A Primer on Probabilistic Models

John Harding and Alex Wilce

Abstract We give a basic introduction to a generalized setting for probability theory,
known as probabilistic models, that evolved over the past half century from attempts
to provide an axiomatic foundation for quantum mechanics. Classical probability
theory and finite-dimensional quantum mechanics are just two examples from a
spectrum of possibilities.
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1 Introduction

The simplest situation in probability is that of a finite probability space. Here, one
begins with a finite set X = {xy,...,x,} of mutually exclusive possible outcomes. A
probability weight on X is a mapping o : X — [0, 1] that sums to unity. Probability
weights are also called states since they describe the way a system modeled by X
can be. For instance, a generic 2-sided coin can be modeled by X = {h,} and the
various probability weights describe the inherent propensity for the coin to provide
a head or tail when flipped.

The pair A = (X, ) consisting of a finite probability space together with its
set © of states is an example of a probabilistic model (PM). The collection of all
PMs arising from finite probability spaces is an example of a probabilistic theory.
Here we presume that this theory includes a description of what will be admissible
morphisms between the PMs that it contains, and also a means to combine two PMs
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A and B into a single model A ® B in the theory, representing the compound system.
For instance, if A is the PM for a generic 2-sided coin, then A ® A would be the PM
for a pair of such coins.

The situation described above can be generalized in many ways. For instance the
notion of a finite probability space can be generalized to that of a measurable space,
and that of a probability weight to a finitely or countably additive probability mea-
sure. This will also provide an example of a probabilistic theory. But there is another
direction of generalization that is of quite a different nature: we allow the possibility
that some outcomes cannot be simultaneously tested. Roughly speaking, we begin
with a test space, a set X of outcomes together with a family of subsets E, F,... C X
called zests, representing classical discrete outcome-sets, subject to some modest
conditions. A probability weight on this is a mapping ¢ : X — [0,1] that sums to
unity over each test.

A probabilistic model (PM) is a pair A = (&7, Q) consisting of a test space and a
chosen collection of its probability weights, which we call the states of the model. A
probabilistic theory is a collection of such PMs, together with suitable morphisms,
and a means to form compound systems.

The origins of probabilistic models in this broad sense lie in studies of quantum
mechanics, where a fundamental property is the incompatibility of certain quanti-
ties such as position and momentum that cannot be precisely measured together in a
single experiment. The aim was to consider features that are common to a range of
probabilistic situations, whatever their origin, and then to find constraints on prob-
abilistic theories that lead to classical or quantum mechanics. These probabilistic
models provide a language to speak precisely about probabilistic concepts such as
incompatibility, contextuality, and entanglement.

The study of probabilistic models, though not by that name, began with work of
Mackey [13] in the 1950’s, Ludwig [11] in the 50’s and 60’s, Foulis and Randall
[15] and Piron [8] beginning in the 1970’s, and Wilce [16, 17] from the 1990’s to
the present. In the past decade Hardy [9], Masanes and Miiller [14], and many others
[6] have incorporated aspects of probabilistic models in developing axiomatizations
of finite-dimensional quantum theory.

A feature of the study of probabilistic models is the wide range of tools, drawn
from diverse areas of mathematics, that are used to gain insight into probabilistic
phenomena. This is true even in the setting of a finite probability space A = (X, Q): a
subset of the outcome-set X is an event, and the collection of all events is a Boolean
algebra called the logic of the probability space. The collection of all probability
weights on X is a compact convex subset of the vector space R¥, in this case an
n — 1-dimensional simplex. Its extreme points are the point masses on X. The state
space £ is the base of a cone in the vector space RX and this cone provides a partial
ordering on V, in this case yielding a vector lattice.

Thus, one can view a finite probability space through various lenses, ranging
from logical to linear algebraic to geometric. As we will see, the same is true for a
general PM. However, in general the “logics” will not be Boolean, the state-spaces
will not be simplices, and the ordered vector spaces will not be vector lattices.
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This note is arranged in the following way. The second section provides basic
definitions and examples. The third section describes how to associate “logics” to
certain test spaces. The fourth section the discusses convex geometrical view of
state spaces. The fifth section describes the ordered vector space view of PMs. The
sixth section discusses the relation between PMs and classical probability spaces.
The seventh section treats compound systems and the eighth treats the non-classical
phenomenon of entanglement. The final section briefly discusses probabilistic the-
ories. This is a wide range of topics, and our aim here, given space constraints, is
simply to provide an outline of the theory.

