Automorphisms of Decompositions

John Harding

New Mexico State University www.math.nmsu.edu/~JohnHarding.html

jharding@nmsu.edu

Leicester, July 2016

Overview

This talk describes a piece in my long term program that lies between the Hilbert space approach via the OML $\mathcal{C}(\mathcal{H})$ and the quantum logic approach via general OMPs etc.

This program replaces C(H) with a structure Fact X built from the direct product decompositions of an object X.

- Background on Fact X
- II Wigner's theorem
- III Wigner's theorem for sets
- IV Further remarks

A binary direct product decomposition of a set X consists of sets X_1 and X_2 and an isomorphism (bijection)

$$f: X \to X_1 \times X_2$$

Two such binary decompositions are equivalent if there are isomorphisms α_1, α_2 making the following diagram commute.

Definition Let Fact X be the collection of all equivalence classes of binary direct product decompositions of X. On this, define

1.
$$[X \simeq X_1 \times X_2]^{\perp} = [X \simeq X_2 \times X_1]$$

2. $[X \simeq X_1 \times (X_2 \times X_3)] \leq [X \simeq (X_1 \times X_2) \times X_3]$

Theorem For a set X, Fact X is an OMP.

Example If |X| = 4, Fact X is as follows:

If |X| is the product of *n* primes, its blocks have *n* atoms.

If |X| = 27, Fact X has 5,001,134,190,558,105,600,000 atoms.

This construction applies in many other settings, such as groups, rings, vector spaces, topological spaces, etc.

For a Hilbert space, Fact $\mathcal{H} \simeq \mathcal{C}(\mathcal{H})$.

It applies to objects in "good" categories like biproduct categories, or ones with finite products where these are pushouts

$$egin{array}{ccccc} X_1 imes X_2 imes X_3 & \longrightarrow & X_2 imes X_3 \ & & & \downarrow & & \downarrow \ & X_1 imes X_2 & \longrightarrow & X_2 \end{array}$$

It allows settings close to Hilbert space like Hermitian vector bundles or normed groups with operators, to more exotic ones.

I have been developing aspects of quantum mechanics using Fact X in place of C(H).

- propositions
- observables
- states in specific cases
- probabilities
- categorical versions

Today a version of Wigner's theorem

II Wigner's Theorem

Representations of a group G as symmetries of a system modeled by a structure X are physically motivated (alá Wigner) as group homomorphisms

$$\pi: G \to \operatorname{Aut}(\operatorname{Fact} X)$$

A Wigner's theorem aims to describe the automorphisms of Fact X in terms of automorphisms of X.

Aim A version of Wigner's theorem for sets.

II Wigner's Theorem

A first result is easy and general. For any structure X, there is a group homomorphism

$$\Gamma$$
: Aut(X) \rightarrow Aut(Fact X)

This map is usually neither one-one or onto. For a Hilbert space \mathcal{H} with dim $\mathcal{H} \ge 3$, Wigner's theorem shows that

ker
$$\Gamma = \{z \mid z \in \mathbb{C} \text{ and } |z| = 1\}$$

Im $\Gamma = a$ subgroup of index 2

One needs also anti-unitaries of \mathcal{H} to get onto. Both defects cause complications with group representations.

III Wigner's Theorem for sets

"Conjecture" For a set X, the map Γ : Aut $(X) \rightarrow$ Aut(Fact X) is a group isomorphism.

Previously known

- if |X| = pq is the product of two primes, this is false.
- if |X| = 8 this is false.
- if |X| = 27 this is true! (with Tim Hannan)

The first item is expected, like the exception when dim $\mathcal{H} = 2$. The second item was not easy and was not encouraging. The third item is a 30 page proof, but obviously limited in scope.

III Wigner's Theorem for sets

Theorem For X an infinite set, Γ : Aut $(X) \rightarrow$ Aut(Fact X) is a group isomorphism.

Sketch of the proof:

It is quite difficult, some 50 pages. Its structure is like many proofs about Fact \mathcal{H} for a Hilbert space — push things down to height 3, solve it, lift it up.

Let the size of a decomposition $[X \simeq X_1 \times X_2]$ be $|X_1|$.

Step 1 automorphisms of Fact X preserve size of decompositions

Step 2 atoms of Fact X are decompositions whose size is prime

Step 3 a decomposition of infinite size is a join of ones of size 3

III Wigner's Theorem for sets

This says that automorphisms of Fact X are determined by their action on decompositions of size 3.

Step 4 the interval beneath a decomposition $[X \simeq X_1 \times X_2]$ is isomorphic to Fact X_1 (with Taewon Yang)

Step 5 any two decompositions of size 3 can be connected by a finite sequence of intervals beneath decompositions of size 27.

These results let us use the result that automorphisms of Fact Y for a 27-element set Y are given by permutations of the set. \Box

My current aim is to add group representations to the program of treating quantum systems via Fact X. Some progress ...

Definition For a category C and group G, the functor category C^G consists of objects X of C with a representation $\pi : G \to \operatorname{Aut}(X)$.

Theorem If C is good, so is C^{G} . So Fact (X, π) is an OA

Easy modifications give similar results for dagger categories and unitary representations.

A first place to start is $\mathcal{C}^{\mathbb{R}}$.

- Objects (X, π) consist of a structure X with $\pi : \mathbb{R} \to \operatorname{Aut}(X)$.
- Call π the natural frequency of X.
- For Hilbert spaces, one usually chooses $\pi_t(v) = e^{it}v$

With previous results about observables in the setting of Fact X, one gets a sort of time independent version of a Schrödinger equation from an observable H and natural frequency π

If H takes finitely many values $\lambda_1, \ldots, \lambda_n$, then H gives an *n*-ary decomposition $X \simeq X_1 \times \cdots \times X_5$

The generalized Schrödinger's equation $U_t = \pi_{Ht}$ (see $U_t = e^{iHt}$) gives

$$U_t(x_1,\ldots,x_n) = (\pi_{\lambda_1 t}(x_1),\ldots,\pi_{\lambda_n t}(x_n))$$

When H has infinitely many outcomes I think there is a similar version involving sheaf representations over Stone spaces, but haven't settled all the details yet.

Finally, what can we say of the natural frequencies π of sets?

The subdirectly irreducible ones are the Prüfer p^{∞} groups, analogs of $\{z \in \mathbb{C} : |z| = 1\}$ where elements have orders p^k .

Thanks for listening.

Papers at www.math.nmsu.edu/~jharding