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Abstract
In this note we adapt the treatment of topological spaces via Kuratowski closure and interior
operators on powersets to the setting of T0-spaces. A Raney lattice is a complete completely
distributive lattice that is generated by its completely join prime elements. A Raney algebra
is a Raney lattice with an interior operator whose fixpoints completely generate the lattice.
It is shown that there is a dual adjunction between the category of topological spaces and the
category of Raney algebras that restricts to a dual equivalence between T0-spaces and Raney
algebras. The underlying idea is to take the lattice of upsets of the specialization orderwith the
restriction of the interior operator of a space as the Raney algebra associated to a topological
space. Further properties of topological spaces are explored in the dual setting of Raney
algebras. Spaces that are T1 correspond to Raney algebras whose underlying lattices are
Boolean, and Alexandroff T0-spaces correspond to Raney algebras whose interior operator
is the identity. Algebraic description of sober spaces results in algebraic considerations that
lead to a generalization of sober that lies strictly between T0 and sober.

Keywords Topological space · T0-space · T1-space · Alexandroff space · Sober space ·
Closure algebra · Interior algebra

Mathematics Subject Classification 54D10 · 06D22 · 06E25 · 06D10

1 Introduction

Kuratowski [7] gave an alternate means to define a topology on a set X through a closure
operator on the powerset, an operator ♦ that satisfies a ≤ ♦a, ♦♦a ≤ ♦a, ♦0 = 0, and
♦(a∨b) = ♦a∨♦b. Abstracting from such operators on powersets to Boolean algebras gave
rise to the closure algebras ofMcKinsey and Tarski [9], who among other things showed that
closure algebras are algebraic models of the modal logic S4. Because of this, closure algebras
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964 G. Bezhanishvili, J. Harding

are often referred to as S4-algebras in the modal logic literature. Passing to complements,
one obtains an interior operator on the powerset, an operator � that satisfies �a ≤ a,
�a ≤ ��a, �1 = 1, and �(a ∧ b) = �a ∧ �b. The corresponding algebras were studied
by Rasiowa and Sikorski [12] under the name of topological Boolean algebras and by Blok
[3] under the name of interior algebras.

Tarski [13] showed that powerset Boolean algebras are characterized up to isomorphism
as complete and atomic Boolean algebras. It follows from this and Kuratowski’s result men-
tioned above that topological spaces are characterized as interior algebras (B,�) whose
underlying Boolean algebra is complete and atomic. Functions f : X → Y between sets cor-
respond, via inverse image h = f −1, to Boolean algebra homomorphisms h:℘(Y ) → ℘(X)

between their powersets that preserve arbitrary joins and meets. If X and Y are topological
spaces, then f is continuous iff the preimage of the interior of a set is always contained in the
interior of its preimage (see, e.g., [12, Sec. III.3]). These results have convenient categorical
formulation.

Let Top be the category of topological spaces and continuous maps and MT the category
whose objects are complete and atomic interior algebras and whose morphisms are complete
Boolean homomorphisms h satisfying h(�a) ≤ �h(a). We chose to call this category MT
after McKinsey and Tarski as they were one of the first to undertake an algebraic and order-
theoretic study of topology. The results above are summarized as follows.

Theorem 1.1 The categories Top and MT are dually equivalent.

Some classes of topological spaces have simple order-theoretic characterization in terms
of the categoryMT. For example, T1-spaces are those where each singleton is the intersection
of the opens that contain it, and T0-spaces are those where each singleton is the intersection
of open and closed sets that contain it. LetMT0 be the full subcategory ofMT whose objects
are those (B,�)where B is generated as a complete Boolean algebra by the�-fixpoints, and
let MT1 be the full subcategory of MT whose objects are those (B,�) where B is generated
as a complete lattice by the �-fixpoints. Then we have the following.

Theorem 1.2 The dual equivalence between Top and MT restricts to a dual equivalence
between Top0 and MT0, which further restricts to a dual equivalence between Top1 and
MT1.

Top1 Top0 Top

MT1 MT0 MT

In this note we show that we can characterize T0-spaces in a simpler signature that does not
involve complementation. Our approach is to work with lattices of upsets instead of powerset
algebras. We call these lattices Raney lattices due to his work in the subject (see, e.g., [11]).
A Raney algebra is a pair (R,�) where R is a Raney lattice, � is an interior operator on
R, and the �-fixpoints generate R as a complete lattice. Let RAlg be the category of Raney
algebras and complete lattice homomorphisms h satisfying h(�a) ≤ �h(a).

