The Decompositions Approach to Quantum Mechanics

John Harding

New Mexico State University www.math.nmsu.edu/~JohnHarding.html

jharding@nmsu.edu

LCQAI Iran (virtual), July 2021

The role of projection operators

In the standard Hilbert space formulation of QM, projections play a central role. Our key ingredients.

- $\mathcal Q$ = the orthomodular lattice of projections of $\mathcal H$
- \mathcal{S} = the convex set of states
- \mathcal{O} = the observables
- \mathcal{B} = the Borel algebra of $\mathbb R$
- \mathcal{G} = a Lie group

The Spectral Theorem

Observables correspond to σ -homomorphisms $E: \mathcal{B} \to \mathcal{Q}$

Gleason's Theorem

States correspond to σ -additive $s: \mathcal{Q} \rightarrow [0, 1]$

Wigner's Theorem

Unitary and anti-unitary maps of ${\mathcal H}$ correspond to ${\sf Aut}({\mathcal Q})$

The dynamical group of the system

Is a continuous group homomorphism $U : \mathbb{R} \to Aut(\mathcal{Q})$.

Stone's Theorem

Dynamical groups are given by $U_t = e^{iHt}$ for some $H \in O$ called the Hamiltonian. This is an abstract form of Schrödinger's equation.

Group Representations

A continuous homomorphism $\prod : \mathcal{G} \to Aut(\mathcal{Q}).$

Note: Do not forget the topology — on \mathcal{G} and \mathcal{H} and \mathcal{Q} .

Program

- Replace \mathcal{H} with another structure S.
- To build an omp Q from S.
- To use this as a basis of developing aspects of QM.

Aims

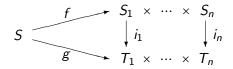
- Find structures that allow states, rich automorphism groups, topologies, and tensor products, etc.
- Give operational motivation for the components of QM
- Provide a setting to analyze why/if Hilbert space is the beating heart of QM.

Key idea

- View projections of \mathcal{H} as direct product $\mathcal{H} \simeq \mathcal{H}_1 \times \mathcal{H}_2$.
- View superposition not as u + v but as the ordered pair (u, v).

Definition An *n*-ary product map is an iso $f: S \longrightarrow S_1 \times \cdots \times S_n$.

Definition Two such maps are equivalent if there are iso's i_1, \ldots, i_n making the following diagram commute.



Definition An *n*-ary decomposition of *S* is an equivalence class

$$\left[S\cong_{f}S_{1}\times\cdots\times S_{n}\right]$$

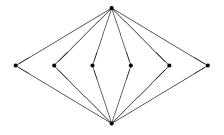
Definition Q(S) is all binary decompositions $[S \simeq S_1 \times S_2]$. Set

1. $0 = [S \cong \{*\} \times S]$ 2. $1 = [S \cong S \times \{*\}]$ 3. \bot be the operation $[S \cong S_1 \times S_2]^{\bot} = [S \cong S_2 \times S_1]$ 4. \leq be the relation $[S \cong S_1 \times (S_2 \times S_3)] \leq [S \cong (S_1 \times S_2) \times S_3]$ Theorem Q(S) is an OMP in any of the following settings:

sets

- sets with valuation $v: S \rightarrow [0, \infty)$
- G-sets
- groups, rings
- normed groups
- graphs
- topological spaces
- uniform spaces
- topological groups
- vector bundles (with or without inner product)
- An abstract object in a suitable type of category

Example — $S = \{a, b, c, d\}$ a 4-element set



Q(S)

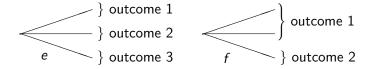
Physical interpretation – experiments

S represents a quantum system.

n-ary decompositions of *S* correspond to experiments with *n* outcomes, $Outcome_1, \ldots, Outcome_n$.

For an *n*-ary experiment *e* other experiments can be built from *e*.

Ex Ternary $e: S \to S_1 \times S_2 \times S_3$ gives binary $f: S \to (S_1 \times S_2) \times S_3$



Physical interpretation – observables

Cavemen know position means is it here, or is it here, or is it here.

- Position is a word for a family of compatible questions.
- Position in an interval can be measured. Position at a point is an ideal concept for a maximally consistent set of questions.
- Assigning numbers to "ideal questions" is called a scaling.