2 Basic setup and examples

Definition 1. A test space </ is a set of non-empty sets, none of which properly
contains another.

We call the sets that comprise a test space its fests and the elements of a test its
outcomes. The union of all of the tests of the test space is the set of all possible
outcomes of its tests, and is called the outcome-set of the test space. Tests may be
infinite, and an outcome can belong to any number of tests except zero.

Definition 2. Let <7 be a test space with outcome-set X. A probability weight on
o/ is amap o : X — [0,1] that sums to unity over each test in the sense that the
associated net of finite partial sums converges to 1.

Definition 3. A probabilistic model (PM) is a pair A = (<7, Q) consisting of a test
space </ and a family Q of probability weights on 7. We refer to members of Q
as states.

The idea is that we have a situation where we can perform tests, and each test has
its set of possible outcomes. One may be able to test for a given outcome in different
ways, and it may be impossible to test for certain pairs of outcomes simultaneously.
In defining states as maps o : X — [0, 1], we make the assumption that when the
system is in a given state, the probability of obtaining an outcome x is independent
of how x is tested. This is called non-contextuality.

Example 1. A finite probability space X is a PM A = (&7, Q) where the test space
o/ = {X} consists of the single set X, and the state space 2 consists of the set of all
probability weights on X.

Example 2. For a measurable space (S, X), we can construct a test space &/ whose
outcome-set is the collection of all non-empty measurable sets, and whose tests are
the finite partitions of unity, that is, the collections of finitely many pairwise disjoint
measurable sets whose union covers S. The probability weights on .o are the finitely
additive probability measures on the given measurable space. Alternately, we can
form a test space 7’ from the finite or countable measurable partitions of unity, and
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the probability weights on this test space are the probability measures in the usual
sense.

Example 3. For a separable Hilbert space .77, form a test space ./ by taking its
outcomes to be unit vectors and its tests to be orthonormal bases. If dim.77 > 2,
Gleason’s theorem [7] gives that probability weights on 2/ correspond to density
operators W via ogy (v) = (Wv|v).

Example 4 (Firefly). A firefly is in a triangular box divided into three chambers,
a, b and c. Each side of the box gives a view of two of the chambers. An exper-
iment consists of viewing the box from one side and noting whether a light ap-
pears on one side or the other, or not at all. We represent this with a test space
o = {{a,x,b},{b,y,c},{c,z,a}} where x,y and z represent seeing no light in the
appropriate window. The diagrams below depict this test space in Figure (a), and
two probability weights on it in Figures (b) and (c).

c 0 1
Z Yy 0 1 0 0
1 1
a X b 1 0 0 5 0 3
(@) (b) (©

3 The logic of a test space

For a finite probability space on a set X, its events are the subsets of X. These
form a Boolean algebra, a powerset algebra, and provide a logic of events. We have
notions of the conjunction, disjunction, and negation of events, and can reason with
these using the connections between classical logic and Boolean algebras. The same
holds true of probability models based on a measurable space, where the events are
the measurable subsets and the collection of all events is the Boolean o-algebra
of measurable sets. This connection to classical logic is a fundamental aspect of
probability.

Definition 4. For a test space <7 with outcome-set X, a subset a C X is an event if a
is a subset of a test of .&7. Two events a, ¢ are complementary if they are disjoint and
their union is an event. Two events a, b are perspective, written a ~ b, if they have a
common complement.

In classical models, each event has a unique complement, and perspectivity is
trivial. Not so in our quantum models, or in the firefly model. For instance, in the
latter, the events {a,x} and {y,c} are perspective, both being complements for the
event {b}.
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Our aim is to construct a logic for a test space through equivalence classes of
events. In general, this is not possible since test spaces are very general structures,
and perspectivity can be poorly behaved. However, when a test space is algebraic,
meaning that perspective elements have exactly the same complements, we can do
much better. In particular, for an algebraic test space, perspectivity is an equivalence
relation.