We show there is a contravariant adjunction between RAlg and Top which restricts to a
dual equivalence between RAlg and Top0. This leads to an adjunction between RAlg andMT
that restricts to an equivalence between RAlg and MT0. Let RAlg1 be the full subcategory of
RAlg dually equivalent to Top1. We clearly have that RAlg1 is equivalent toMT1. But we have
more, these two categories are literally equal—the Raney algebra and the interior algebra
of a T1-space are the same. In addition, we describe T0-reflection, Alexandroff spaces, and
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Raney Algebras and Duality for T0-Spaces 965

sober spaces in the setting of our duality. We also provide a generalization of sober spaces
suggested by our considerations.

2 Raney Lattices

Definition 2.1 A quasi-ordered set is a set Q with a reflexive and transitive relation ≤. For
a quasi-ordered set Q and S ⊆ Q, let

↑S = {q ∈ Q | s ≤ q for some s ∈ S} and ↓S = {q ∈ Q | q ≤ s for some s ∈ S}.
We call S an upset if S = ↑S and a downset if ↓S = S.

The collection Up(Q) of all upsets of Q forms a complete and completely distributive
lattice under set inclusion with arbitrary joins and meets given by unions and intersections.
For an order-preservingmap f : Q → S the inversemap f −1:Up(S) → Up(Q) is a complete
lattice homomorphism. This defines a contravariant functor U :Qos → CD where Qos is the
category of quasi-ordered sets and order-preserving maps and CD is the category of complete
and completely distributive lattices and complete lattice homomorphisms.

Definition 2.2 An element a of a complete lattice L is completely join prime if a ≤ ∨
T

implies a ≤ t for some t ∈ T .

For a complete and completely distributive lattice L , let XL be the set of completely join
prime elements of L . We consider XL as a poset where the order is the dual of the restriction
of the order on L . For a complete lattice homomorphism h: L → M let h∗: M → L be the
left adjoint of h. Then h∗: XM → XL is a well-defined order-preserving map. This defines a
contravariant functor J :CD → Pos where Pos is the full subcategory of Qos consisting of
posets.

Definition 2.3 Let L ∈ CD. We call L a Raney lattice if each element of L is a join of
completely join prime elements of L .

Raney lattices have a long history and can be characterized in many ways (see, e.g, [5,
Thm. 10.29]). Among them is the next result, which we refer to as Raney duality, since it
has origins in the work of Raney [11] where the object level of the correspondence was
established (see also Balachandran [1] and Bruns [4]). The morphism level is not difficult to
prove, but is hard to find in the literature.

Theorem 2.4 The functors U and J give a contravariant adjunction between Qos and CD,
which induces a dual equivalence between Pos and the full subcategory Ran of CD consisting
of Raney lattices.

Qos CD

Pos Ran

U
J

U
J

The units ε: 1Qos → JU and η: 1CD → UJ of the contravariant adjunction are given by
εQ(x) = ↑x and ηR(a) = ↓a ∩ XR = {x ∈ XR | x ≤ a}.
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966 G. Bezhanishvili, J. Harding

In this paper we will attach Raney lattices to topological spaces, and will lift Raney
duality to a duality for T0-spaces. The fundamental ingredient is the specialization order of
a topological space.

Definition 2.5 The specialization order of a topological space X is defined by x ≤ y iff x
belongs to the closure of {y}.

It is well known that the specialization order is always a quasi-order, and it is a partial
order exactly when X is a T0-space. There is an adjunction between Top and Qos, taking a
space X to the quasi-ordered set given by its specialization order, and taking a quasi-ordered
set Q to the topological space whose opens are the upsets of Q. This adjunction restricts
to an equivalence between Qos and the full subcategory of Top consisting of Alexandroff
spaces (that is, spaces where arbitrary intersections of open sets are open). This equivalence
restricts to an equivalence between Pos and the category of Alexandroff T0-spaces.

3 Raney Algebras

In this section we enrich Raney lattices with an interior operator. To relate them to T0-spaces
we need an additional assumption that the fixpoints of the interior operator are dense.

Definition 3.1 Let L be a complete lattice. We say that S ⊆ L is join-meet dense if each
element of L is a join of meets of S; meet-join dense if each element of L is a meet of joins
of S; and dense if S is both join-meet and meet-join dense in L .

