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Overview

Aim To provide a link between the Birkhoff and von Neumann
quantum logic approach to the foundations of quantum mechanics
and recent categorical approaches of Abramsky and Coecke, etc.

Specifically For each object A in a dagger biproduct symmetric
monoidal category C, we build an orthoalgebra Proj A. Certain
morphisms s : I → A from the tensor unit yield finitely additive
maps, or states, σs : Proj A→ [0, 1]C into the unit interval of
scalars in C. The tensor of the category yields a type of tensor
product of orthoalgebras Proj A⊗ Proj B. This tensor has some,
but not all, of the requirements usually sought of a tensor product
in quantum logic. Several examples are explored in detail.



Definitions

Definition An OML is an ortholattice (L,∧,∨, 0, 1,′ ) where x ⊥ y
implies x , y lie in a Boolean subalgebra.

Definition An OMP is an orthoposet (P,≤,′ , 0, 1) where x ⊥ y
implies x , y have a join and meet and lie in a Boolean subalgebra.

Definition An OA is a structure (X ,⊥,⊕, 0, 1) where ⊕ is a
partial operation with domain ⊥ that is symmetric, associative,
and satisfies

1. If x ⊕ x is defined then x = 0,

2. For each x there is a unique x ′ with x ⊕ x ′ = 1.

Proposition OML ⇒ OMP ⇒ OA (where ⊕ is orthogonal join).



Dagger Biproduct Symmetric Monoidal Categories

Definition A DBSM-category is a category C with biproducts ⊕
equipped with a dagger † and monoidal structure ⊗ such that

1. π†i = µi

2. (f ⊗ g)† = f † ⊗ g †

3. αA,B,C , σA,B , λA, ρA are unitary

4. f ⊗ (g + g ′) = (f ⊗ g) + (f ⊗ g ′)

5. (f + f ′)⊗ g = (f ⊗ g) + (f ′ ⊗ g)

6. f ⊗ 0 = 0 and 0⊗ g = 0.

Note The πi , µi are biproduct projections and injections, α, σ, λ, ρ
are monoidal isomorpmisms, + is the additive structure from
biproducts.

Proposition Strongly compact closed categories with biproducts
are examples of DBSM-categories.



Weak Projections

Definition For an object A in a DBSM-category, p : A→ A is a
weak projection of A if there is p′ : A→ A where

1. p, p′ are idempotent and self-adjoint

2. pp′ = 0 = p′p

3. p + p′ = 1

Note The p′ can be shown to be unique.

Definition Let ProjwA be the set of all weak projections of A, and
define a relation ≤w on this set by p ≤w q iff pq = p = qp.

Theorem (ProjwA,≤w , 0, 1,
′ ) is an orthomodular poset. Further,

if p ⊥ q, then p ∨ q = p + q.



Remark It is well known that the idempotents of a ring with unit
form an orthomodular poset where p′ = 1− p and p ≤ q iff
pq = p = qp. The above result shows this holds in a weaker
algebraic setting than a ring.

Remark The above result doesn’t use the monoidal structure ⊗
and the dagger structure is something tolerated by it, not
something essential to it. The result would hold in any biproduct
category.



Projections

Definition p : A→ A is a projection if there is a biproduct
A1 ⊕ A2 and a unitary u : A→ A1 ⊕ A2 with p = u†µ1π1u

A
u−→ A1 ⊕ A2

π1−→ A1
µ1−→ A1 ⊕ A2

u†−→ A

Definition For projections p, q write p ⊥ q if there is a unitary
u : A→ A1 ⊕ A2 ⊕ A3 with p = u†µ1π1u and q = u†µ3π3u.

Theorem (Proj A,⊥,+, 0, 1) is an OA.

Theorem Proj A is a sub-OA of the OMP ProjwA. The two agree
if self-adjoint idempotents strongly split.
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Remark The above result does not use the monoidal structure ⊗
and holds in any dagger biproduct category.

Remark This result holds in a much more general setting. In many
categories, the binary direct product decompositions A→ A1 × A2

of an object A form an OA Fact A. Again, two decompositions are
orthogonal when they have a common ternary refinement.



Scalars

Definition Scalars are endomorphisms s : I → I of the tensor unit.
A scalar s is positive if s = α†α for some α : I → A. Set s ≤ t if
t = s + p for some positive p.

Theorem The scalars form a quasiordered commutative semiring
with involution.

Definition [0, 1]C = {s : s is a scalar and 0 ≤ s ≤ 1}.