Definition 5. For an algebraic test space o7, its logic Il1.o/ is the set of equivalence
classes of events under perspectivity.

The logic of an algebraic test space carries natural structure: a partial ordering,
a complementation, and a partially defined sum operation. Writing the equivalence
class of an event a as [a], the partial ordering puts [a] < [b] if a C b. That this is
well-defined follows from algebraicity. Similarly, the complementation is given by
[a] = [c] where ¢ is any complement of a. The partial sum operation is defined
for pairs [a], [b] where the events a,b are disjoint and contained in a common test
and then their sum is given by [a] @ [b] = [a Ub]. These are well-defined thanks to
algebraicity. The resulting structure (IT<7, @) is an orthoalgebra:

Definition 6. An effect algebra is a set Z with a partially defined binary operation
@ that is commutative and associative in the natural sense and constants 0,1 that
satisfies for all z € Z

l.z060=z
2.if z® 1 is defined, then z = 0;
3. there is a unique element 7’ with z® 7' = 1.

This structure is an orthoalgebra if 7 ® z defined implies z = 0.

Proposition 1 (Foulis). The logic of an algebraic test space is an orthoalgebra, and
all orthoalgebras arise as such logics.

Example 5. Each Boolean algebra is an orthoalgebra. The test spaces arising from
finite probability spaces and from measurable spaces are algebraic and their logics
are Boolean algebras. The test space constructed from a separable Hilbert space .77
in Example 3 is algebraic. Its logic is an orthoalgebra, in fact it is the orthomodular
lattice of closed subspaces of 7. The test space called the Firefly in Example 4 is
algebraic. Its logic consists of three 8-element Boolean algebras glued together in
pairs at an atom and coatom.

Example 6. The real unit interval [0,1] is an effect algebra where 7/ = 1 —z and
x@y = x+y when this sum is at most 1. This extends in a natural way to produce
an effect algebra from an interval [0, u] of any partially ordered abelian group, and
in particular from any partially ordered vector space. A primary example of this is
its application to the real vector space of bounded self-adjoint operators on a Hilbert
space 7. Its unit interval [0,7] is an effect algebra and its elements are called the
standard effects of the Hilbert space.
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An element z of an effect algebra is called sharp if O is the only lower bound
of z,7/. Under the mild conditions, the sharp elements of an effect algebra form an
orthoalgebra [10].

Example 7. Consider the ordered vector space V of continuous real-valued functions
on a space X. Its interval effect algebra [0, 1]y consists of the continuous functions
taking values in the real interval [0, 1] and its sharp elements are the Boolean algebra
of continuous functions f : X — {0, 1}. The sharp elements of the effect algebra of
standard effects of a Hilbert space is the orthomodular lattice of projection operators.

4 The geometry of the state space

As we discussed, a PM A = (&7, Q) consists of a test space ./ and a collection Q of
probability weights on <7 called states. We are free to choose whatever collection
of probability weights we like. One frequent choice is to take €2 to be all probability
weights on 7. If &7 has outcome-set X, the probability weights on <7 are a subset
of the vector space RX. This subset is convex meaning that if a, 8 are probability
weights and 5,7 > 0 with s+¢ = 1, then sa +1f3 is also a probability weight. Further,
the probability weights are compact as a subset of RX with the product topology.

Definition 7. A PM A = (&7, Q) with outcome-set X is called standard if Q is a
closed, hence compact, convex subset of RX,

One can motivate the requirement of convexity as follows: if ¢, B are allowed
states of the system, then by preparing a large number of system with the proportion
s in state o and 7 in state 3, we effectively have a system in state so¢ +¢ 3. Compact-
ness can be motivated by viewing the pointwise limit of a family of states as a sort
of ideal state.

Definition 8. Suppose A = (&7, Q) is a PM with Q is convex. A state « is a pure
state of A if it is an extreme point of the state space (2, that is, if it cannot be
expressed as a non-trivial convex combination of other states.