If L is completely distributive, then it is easy to see that join-meet dense, meet-join dense,
and dense are equivalent. From now on we will refer to this property as density.

Definition 3.2 We call a pair (R,�) a Raney algebra if R is a Raney lattice, � is an interior
operator on R, and the fixpoints of � are dense in R.

Recall (see, e.g., [6, Sec. II.1]) that a frame is a complete lattice in which finite meets
distribute over arbitrary joins, and that a subframe of a frame is a subset that is closed under
finite meets and arbitrary joins. Clearly each Raney lattice is a frame. For an interior operator
� on a Raney lattice R, we note that the fixpoints L of � are exactly the image �[R]. It
is well known and easy to see that L is a subframe of R. In fact, � is right adjoint to the
inclusion L ↪→ R. Conversely, any subframe L of R gives rise to an interior operator � on
R as the right adjoint to the inclusion L ↪→ R. In effect, an interior operator and a subframe
carry the same information, and we will use them interchangeably.

Definition 3.3 Let RAlg be the category of Raney algebras and complete lattice homomor-
phisms satisfying h(�a) ≤ �h(a).

The next lemma is straightforward to prove.

Lemma 3.4 Let (R,�) and (S,�) be Raney algebras, L the subframe of fixpoints of (R,�),
and K the subframe of fixpoints of (S,�). For a complete lattice homomorphism h: R → S
the following are equivalent:

(1) h is a morphism in RAlg;
(2) �h(�a) = h(�a);
(3) h[L] ⊆ K.
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Raney Algebras and Duality for T0-Spaces 967

Moreover, h is an isomorphism in RAlg iff it is a lattice isomorphism and h(�a) = �h(a).

We next come to the motivating example of Raney algebras. For a topological space X ,
we use O(X) to denote the frame of open sets of X . We note that O(X) is a subframe of
Up(X), where X is considered as a poset under the specialization order.

Proposition 3.5 For each topological space X, the pair (Up(X),�) consisting of the Raney
latticeUp(X) of upsets of X under specialization and the restriction of the topological interior
operator to Up(X) is a Raney algebra.

Proof It is clear thatO(X) is the �-fixpoints. Since Up(X) is a Raney lattice and each upset
is a union of principal upsets ↑x , it is enough to show that ↑x = ⋂{U ∈ O(X) | x ∈ U }.
But this follows from the definition of the specialization order. �


Our aim is to provide a contravariant adjunction between Top and RAlg which restricts to
a dual equivalence between RAlg and the full subcategory Top0 of Top. Our first step is the
following.

Proposition 3.6 There is a contravariant functor R: Top → RAlg.

Proof For a topological space X , Proposition 3.5 yields that R(X) := (Up(X),�) is a
Raney algebra. If f : X → Y is continuous, then f is order-preserving with respect to the
specialization orders on X and Y , so f −1:Up(Y ) → Up(X) is a well-defined complete
lattice homomorphism, and f −1[O(Y )] ⊆ O(X). Thus, by Lemma 3.4, R( f ) := f −1 is a
morphism in RAlg, and it is easy to see that this defines a contravariant functor R: Top →
RAlg. �


To provide a contravariant functor in the other direction, we recall a few facts discussed
in Sect. 2. For a Raney lattice R, XR is the poset of completely join prime elements of R,
ordered by x � y iff y ≤ x , and there is an isomorphism ηR : R → Up(XR). Also, for a
complete lattice homomorphism h: R → S between Raney lattices, h∗: S → R is its left
adjoint, and the restriction of h∗ is a well-defined order-preserving map from XS to XR .

Proposition 3.7 Let A = (R,�)beaRaneyalgebraand L the�-fixpoints. Then τL := ηR[L]
is a topology on XR whose specialization order is �.

Proof Since L is a subframe of R, its image ηR[L] is a subframe of Up(XR), hence is a
topology τL on XR . Let ≤τ be the specialization order of τL . As L is dense in R, each
x ∈ XR is the meet of ↑x ∩ L . Therefore, for x, y ∈ XR , we have

x ≤τ y ⇔ (∀a ∈ L)(x ∈ ηR(a) ⇒ y ∈ ηR(a))

⇔ (∀a ∈ L)(x ≤ a ⇒ y ≤ a)

⇔ y ≤ x

⇔ x � y.

�

Proposition 3.8 There is a contravariant functor S: RAlg → Top.

