is contained in

<A*>.
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Proof. The above lemma shows that for L ¢ H with M e A(L), L ¢
HSPu(A) iff M ¢ HSPu(A*). Jonsson showed (page 147,[1]) that the
subdirectly irreducibles in <B> are those in HSPu(B). Our result

follows directly.

Proposition. If A is a class of ortholattices, and K a variety of

ortholattices, the subdirectly irreducibles in <A U K> are those in

HSPu(A) U K.

Proof. For M = HﬁNi for some family {Ni}I in A UK, let I1 =

{i]N.1 ¢ K}. As % is an ultrafilter over 1I,

{i|N, € A} and I,

exactly one of I T is an element of #A. If Il €%, them M is

1«2
the ultraproduct of the family {Ni}I in A by the utrafilter ﬁl =
1
?(Il) nA 1if I, € A then M is the ultraproduct of a family {Ni}I

2
by the ultrafilter ﬁz = ?(Iz) N %A. Then Pu(A UK = Pu(A) U K. By

Jonsson’s theorem (page 147, [1]), the subdirectly irreducibles in
<A U K> are those in HSPu(A U XK). But we have HSPu(A UK =

HS(Pu(A) UK = HSPu(A) U K.

Theorem. There is an isomorphic copy of the lattice of self-dual

lattice varieties below K3 5 N K3 - having OML as a zero.

Proof. Define a mapping 7 from the lattice of orthclattice varieties

of the form <A U OML> for A L H to the lattice of self-dual lattice

varieties by 7(<A U OML>) = <A™>. For A C H, <A U OML> C Ky o N Ky o)
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as if L € <A U OML>, and L is subdirectly irreducible, then L ¢
HSPu(A) UoOML C HU OML. But for L ¢ H, 7(a,b) =0, and b ~ (b’ v a)
#b~a impliesa~ (a’ ~b) $# avb for all a,be L, so L ¢ KS,S n
K3’7. it is only left to show that % is a lattice isomorphism onto

the self-dual varieties of lattices.

(i) 7 is well defined. For A,B C H, if <A™ # <B"> then
there exists a non—trivial subdirectly irreducible lattice M ¢ <A*> \
<B*>. There must exist a subdirectly irreducible L € H. with M ¢ A(L)
and L ¢ <A> \ <B>. Then L e <A U OML> \ <B U o&L>.

(ii) 7 is one to one. For A,B L H assume <A U OML> # <B U
OML>. Then there exists a subdirectly irreducible L ¢ H with 4(L) =
{M,M’} such that L ¢ <A U OML> \ <B U OML>. Then M ¢ <A*> \ <B*>.

(iii) 7 1is order preserving. For A,B C H, assume <A U oML> C
<B U OML>. Then, <B U OML> = <A U B U OML>, and 7(<A U OML>) = <A™
C<AUB® = y(<B U OMLY). Assume 7(<A U OML>) C 7(<B U OML>) and
<A UoML> ¢ <B U OML>. Then there exists a subdirectly irreducible
L € Hwith A(L) = {M,M’} such that L ¢ <A U OMI> \ <B U OML>. Then
we have L ¢ <A> \ <B> which implies M ¢ <A*>\<B*>, contrary to the
assumption that <A*> C <B*>.

(iv) 7 1is onto the self-dual varieties of lattices. Take KX
any self-dual variety of lattices. Define A = {L ¢ H!A(L) C K}. It is
clear that A* C K, but for any non—trivial M ¢ K there exists an L ¢
H with A4(L) = {(M,M’'} for some M’. As there exists a dual iso-

morphism from M to M, M ¢ K, and so L ¢ A and A* = K. Then

y(<A U OMLY) = <A™> = K.
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