States

In quantum logic, a state σ : P → [0, 1] is a finitely additive map
from an OA to the real unit interval. Gleason’s theorem says
countably additve states on L(H) correspond to density operators.

Definition ψ : I → A is a normal element if ψ†ψ = 1.

Theorem For ψ : I → A normal, the map σψ : Proj A→ [0, 1]C
defined by σψ(p) = ψ†pψ for each projection p : A→ A satisfies

1. σψ(0) = 0

2. σψ(1) = 1

3. If p ⊥ q then σψ(p + q) = σψ(p) + σψ(q)

Thus each normal ψ : I → A gives a state on ProjA.



Remarks It would be interesting to find conditions on C to ensure
each A has enough normal morphisms to separate points of Proj A.
It would also be of interest to know if there is a Gleason-type
theorem relating states on Proj A to normal morphisms as with H.



Bilinear maps

Key to the notion of tensor products of OAs is the notion of
bilinear maps. Roughly, these are maps that are additive in each
coordinate as in linear algebra.

Definition For OAs A,B,C a map f : A× B → C is bilinear if

1. a1 ⊥ a2 ⇒ f (a1 ⊕ a2, b) = f (a1, b)⊕ f (a2, b)

2. b1 ⊥ b2 ⇒ f (a, b1 ⊕ b2) = f (a, b1)⊕ f (a, b2)

3. f (1, 1) = 1



Tensor Products

Tensor products are an Achilles heel of quantum logic. Even the
definition is problematic. Conditions 1,2 are the minimum, 3 is
reasonable, 4,5 more stringent.

Definition For OAs A,B,C and f : A× B → C consider

1 f is bilinear

2 σ, τ states on A,B ⇒ ∃ state ω on C with ω(f (a, b)) = σ(a)τ(b)

3 States on C are determined by their value on the image of f

4 C is generated as an OA by the image of f

5 The universal mapping property for f ala classical algebra.



Tensor Products

Theorem ⊗ : Proj A× Proj B → Proj A⊗ B is a bimorphism.

Theorem For states σ, τ induced by normal elements, there is a
state χ with χ(p ⊗ q) = σ(p)τ(q).

Remark Proj A⊗ B has some of the proerties one asks of a tensor
porduct of OAs. But

• It is not generated by the images of Proj A, Proj B.

• It does not have the universal mapping property.

• Lifting of states applies only for ones from normal elements.
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Examples

FdHilb Objects are finite-dimensional Hilbert spaces, morphisms
are linear maps, † is adjoint, ⊗ and ⊕ are usual tensor product and
sum. Here all things work as expected. Proj H is the OML of
closed subspaces of H.

Rel Objects are sets, morphisms are relations, † is converse, ⊗ is
Cartesian product, ⊕ is disjoint union. Classical behavior with
Proj X being the power set of X , and Proj A⊗ Proj B being the
usual tensor product of finite Boolean algebras.

MatK Objects are natural numbers, morphisms from m to n are
m × n matrices over the field K , † is transpose, ⊗ and ⊕ are
multiplication and addition. Very interesting behavior ...
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In MatK one might expect Proj A to be a modular ortholattice.
This is not the case. Working over the field K = Z2 ...

• Proj 1, Proj 2, Proj 3 are 2, 4, 8-element Boolean algebras

• Proj 4 is the sum of two 16-element Boolean algebras.
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• Proj 5 consists of six 32-element Boolean algebras pasted so
that any two intersect in an atom and coatom.

Proj 4 is not modular, Proj 5 is not even an OMP.



Examples

Remark The characteristic of the field K reflects itself at the level
of Proj A. If Char K 6= 2 then idempotents strongly split in MatK ,
so Proj A is always an OMP.

Lets consider tensor products in MatK , again with K = Z2



Proj 2⊗ Proj 2

This is the tensor product of two 4-element Boolean algebras.
Classically their tensor product is a 16-element Boolean algebra.

However, in MatK , their tensor product is Proj 4, a sum of two
16-element Boolean algebras.
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This tensor product is exactly the embedding of the classical one,
but equipped with a phantom 16-element Boolean algebra not
connected to either subsystem.

Remark This shows conditions 3, 4, 5 of tensor products fail.



Concluding Remarks

• Much of what is done here likely lifts to more general settings.
Biproducts may be replaced with ordinary products. The
dagger seems not to be essential.

• Large parts of quantum logic deal with relating behavior in
the infinite-dimensional setting with well-understood notions
from projective geometry in the finite-dimensional setting.

• There may be something to learn from quantum logic in
extending and refining the categorical approach.



Many thanks to the organizers.

Thank you for listening.
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