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The role of projection operators

In the standard Hilbert space formulation of QM, projections play
a central role. Our key ingredients.

Q = the orthomodular lattice of projections of H
S = the convex set of states

O = the observables

B = the Borel algebra of R
G = a Lie group

2 / 18



The Spectral Theorem

Observables correspond to σ-homomorphisms E ∶ B → Q
Gleason’s Theorem

States correspond to σ-additive s ∶ Q→ [0,1]
Wigner’s Theorem

Unitary and anti-unitary maps of H correspond to Aut(Q)
The dynamical group of the system

Is a continuous group homomorphism U ∶ R→ Aut(Q).

Stone’s Theorem

Dynamical groups are given by Ut = eiht for some H ∈ O called the
Hamiltonian. This is an abstract form of Schrödinger’s equation.

Group Representations

A continuous homomorphism ∏ ∶ G → Aut(Q).

Note: Do not forget the topology — on G and H and Q.
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Program

• Replace H with another structure S .

• To build an omp Q from S .

• To use this as a basis of developing aspects of QM.

Aims

• Find structures that allow states, rich automorphism groups,
topologies, and tensor products, etc.

• Give operational motivation for the components of QM

• Provide a setting to analyze why/if Hilbert space is the
beating heart of QM.

Key idea

• View projections of H as direct product H ≃H1 ×H2.

• View superposition not as u + v but as the ordered pair (u, v).
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Definition An n-ary product map is an iso f ∶ S Ð→ S1 ×⋯ × Sn.

Definition Two such maps are equivalent if there are iso’s i1, . . . , in
making the following diagram commute.

S

T1 × ⋯ × Tn

S1 × ⋯ × Sn
���

���:

XXXXXXz
? ?

f

g

i1 in

Definition An n-ary decomposition of S is an equivalence class

[S ≅f S1 × ⋯ × Sn ]
Definition Q(S) is all binary decompositions [S ≃ S1 × S2]. Set

1. 0 = [S ≅ {∗} × S]
2. 1 = [S ≅ S × {∗}]
3. ⊥ be the operation [S ≅ S1 × S2]⊥ = [S ≅ S2 × S1]
4. ≤ be the relation [S ≅ S1 × (S2 × S3)] ≤ [S ≅ (S1 × S2) × S3]
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Theorem Q(S) is an omp in any of the following settings:

• sets

• sets with valuation v ∶ S → [0,∞)
• G-sets

• groups, rings

• normed groups

• graphs

• topological spaces

• uniform spaces

• topological groups

• vector bundles (with or without inner product)

• An abstract object in a suitable type of category
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Example — S = {a,b, c ,d} a 4-element set
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Physical interpretation – experiments

S represents a quantum system.

n-ary decompositions of S correspond to experiments with n
outcomes, Outcome1, . . . , Outcomen.

For an n-ary experiment e other experiments can be built from e.

Ex Ternary e ∶ S → S1 × S2 × S3 gives binary f ∶ S → (S1 × S2)× S3

p������PPPPPP

} outcome 1

} outcome 2

} outcome 3e

p������PPPPPP

} outcome 1

} outcome 2f

8 / 18



Physical interpretation – observables

Cavemen know position means is it here, or is it here, or is it here.

• Position is a word for a family of compatible questions.
• Position in an interval can be measured. Position at a point is

an ideal concept for a maximally consistent set of questions.
• Assigning numbers to “ideal questions” is called a scaling.

Definitions

1. An observable quantity is a Boolean subalg B of Q(S).

2. Ideal questions are points of the Stone space Z of B.

3. A scaling is a measurable map f ∶ Z → R ∪ {±∞}.

4. An observable is an observable quantity + scaling

Notes

• Finite observable quantities B correspond to n-ary experiments
• C(Z) gives a calculus of compatible observables A2, eA, A+B
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Physical interpretation – states

A state is a (σ) additive map σ ∶ Q(S)→ [0,1]

Setup B is an observable quantity with Stone space Z , scaling f

Proposition Each state σ gives a probability measure µσ on Z .

Definition

µσ(f −1(U)) = probability of a result in U when in state σ

∫
Z
f dµσ = the expected value

Note

The spectral theorem says that in the setting of Hilbert spaces, a
self-adjoint operator A gives B,Z , f and all behaves as described.
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Physical interpretation – automorphisms

The automorphism group AutQ(S) gives symmetries of questions
A Wigner theorem gives the relation between AutS and AutQ(S).

Proposition There is a group homomorphism Γ∶Aut S → AutQ(S).

Theorem For S an infinite set, Aut S ≡ Aut Q(S).

Notes

• In the Hilbert space setting Γ is neither one-one or onto.

• Both kinds of defects of Γ affect group representations.

• Wigner’s theorems are known for vector spaces groups, etc.

• Related to the Fundamental Theorem of Projective Geometry.

• The result for sets is quite complex.
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Physical interpretation – group representations

Definition A representation of G in S is a group homomorphism

Π ∶ G → Aut S

Notes

• This amounts to enriching S to a structure SΠ = (S , (πg)G).

• Q(SΠ) again forms an omp and we can apply all so far to it.

• If our objects S lie in some category C, then a representation
of G is a functor from the 1-element category G to C.

• CG is the category of our enriched structures SΠ.

• Such Π ∶ G → Aut S gives Π′ ∶ G → Aut Q(S)

• Continuity is of interest when G ,S ,Q(S) have topologies.
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Physical interpretation – dynamics

Definition An internal clock of S is a representation E ∶ R → Aut S

Definition A Hamiltonian of S is an observable H of SE associated
with a finite scaling λ1, . . . , λn and decomposition

SE ≃ SE1
1 × ⋯ × SEn

n

Theorem A Hamiltonian H of a system S with internal clock E
gives a dynamical group U ∶ R→ Aut SE where

U(t) = E1(λ1t) × ⋯ × En(λnt)

Notes

• In the usual Hilbert space setting let Et(v) = e itv .

• Topological structure on S allows infinite Hamiltonians.

• A clock gives a “natural frequency”.

• At higher energy things vibrate more rapidly.
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Example

Now suppose that some observable we call the Hamiltonian has
the following decomposition and scaling.

q q q q q
3 8 1 9 6

S1 S2 S3 S4 S5

Then the dynamical operator U of the system takes has

Ut(a1, . . . , a5) = (E1(3t)(a1), . . . ,E5(6t) (a5) )
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Physical interpretation – compound systems

For systems with structures S1,S2 we want a structure S for the
compound system so that

1. There is f ∶ Q(S1) ×Q(S2)→ Q(S)
2. This f preserves orthogonal joins in each argument

3. For states σi of Q(Si), there is a state ω of Q(S) with

ω(f (q1,q2)) = σ1(q1)σ2(q2)

Note

These requirements are realized with a suitable monoidal structure
on the category of structures.
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So where are we left ...

Many features come “for free”

• The structure of questions

• Automorphisms

• Observables

• Dynamics

• These come with operational motivation.

The primary issues are states and compound systems

• Analytic structure on S seems needed to get enough states.

• Monoidal structure on C seems needed for compound systems.
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Two interesting settings to consider

Normed groups with operators and vector bundles both have the
following features.

• A rich supply of states.

• An underlying monoidal structure.

• Close to Hilbert setting, yet significantly more general.

The underlying mathematics can become challenging. A Gleason
theorem for trivial bundles was partly solved by T. Yang.
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Thanks for listening.

Papers at wordpress.nmsu.edu/hardingj/