Example 8. In the illustration, the figure at left is not convex. The triangle is compact
and convex, as is the square and the disc with boundary. The disc without boundary
is convex but not compact.

The extreme points of the triangle are its vertices, those of the square are its corners.
Each point on the boundary of the disc with boundary is an extreme point, while the
disc without boundary has no extreme points.
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A result of Caratheodory provides that if €2 is a compact convex subset of R”,
then each point in €2 is a convex combination of its extreme points. A subset 2 C R”"
is a k-dimensional simplex if it has k+ 1 extreme points and each point in £ can be
uniquely expressed as a convex combination of its extreme points. So for example,
a 2-dimensional simplex is a triangle and a 3-dimensional simplex is a tetrahedron.

Example 9. For a finite probability space X = {xi,...,x,}, its probability weights
are an (n— 1)-dimensional simplex. The extreme points are the point masses J;
taking value 1 at x; and O otherwise, and each probability weight & can be uniquely
expressed as a convex combination of these, & = 5101 + - - - + 5,0, where s; = o((x;).

Example 10. Consider the PM A = (&7, Q) where </ has two tests {a,x} and {b,y}
and Q is all of its probability weights. This can be viewed as a system where there
are 4 outcomes a,x,b,y, but one of a,x must occur if tested, and one of b,y must
occur if tested. Probability weights are given by specifying the probability that x
occurs if tested, and the probability that y occurs if tested, since the probabilities of
a,b are then determined. Thus, €2 is given by the unit square in the x — y plane.

Example 11. Let A = (<, Q) be the PM obtained from the 2-dimensional Hilbert
space C? whose outcomes are unit vectors and whose states are those given by
density operators. It is well known that this state space is convexly and topologically
isomorphic to a closed ball in R? known as the Bloch sphere. State spaces of higher-
dimensional quantum models are also compact convex sets, but with much richer
geometry [4].

The basis of the convexity approach to PMs is that geometric properties of the
state space provide some (but not all) information about the system. For instance,
with a finite probability space X = {xi,...,x,} there is no uncertainty associated
with the point weights &;, when the system is in such a state, there is no doubt about
the outcome of a measurement. The uncertainty associated with a general state oc =
5101 + - -+ 5,6, is solely in the proportions s; used to form the mixture representing
o. If we have sufficiently many copies of the identically prepared systems, we can
estimate these proportions through repeated experiments.

For general PMs, there are other sources of uncertainty. Pure states might not
be {0, 1}-valued, i.e. be inherently probabilistic. This is the case for the quantum
system associated to a Hilbert space. When the state space is not a simplex, i.e. when
the representation of a state as a convex combination of pure states is not unique,
there is uncertainty in how a mixture was prepared, and this uncertainty cannot be
removed. For instance, the state that is the center of a square or of a closed unit ball
can be prepared in infinitely many ways as a mixture of pure states.

Remark 1. Due to space constraints, and the intent to provide a first introduction
to the subject, we will not focus on more mathematically complex issues related
to infinite-dimensional convex sets. We only mention that Carathéodory’s result for
compact convex subsets of R” has extensions. The Krein-Milman theorem [1] says
that a compact convex subset 2 of RX, or more generally of any locally convex
space, is the closure of the convex hull of its extreme points. The theorem of Bishop
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and De Leeuw [1] then says that each point in £ is the barycenter of a probability
measure on the extreme points, essentially an integral convex combination of them
by some probability measure. The notion of a simplex then extends to the infinite-
dimensional setting by requiring this barycenter representation to be unique.

S PMs and linearity

One we have a state space, which is by definition, a subset of RX, we have one foot
in the subject of linear algebra. We outline how this can be moved forward in a more
refined manner by associating to each PM certain kinds of ordered normed vector
spaces, and how to in turn construct PMs from such ordered normed vector spaces.

Definition 9. A cone of a real vector space V is a non-empty set C C V that is closed
under vector addition, multiplication by positive scalars, and satisfies CN—C = {0}.

