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Introduction

We give an operational view of observables and the time
independent Schrödinger equation as given the standard treatment
of quantum mechanics of say Prugovecki.

One can view this from a pedagogical perspective — as a means to
motivate the standard treatment from more basic assumptions.

2 / 23



The standards

Pure states: are unit vectors v in a separable Hilbert space H

Observables: are densely defined A ∶ H → H such that A = A†.

The time independent Schrödinger’s equation:

If H is the observable for energy, then the one-parameter family of
evolution operators Ut t ∈ R on states is given by

Ut = e−iHt

Here Ut is a unitary operator with Ut(v) the state of the system at
time t given that the state at time 0 is v .
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Observable

What is an observable such as “position”

Not so easy to answer because of things like the 2-slit experiment.
We take a very cautious path, even separating the thing we
measure from our assignment of numerical value to it.

Observable quantity: A thing that can be measured by a finitary
experiment.

Scaling: An assignment of numerical values to the outcomes of a
finitary experiment.
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First assumption

An n-ary experiment corresponds to an n-ary direct product
decomposition H ≃ H1 ×⋯ ×Hn.

r r r r r
3.2 8.7 1.5 9.0 6.1

H1 H2 H3 H4 H5

This H ≃ H1 ×⋯ ×Hn is the usual orthogonal decomposition via
projectors P1, . . . ,Pn.
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Interpretation

It is easy enough to translate this into self-adjoint operators. Let
λ1, . . . , λn be the numerical values attached to the n outcomes of
the experiment. Set

A = λ1P1 +⋯ + λnPn

Then A is a self-adjoint operator, and for each unit vector v , the
probability of the i th outcome when in state v is ∣∣Piv ∣∣2.

Note, there are no oddities here. The domain of our operator is all
of H, no infinities occur, everything is fine.
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Second assumption

We assume that our system has a base “natural frequency”.

Etv = e−it

A system initially in state v is in state Etv at time t.

This “natural frequency” assumes no outside influences.
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Schrödinger equation

Suppose the observable quantity H for energy has n outcomes,
corresponds to the decomposition H ≃ H1 ×⋯ ×Hn, and has
scaling λ1, . . . , λn.

A vector v gives an n-tuple (v1, . . . , vn) where vi = Piv . Set

Utv = (e−iλ1v1, . . . , e
−iλnvn)

Components at higher energy vibrate more rapidly.
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Comments on the finite outcome setting

We call observable quantities with finitely many outcomes,
together with their scalings, physical observables.

They are easy to motivate physically.

Key point to me

Physical observables and their role dynamics are easily extended
past the Hilbert space setting to other structures X equipped with
a one-parameter family of evolution operators (X , (Et)R).
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Moving to general observables and dynamics

We will view general observables as idealizations, or limits, of the
physically realizable physical observables.

We call these “idealized observables” and consider dynamics using
these rather than a physical observable for energy.

Purpose this talk

To make precise the relationship between physical and idealized
observables and their dynamics in an operationally motivated way.
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Idealized observable quantities

A physical observable quantity corresponds to an n-ary experiment,
hence to a decomposition H ≃ H1 ×⋯ ×Hn.

This corresponds to a finite Boolean subalgebra BF of the
projection lattice, with the outcomes its atoms.

Ever finer experiments correspond to a directed family of Boolean
algebras, their limit is a Boolean subalgebra of Proj(H)

An idealized observable quantity:

This is a Boolean subalgebra B ≤ Proj(H).
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Scaling an idealized observable

A physical scaling associates numerical values to the n outcomes of
an experiment.

What are “outcomes” of an idealized observable quantity B?

They are maximally consistent sets of outcomes of the physical
observables quantities produce B, hence ultrafilters of B. So the
set of outcomes of B is the Stone space Z of B.
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Scaling an idealized observable

Theorem Let A be an abelian von Neumann algebra of operators
on H with B its Boolean algebra of projections. The self-adjoint
operators A affiliated with A are in bijective correspondence to the
continuous functions f ∶ Z → R ∪ {±∞} that are real valued on a
dense open set.

Further, a unit vector v induces a measure µv on Z and for the
function f corresponding to A, the expected value of A when the
system is in state v is given by ∫ f dµv

This is the spectral theorem, as found in Kadisson + Ringrose.
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Comments on Idealized observables

Self-adjoint operators correspond to certain limits of physical
observables.

The partial domains and unboundedness of self-adjoint operators
arise from this limiting process.

Self-adjoint operators are very special limits, B is complete, the
function f ∶ Z → R ∪ {±∞} is even continuous rather than simply
measurable, Do other limits play a role?
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Dynamics

Dynamics using a physical observable for energy has a particularly
simple form — writing v = (v1, . . . , vn), the components of v at
higher energy vibrate more rapidly.

Can we precisely formulate the idea that the time-independent
Schrödinger equation for an idealized operator H is a limiting
version of this?

Ut = e−iHt
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Schrödinger’s equation as a limit

Theorem

Let H be a self-adjoint operator. Then there is a sequence of
physical observables Hn so that for any v ∈ H and t ∈ R we have

UHn
t v Ð→ e−iHtv

Here UHn
t is the evolution operator for the physical observable Hn.

Proof We sketch the key points.
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Let

A = an abelian v.n. algebra affiliated with H

B = the Boolean algebra of projections of A
Z = the Stone space of B

f = the map from Z to R ∪ {±∞} corresponding to H

Z

−∞

∞

f
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Since f is real valued on a dense open subset of Z we can find an
increasing sequence Pn in B with

• ⋁Pn = 1

• f real-valued on the clopen set P∗
n corresponding to Pn

Z

f

P∗
n

18 / 23



For each n find a finitely valued fn continuous on P∗
n so that

∣ f (z) − fn(z) ∣ < 1/n2 for all z ∈ P∗
n

Z
P∗
n
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Let Hn be the physical observable for fn.

Then for any v with Pnv = v and any −n ≤ t ≤ n

∣∣ e−iHt − e−iHnt ∣∣ < 1/n

It follows that for any v and any t that

lim
n→∞

e−iHntv = e−iHtv
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Generalizations

Our interest is not pedagogy, but ways things could be different.

Alter the base “natural frequency”

The base “natural frequency” is Etv = e−it . Others could be used.
Physical observables would be decompositions H ≃ H1 ×⋯ ×Hn

that are compatible with the “natural frequency”

Be looser with idealized observables

Now we require B complete and f ∶ Z → R ∪ {±∞} continuous.
Incomplete B and measurable f would be the natural choice. Do
these correspond to some known type of operators?
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Generalizations

At the level of physical observables and their dynamics, very little
of Hilbert spaces is required.

We need a structure X with a base “natural frequency” which is a
one-parameter semigroup of endomorphisms. Our physical
observables are decompositions X ≃ X1 ×⋯ ×Xn.

Lets consider this when X is perhaps a normed group.
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Thanks for listening.
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