Proof Let (R,�) be a Raney algebra and L the�-fixpoints. We set S(R,�) = (XR, τL ). By
Proposition 3.7, S(R,�) ∈ Top. For a morphism h: R → S of Raney algebras, we show that
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968 G. Bezhanishvili, J. Harding

h∗: XS → XR is continuous. For this it is sufficient to show that h−1∗ (ηR(a)) = ηS(h(a))

for each a ∈ L . Let x ∈ XS . Since h∗ is left adjoint to h, we have

x ∈ h−1∗ (ηR(a)) iff h∗(x) ∈ ηR(a) iff h∗(x) ≤ a iff x ≤ h(a) iff x ∈ ηS(h(a)).

Thus, h∗ is continuous, and it is easy to see that setting S(h) = h∗ defines a contravariant
functor S: RAlg → Top. �

Lemma 3.9 For a topological space X there is a continuous map εX : X → SR(X) given by
εX (x) = ↑x for each x ∈ X. The maps εX provide a natural transformation ε: 1Top → SR.

Proof Since ↑x is a principal upset of the specialization order, it is completely join prime in
Up(X), hence an element ofSR(X). Therefore, εX iswell defined. To see that it is continuous,
it is enough to show that ε−1

X (ηUp(X)(U )) = U for each U open in X . We have

x ∈ ε−1
X (ηUp(X)(U )) iff εX (x) ∈ ηUp(X)(U ) iff εX (x) ⊆ U iff ↑x ⊆ U iff x ∈ U .

To see that ε: 1Top → SR is a natural transformation, let X and Y be topological spaces
and f : X → Y a continuous map. We must show that the following diagram commutes.

X Y

SR(X) SR(Y )

εX

f

εY

SR( f )

Let x ∈ X . We have SR( f )(εX (x)) = SR( f )(↑x) = ( f −1)∗(↑x), which is the smallest
upset A with ↑x ⊆ f −1(A). Since f is order-preserving, ↑ f (x) = εY f (x) is the smallest
such upset. Thus, SR( f )(εX (x)) = εY f (x). �

Lemma 3.10 For a Raney algebra A = (R,�) the map ηR : A → RS(A) is an isomorphism
in RAlg that we call ηA. The maps ηA provide a natural isomorphism η: 1RAlg → RS.

Proof For a Raney lattice R we have that ηR : R → Up(XR) is an isomorphism (see
Theorem 2.4). For a Raney algebra A = (R,�) we have S(A) is the space XR whose opens
are ηR[L]. Thus,RS(A) = (Up(XR),�′) where �′ is the restriction of the interior operator
on S(A) to the upsets. Since ηR is an isomorphism from the �-fixpoints to the �′-fixpoints,
it is an isomorphism in RAlg by Lemma 3.4. It remains to see that η: 1RAlg → RS is a natural
transformation. Let A = (R,�) and B = (S,�) be Raney algebras and h a morphism
between them. We must show that the following diagram commutes.

A B

RS(A) RS(B)

ηA

h

ηB

RS(h)

For this it is sufficient to show that for each a ∈ R we have h−1∗ ηR(a) = ηSh(a), which
follows from the proof of Proposition 3.8. �

Theorem 3.11 (R,S) is a contravariant adjunction between Top and RAlg.

Proof We must show for each space X that R(εX ) ◦ ηR(X) is the identity on R(X), and for
each Raney algebra A = (R,�) that S(ηA) ◦ εS(A) is the identity on S(A) (see [8, p. 81,
Thm. 2] and adapt for contravariant adjunction).
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Raney Algebras and Duality for T0-Spaces 969

Note that R(εX ) ◦ ηR(X) = ε−1
X ◦ ηUp(X). Let x ∈ X and U ∈ Up(X). Then

x ∈ ε−1
X (ηUp(X))(U ) iff εX (x) ∈ ηUp(X)(U )

iff ↑x ∈ ηUp(X)(U )

iff ↑x ⊆ U
iff x ∈ U .

Thus, ε−1
X (ηUp(X))(U ) = U .

Note that S(ηA) ◦ εS(A) = (ηR)∗ ◦ εXR . Let x ∈ XR . Then (ηR)∗(εXR (x)) = (ηR)∗(↑x),
which is the least element a of R with ↑x ⊆ ηR(a). Since the order on XR is the dual of
the order on R, this is the least element a of R with ↓x ⊆ ηR(a) = {y ∈ XR | y ≤ a}, and
hence is equal to x . Thus, (ηR)∗(εXR (x)) = x . �

Theorem 3.12 The contravariant adjunction (R,S) between Top and RAlg restricts to a dual
equivalence between RAlg and the full subcategory Top0 of Top consisting of T0-spaces.