Given a cone C there is a partial ordering on V given by a < b iff b —a € C. This
ordering makes addition and scalar multiplication by positive scalars monotone.
Conversely, for an ordering on V satisfying these conditions, the its set of positive
elements is a cone, written V.. Thus, cones correspond to orderings. A cone is called
generating it spans V, and an ordered space is archimedean if b € V. and na < b for
all natural numbers 7 implies a < 0.

Definition 10. For an ordered vector space V with non-trivial cone, a convex subset
Q of the cone V, is called a base for the cone if each 0 # f in the cone can be
uniquely expressed as § = ta for some r >0 and o € K.

Proposition 2. If A = (<7, Q) is a standard PM with Vy the span in RX of its state
space, then £ is the base for a generating cone on Vy.

For an archimedean ordered space V with £2 as the base of a generating cone, let
B be the convex hull of QU —Q. Forx € V set ||x||o = inf{r > 0|x e B}. Thisis
always a semi-norm, when it is a norm we call (V, Q) a base-normed space (BNS).

Theorem 1. IfA = (&, Q) is a standard PM then (V4,Q) is a complete BNS.
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Example 12. For a measurable space (S,X), its signed measures form a vector space
V and the set 2 of probability measures are the base for a cone on V making it a
complete BNS. The base-norm of this space is the variation norm on V.

Example 13. For a separable Hilbert space ¢, its trace-class operators form a
vector space and the density operators are a cone base for this vector space that
make it a complete BNS. The base-norm of this space is given by the trace.

There is more to this story, which we will discuss only briefly, as the techni-
cal details become involved; see [1, 2, 3]. There is another type of ordered normed
space, called an order unit space (OUS), that comes in pairs with BNSs: the dual of
a BNS is an OUS and conversely. A pair consisting of a BNS and an OUS is in sepa-
rating order duality if each space effectively sits in the dual of the other in a natural
way. A primary example is the BNS of trace-class operators on a separable Hilbert
space .7 and the OUS of bounded self-adjoint operators on 7. Here, an element
of each space effects a functional on the other in a natural way. Each standard PM
A = (&, Q) produces such a pair with the BNS created through the states of A, and
the OUS through evaluation of the events of A on the states.

6 Classicality

It is natural to wonder whether PMs really take us beyond the scope of classical
probability theory, or whether they represent classical situations with constraints or
limitations placed on what can be done, (e.g, what states can be prepared, or which
classical measurements can be made). This was essentially Einstein’s question when
asking if quantum theory could be explained by a so-called “hidden variables” the-
ory. In this section, we will see that, subject to certain hypotheses, any probabilistic
model can be explained in this way, but generally at a cost in terms of one’s overall
outlook.

Example 14. Consider the test space of Example 10 with tests {a,x} and {b,y} and
whose state space is all probability weights, which we noted was affinely isomorphic
to the unit square. We can view this as representing a system with 4 outcomes:
p = a,b occur, ¢ = a,y occur, r = x,b occur, d = x,y occur. However, we have
limited possibility to conduct tests — we can test which of the events {p,q},{r,s}
occurs and we can test which of the events {p,r},{g,s} occur, and that is all.

A PM is semi-classical if each event is contained in exactly one test. If we take a
test space A = (&7, Q) and form a new test space by duplicating each outcome once
for each test that contains it, we obtain a new test space with tests {(x,E) |x € E}
for each test E of /. Extending each state & of A to o' (x,E) = a/(x) obtain

Proposition 3. For each PM A there is a semi-classical PM S and an surjection T
from the outcomes of S to those of A mapping onto the tests of A such that states of
S are obtained as o o & for o a state of A.
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A PM A is locally finite if each of its tests is finite. This includes the test spaces
obtained from unit vectors in a finite-dimensional Hilbert space, the setting of quan-
tum information. The following is essentially due to Cook [5].

Theorem 2. If S is a locally finite semi-classical PM there is a measurable space
and an embedding from the outcomes of S to those of the PM C of its measurable
sets, taking tests to tests, so that every state on S is the restriction of a state of C.

Thus, if A is locally finite, the semi-classical PM S produced in Proposition 3 is
locally finite, hence is embedded into a classical test space C. So A is a quotient of
a submodel of C, and hence the statistics of A can be reproduced from those of a
classical model. This can be applied to finite-dimensional quantum mechanics!