Definitions

- 1. An observable quantity is a Boolean subalg B of Q(S).
- 2. Ideal questions are points of the Stone space Z of B.
- 3. A scaling is a measurable map $f : Z \to \mathbb{R} \cup \{\pm \infty\}$.
- 4. An observable is an observable quantity + scaling

- Finite observable quantities $\mathcal B$ correspond to *n*-ary experiments
- C(Z) gives a calculus of compatible observables A^2 , e^A , A + B

Physical interpretation – states

A state is a (σ) additive map $\sigma : \mathcal{Q}(S) \rightarrow [0,1]$

Setup B is an observable quantity with Stone space Z, scaling f

Proposition Each state σ gives a probability measure μ_{σ} on Z. Definition

$$\mu_{\sigma}(f^{-1}(U)) =$$
 probability of a result in U when in state σ
 $\int_{Z} f d\mu_{\sigma} =$ the expected value

Note

The spectral theorem says that in the setting of Hilbert spaces, a self-adjoint operator A gives B, Z, f and all behaves as described.

Physical interpretation - automorphisms

The automorphism group Aut Q(S) gives symmetries of questions A Wigner theorem gives the relation between Aut S and Aut Q(S).

Proposition There is a group homomorphism Γ : Aut $S \to \operatorname{Aut} Q(S)$. Theorem For S an infinite set, Aut $S \equiv \operatorname{Aut} Q(S)$.

- In the Hilbert space setting Γ is neither one-one or onto.
- Both kinds of defects of Γ affect group representations.
- Wigner's theorems are known for vector spaces groups, etc.
- Related to the Fundamental Theorem of Projective Geometry.
- The result for sets is quite complex.

Physical interpretation – group representations

Definition A representation of G in S is a group homomorphism

$$\Pi: G \to \operatorname{Aut} S$$

- This amounts to enriching S to a structure $S^{\Pi} = (S, (\pi_g)_G)$.
- $Q(S^{\Pi})$ again forms an omp and we can apply all so far to it.
- If our objects S lie in some category C, then a representation of G is a functor from the 1-element category G to C.
- C^G is the category of our enriched structures S^{Π} .
- Such $\Pi: G \to \operatorname{Aut} S$ gives $\Pi': G \to \operatorname{Aut} Q(S)$
- Continuity is of interest when G, S, Q(S) have topologies.

Physical interpretation – dynamics

Definition An internal clock of S is a representation $E : \mathbb{R} \rightarrow Aut S$

Definition A Hamiltonian of S is an observable H of S^E associated with a finite scaling $\lambda_1, \ldots, \lambda_n$ and decomposition

$$S^E \simeq S_1^{E_1} \times \cdots \times S_n^{E_n}$$

Theorem A Hamiltonian H of a system S with internal clock E gives a dynamical group $U : \mathbb{R} \to Aut S^E$ where

$$\mathsf{U}(t) = \mathsf{E}_1(\lambda_1 t) \times \cdots \times \mathsf{E}_n(\lambda_n t)$$

- In the usual Hilbert space setting let $E_t(v) = e^{it}v$.
- Topological structure on S allows infinite Hamiltonians.
- A clock gives a "natural frequency".
- At higher energy things vibrate more rapidly.

Example

Now suppose that some observable we call the Hamiltonian has the following decomposition and scaling.

Then the dynamical operator U of the system takes has

$$U_t(a_1,...,a_5) = (E_1(3t)(a_1),...,E_5(6t)(a_5))$$

Physical interpretation - compound systems

For systems with structures S_1, S_2 we want a structure S for the compound system so that

- 1. There is $f : \mathcal{Q}(S_1) \times \mathcal{Q}(S_2) \rightarrow \mathcal{Q}(S)$
- 2. This f preserves orthogonal joins in each argument
- 3. For states σ_i of $\mathcal{Q}(S_i)$, there is a state ω of $\mathcal{Q}(S)$ with

$$\omega(f(q_1,q_2)) = \sigma_1(q_1)\sigma_2(q_2)$$

Note

These requirements are realized with a suitable monoidal structure on the category of structures.

So where are we left ...

Many features come "for free"

- The structure of questions
- Automorphisms
- Observables
- Dynamics
- These come with operational motivation.

The primary issues are states and compound systems

- Analytic structure on S seems needed to get enough states.
- Monoidal structure on $\mathcal C$ seems needed for compound systems.

Two interesting settings to consider

Normed groups with operators and vector bundles both have the following features.

- A rich supply of states.
- An underlying monoidal structure.
- Close to Hilbert setting, yet significantly more general.

The underlying mathematics can become challenging. A Gleason theorem for trivial bundles was partly solved by T. Yang.

Thanks for listening.

Papers at wordpress.nmsu.edu/hardingj/