Top RAlg

Top0 RAlg

R
S

R
S

Proof In Lemma 3.10 we showed that ηA: A → RS(A) is an isomorphism in RAlg for each
Raney algebra A. Therefore, it is enough to show that for each topological space X , the map
εX : X → SR(X) is a homeomorphism iff X is a T0-space. Since SR(X) = {↑x | x ∈ X},
it is clear that εX is always onto. In Lemma 3.9 we showed that ε−1

X (ηUp(X)(U )) = U for
each open U ⊆ X . Since εX is onto, it follows that εX (U ) = ηUp(X)(U ). Therefore, εX is
always onto, continuous, and open. Since X is a T0-space iff the specialization order is a
partial order, εX is one-to-one iff X is a T0-space. The result follows. �


Putting Theorems 1.1, 1.2, and 3.12 together yields:

Corollary 3.13 There is an adjunction between RAlg andMT that restricts to an equivalence
between RAlg and MT0.

Remark 3.14 The above adjunction and equivalence can be realized directly by the functors
F : RAlg → MT and G:MT → RAlg given as follows. The functor F sends a Raney algebra
(R,�) to (B,�+) where B is the MacNeille completion of the free Boolean extension of R,
and �+x = ∧{�a | x ≤ a ∈ R}. The functor G sends (B,�) ∈ MT to the Raney algebra
(R,�) where R is the complete sublattice of B completely generated by the �-fixpoints of
B, and � on R is the restriction of � on B.

Remark 3.15 One might consider generalizing the definition of Raney algebras by removing
the condition that the �-fixpoints are dense. One still obtains a functor to topological spaces
along the same lines as above, but this is no longer part of an adjunction with Top. To see
this, consider the 4-element Boolean algebra B with � defined so that its fixpoints are the
bounds 0, 1. Note that the box fixpoints now fail to be dense. Then for A = (B,�) we
have S(A) is a 2-element trivial space, thatRS(A) is the 2-element Raney algebra, and that
SRS(A) is a 1-element space. So there can be no natural transformation ηA in this setting
with S(ηA) ◦ εS(A) being the identity on S(A).
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970 G. Bezhanishvili, J. Harding

4 Further Remarks

To begin, as we saw in Lemma 3.10, the compositeRS is naturally isomorphic to the identity
functor on RAlg. The other composite SR provides an alternate path to the well-known fact
that Top0 is a reflective subcategory of Top.

Theorem 4.1 SR is the T0-reflection from Top to Top0.

Proof By [2, p. 28, Thm. 2] it is enough to show that for each X ∈ Top, Y ∈ Top0, and
a continuous map f : X → Y there is a unique continuous map g:SR(X) → Y such that
g ◦ εX = f . Since Y ∈ Top0, it follows from Theorem 3.12 that εY is a homeomorphism.
Set g = ε−1

Y ◦SR( f ). Clearly g is continuous, and g ◦εX = f by the naturality of ε given in
Lemma 3.9. Since each εX is onto and hence an epimorphism in Top, the uniqueness follows.

�

The dual equivalence between Top0 and RAlg restricts to a dual equivalence between Top1

and a full subcategory of RAlg. The following result shows that this full subcategory consists
exactly of those Raney algebras (R,�) where R is Boolean, and hence is exactly MT1.

Theorem 4.2 For a Raney algebra A = (R,�), the dual space S(A) is T1 iff R is a Boolean
algebra.

Proof First suppose R is Boolean. Then XR is the set of atoms of R. Suppose x, y ∈ XR are
distinct. By density, there is a �-fixpoint a such that x ≤ a and y �≤ a. Therefore, x ∈ ηR(a)

and y /∈ ηR(a). Since ηR(a) is open, this proves that S(A) is T1. Conversely, if S(A) is T1,
then the specialization order is the identity. Therefore, RS(A) is the full powerset, hence
a Boolean algebra. Since A = (R,�) is isomorphic to RS(A), we conclude that R is a
Boolean algebra. �

Corollary 4.3 MT1 is the full subcategory of RAlg consisting of those Raney algebras (R,�)

where R is a Boolean algebra.