However, as mentioned above, there is a cost. There may be states of C that are
not obtained from ones of A, and that behave in undesirable ways. In particular, there
may be a state  of C and an outcome x of A that is contained in two different tests
E and F of A and such that B(x,E) # B(x,F). So B provides different probabilities
for an outcome of A depending on how we test for it. This is contextuality! Of
course, from a mathematical viewpoint we can simply “ignore” such states. But if
C is being used to “explain” the behavior of A, then simply ignoring problematic
features is itself problematic. The issue is further complicated when considering
compound systems.

7 Compound systems

A PM reflects a system under study. If two systems are modeled by PMs A and B, we
would like a single PM C that reflects the two systems considered as a whole. There
may be various ways to produce such a composite system from those of A and B.

Definition 11. Let A and B be PMs with outcome-sets X and Y. Their product A x B
has outcome-set X x Y, tests £ x F where E and F are tests of A and B, and its states
are product states o x 3 of states o of A and § of B where

(@ xB)(x,y) = a(x)B(y)-

If A and B arise from finite probability spaces, then one might guess that A x B
would be the natural model for a composite. However, even for classical probability,
this notion is too restrictive.

Example 15. Let A and B be the PMs for the measurable spaces (S, Zs) and (7, X7).
Their outcome-sets are the measurable subsets of S and 7. The composite system is
usually formed by taking the measurable space structure on S x 7" induced by those
on its components, this is the smallest c-algebra obtaining all products U x V of
measurable sets of S and T'. Thus, the PM for this product measurable space contains
all products of outcomes of A and B, but contains many more as well.
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Definition 12. A composite of PMs A and B is a PM C that contains the outcomes
and tests of A x B, and is such that each product state o x 3 is the restriction to
A x B of a state on C.

The product A x B of two PMs built from finite probability spaces is a composite
as is the model obtained from two measurable spaces in Example 15. The following
standard tool from quantum mechanics is another example of a composite.

Example 16. For Hilbert spaces 7 and J¢, their tensor product 7 ® % is the
metric space completion of their algebraic tensor product. This has the property that
for any orthonormal bases (u;) of 7 and (v;) of #, that (u; ®v;) is an orthonormal
basis of J# ® ¢ . Further, for any density operators W and W’ on # and ¢, their
tensor product W ® W' is a density operator on the tensor product. This shows that
product states extend to the tensor product. So if A, B,C are the PMs constructed
from unit vectors of %, ¢ and 5 ® J, then C is a composite of A and B.

When dealing with composites of PMs, we encounter two phenomena that are
not usually seen in classical probability theory — the lack of local tomography and
the possibility of signaling. We discuss the former here, and the latter in the next
sub-section.

Definition 13. A composite C of PMs A and B is locally tomographic if each state
of C is determined by its restriction to the outcomes in A X B.

Clearly the composite of PMs given by finite probability spaces is locally tomo-
graphic since it is their product. We consider several other examples.

Example 17. Suppose that C is a composite of PMs A and B that are formed from
measurable spaces (S,Zs) and (7, Xr) as in Example 15. Each probability measure
on the product of these measurable spaces is determined by its values on measurable
sets of the form U x V where U,V are measurable subsets of S and 7. Thus C is a
locally tomographic composite.

Example 18. Suppose A and B are PMs obtained from Hilbert spaces 5#” and #" and
that C is their composite obtained from J# ® .% as in Example 16. If these Hilbert
spaces are taken in the usual sense of spaces over the scalar field of complex num-
bers, then the composite is locally tomographic; if they are Hilbert spaces over the
field of real numbers, then the composite is not locally tomographic. This is related
to the fact that a self-adjoint operator A on a complex Hilbert space is determined
by the values of the inner products (Av,v) where v ranges over all unit vectors, and
that this is not the case for a self-adjoint operator on a real Hilbert space.

8 Signaling and entanglement

We consider states of a compound system in more detail. Assume until further notice
that A, B are PMs with outcome-sets X and Y and test-spaces </ and %, and let ®
be a probability weight on o7 x 2.
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Definition 14. For each test E of A, define the marginal probability weight @, g on
B by setting forally € Y

o () = Y {oy) | xcE}
Given a test F' of B, define the marginal @; r on A symmetrically.