The full subcategory of RAlg that corresponds to Alexandroff T0-spaces also has an easy
description.

Theorem 4.4 For a Raney algebra A = (R,�), the dual space S(A) is Alexandroff iff � is
the identity.

Proof Let L be the �-fixpoints of R. If � is the identity, then L = R, so τL = ηR[R]. Since
ηR[R] is the upsets of XR , we conclude that S(A) is Alexandroff. Conversely, if S(A) is
Alexandroff, then� onRS(A) is identity because every upset of S(A) is open. SinceRS(A)

is isomorphic to A, we have that � on A is also identity. �

Remark 4.5 The category of Alexandroff T0-spaces is isomorphic to Pos. The above result
yields that the category of Raney algebras where � is identity is dually equivalent to Pos.
This is as expected since this category is isomorphic to Ran (see Theorem 2.4).

We recall that a topological space X is sober if each closed irreducible set is the closure of
a unique point. We are able to characterize those Raney algebras Awith S(A) sober, however
the characterization is largely a reformulation of ideas from pointfree topology. In doing so,
we are led to a more natural condition on Raney algebras which corresponds to a weakening
of the notion of sober spaces. We begin with the following standard notion from pointfree
topology.
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Raney Algebras and Duality for T0-Spaces 971

Definition 4.6 A filter F of a frame L is completely prime if for each S ⊆ L , from
∨

S ∈ F
it follows that F ∩ S �= ∅.

It is easily seen that for a completely prime filter F of a frame L , there is a largest element
of L that does not belong to F , and this largest element is meet prime. If X is a topological
space, and x ∈ X , then Fx = {V | x ∈ V } is a completely prime filter of the frame O(X). If
X is sober the converse is also true as the following shows.

Lemma 4.7 For a topological space X, the following are equivalent:

(1) X is sober.
(2) For each meet prime element U ∈ O(X) there is a unique x ∈ X such that U = −↓x.
(3) For each completely prime filter F of O(X) there is a unique x ∈ X such that F = Fx .

Proof The equivalence of (1) and (2) is easily seen by passing to complements and noting
that ↓x is the closure of x . For the equivalence of (2) and (3) see [10, Prop. 1.3.1]. �


Let A = (R,�) be a Raney algebra with L its �-fixpoints. For each x ∈ XR let Lx =
↑x ∩ L . Since x ∈ XR is a completely join prime element of R and L is a subframe of R, it
is easily seen that each Lx is a completely prime filter of L .

Theorem 4.8 Let A = (R,�) be a Raney algebra with L its�-fixpoints. Then the dual space
S(A) is sober iff each completely prime filter of L is equal to Lx for some necessarily unique
x ∈ XR.

Proof Wehave that ηR : L → O(S(A)) is an isomorphism. Therefore, for eachU ∈ O(S(A))

there is a unique a ∈ L with U = ηR(a). Thus, for x ∈ XR , we have

U ∈ Fx iff x ∈ U iff x ∈ ηR(a) iff x ≤ a iff a ∈ Lx .

Consequently, ηR[Lx ] = Fx . The result then follows from Lemma 4.7. �

Let RAlgS be the full subcategory of RAlg consisting of those Raney algebras that satisfy

the condition of Theorem 4.8 and let Sob be the full subcategory of Top0 consisting of sober
spaces. Then the following is a direct consequence of Theorem 4.8.

Corollary 4.9 The dual equivalence of Theorem 3.12 between RAlg and Top0 restricts to a
dual equivalence between RAlgS and Sob.

We recall that a frame L is spatial if for a, b ∈ L , from a �≤ b it follows that there is
a completely prime filter F of L containing a and missing b. Let Frm be the category of
frames and frame homomorphisms (maps preserving finite meets and arbitrary joins), and let
SFrm be its full subcategory of spatial frames. It is well-known (see, e.g., [10, Secs. II.4–6])
that there is a dual adjunction between Frm and Top, which restricts to a dual equivalence
between SFrm and Sob. The following is then immediate.

Corollary 4.10 There is an equivalence between RAlgS and SFrm.

Remark 4.11 The equivalence of Corollary 4.10 can be obtained by sending (R,�) ∈ RAlgS
to the spatial frame L of the �-fixpoints, and L ∈ SFrm to the Raney algebra (Up(XL ),�)

where XL is the poset of completely prime filters of L ordered by inclusion. The topology
on XL is given by {ϕL(a) | a ∈ L} where ϕL(a) = {x ∈ XL | a ∈ x}. The operation � on
Up(XL) is the interior operator of this topology and is given by

�U =
⋃

{ϕL(a) | ϕL(a) ⊆ U }
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for each U ∈ Up(XL). Finally, we note that there is an interesting characterization of the
Raney lattice Up(XL ) constructed from a frame L: the forgetful functor from Ran to Frm has
a left adjoint that takes a frame L to Up(XL).

Our characterization of sobriety in Theorem 4.8 suggests a natural order-theoretic con-
dition on a Raney algebra A = (R,�) that the meet of each completely prime filter of its
�-fixpoints is completely join prime in R. This translates directly into the topological setting
as follows.

Definition 4.12 A topological space X is almost sober if for each completely prime filter F
of O(X) there is a unique x ∈ X such that

⋂
F = ↑x .

Proposition 4.13 Each sober space is almost sober, and each almost sober space is T0.

Proof We first observe that in any topological space X we have
⋂

Fx = ↑x for each x ∈ X .
Let U ∈ Fx . Then x ∈ U , so ↑x ⊆ U , and hence ↑x ⊆ ⋂

Fx . Suppose y /∈ ↑x . Then there
is U ∈ O(X) with x ∈ U and y /∈ U . Therefore, U ∈ Fx and y /∈ U . Thus, y /∈ ⋂

Fx .
Next suppose that X is a sober space and F is a completely prime filter of O(X). Since

X is sober F = Fx for a unique x ∈ X by Lemma 4.7. Therefore,
⋂

F = ⋂
Fx = ↑x . This

proves that every sober space is almost sober. Finally, to see that an almost sober space X is
T0 suppose x, y ∈ X . If x, y are not distinguishable by open sets, then ↑x = ↑y. Therefore,⋂

Fx = ↑x = ↑y. Since Fx is a completely prime filter of O(X) and X is almost sober, we
must have x = y. Thus, X is T0. �


We next provide several examples to show that these containments are strict.

Example 4.14 We give an example of a T0-space that is not almost sober. Consider the natural
numbers ω with the usual order and its Alexandroff topology. Then the open sets of this
space consist of the empty set and the sets ↑n for some n ∈ ω. This space is T0 since it is
the Alexandroff topology of a poset. However, it is not almost sober since the collection F
of all nonempty open sets is a completely prime filter of the frame of opens with

⋂
F = ∅.

Example 4.15 We give an example of an almost sober space that is not sober. Consider the
ordinal ω + 1 under its Alexandroff topology. This is not a sober space since this poset has
an infinite ascending chain and sober is equivalent to Noetherian for Alexandroff spaces of
posets. However, it is almost sober. To see this note that the frame of opens of this space
is the chain whose least element is ∅, followed by the atom {ω}, and then the sets ↑n for
n ∈ ω. The completely prime filters of the frame of opens are the principal filters generated
by the sets ↑α for α ≤ ω, whose intersection is ↑α, and the filter F = {↑n: n ∈ ω}, whose
intersection is ↑ω.

We conclude the paper with the following characterization of almost sober spaces.

Theorem 4.16 A topological space X is almost sober iff each irreducible closed set C has a
join in the specialization order of X.

Proof Suppose that X is almost sober and C is an irreducible closed set of X . Consider
FC = {U ∈ O(X) | U ∩ C �= ∅}. Then FC is a completely prime filter of O(X) with
−C the largest open set not belonging to FC . Since X is almost sober, there is a unique x
such that

⋂
FC = ↑x . Recall that x ≤ y iff every open set containing x contains y, that

is, iff y ∈ ⋂
Fx . Thus, y is an upper bound of C iff y ∈ ⋂

Fc for each c ∈ C . Since
FC = ⋃{Fc: c ∈ C}, this occurs iff y ∈ ⋂

FC = ↑x . It follows that x = ∨
C .
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Suppose that each irreducible closed set C has a join in the specialization order of X . Let
F be a completely prime filter of O(X) and suppose that V is the largest open set that is
not in F . Set C = −V . Note that C is an irreducible closed set and that F is equal to the
filter FC of open sets that intersect C nontrivially. Our assumption gives that C has a join
in the specialization order. Let x = ∨

C . Then y ∈ ↑x iff y is an upper bound of C . By
the argument in the first paragraph, this occurs iff y ∈ ⋂

FC . As F = FC , it follows that⋂
F = ↑x . �
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