In general, marginal probability weights will depend on the choice of a test E
of A or F of B. The dependence on the choice of a test poses a problem when we
consider a compound system consisting of two systems separated by a great distance
and with a large supply of pairs of systems prepared in state @. The experimenter
with the second system can estimate the state @ r through repeated testing, and
thereby potentially gain information about the test E performed on the first system.
This could constitute transmission of information faster than light.

Definition 15. A probability weight @ on A X B is non-signaling from A to B if the
marginal weight @, g is independent of the test E.

The definition of @ being non-signaling from B to A is symmetric, and o is called
non-signaling if it is non-signaling in both directions. For a non-signaling When @
is non-signaling, we can define its conditionals in the usual way.

Definition 16. A joint state of A X B is a non-signaling probability weight whose
conditionals and marginals are states of A and B.

We say a state on a composite C of A and B is non-signaling if its restriction to
A X B is a joint state and that C is a non-signaling composite if all of its states are
non-signaling states.

Example 19. Let A, B be PMs given by measurable spaces S, T and  be a probability
measure on their product. A test E of A is a countable measurable partition U, of S
and an outcome of B is a measurable set V. C Y. Then Y, (U, x V) = pu(S x V) is
independent of the test E. So U is a non-signaling state on this composite.

Example 20. Let A, B be PMs associated to Hilbert spaces ¢, and W be a density
operator on their tensor product. A test E of A is an orthonormal basis u,, of 5# and
an outcome v of B is a unit vector of .#". The density operator W gives a state @
where ®(u,v) = Tr(W(P, ® P,)) using the trace Tr and projections P, and P,. A
calculation gives Y, (uy,v) = Tr(1 ® p,) which is independent of the test E. Thus,
density operators on the tensor product yield non-signaling states.

We next consider a different issue with states of composites, one that is also
unfamiliar to our experience with classical systems. To simplify our discussion, we
restrict attention to finite-dimensional (f.d.) standard PMs, those models A whose
states span a finite-dimensional space V4. These include models from f.d. quantum
mechanics since density operators on C" span the f.d. space of self-adjoint n x n
matrices.
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Definition 17. A joint state of A x B is separable if it is in the closed convex hull of
the products states and is entangled otherwise.

A convex combination of product states need not be a product state, but phys-
ically it can be thought of as representing a statistical mixture of product states.
Entangled states can not be represented in this way. Entangled states are ubiquitous
in quantum mechanics, and indeed are essential for nearly all quantum information
applications.

Example 21. Probability weights on the product of two finite probability spaces are
separable. More generally, probability measures on the product of two finite measure
spaces are separable.

Example 22. Let A, B be PMs associated to two complex Hilbert spaces and let v be
a unit vector in the tensor product of this Hilbert spaces that cannot be expressed as
a pure tensor a ® b. Then the projection onto v is a density operator on the tensor
product, so yields a state on the tensor product, hence its restriction to A X B is a
joint state. This state is entangled since it is an extreme point of the state space of
the tensor product and is not itself a product state.

We come now to a well-known result with origins in the work of Bell. A “qubit”
is treated using a PM A constructed from the Hilbert space C>. Among its tests are
ones E = {x,y} and F = {x,y'}. We take two qubits separated at a distance and
perform tests on the pair where one of E, F is performed on the first qubit and one
of E,F is performed on the second. We do this for a large number of identically
prepared couplets in state @, and the collect statistics on the results. In particular,
we compute the statistic

S(w) = C(E,E)+C(E,F)+C(F,E) —C(F,F)

where C(E, E) is the correlation @(x,x) + @(y,y) — ®(x,y) — @(,x), and so forth. A
routine, but tedious, calculation shows that for any product state we have |S(®)| <2,
and hence the same holds for any separable state. However, if we take i, j to be the
standard basis of C? and form the the entangled state @ given by the normalized
form of the vector i ® j — j ®1i, a computation yields S(w) = 2v/2.

In the early 1980’s an experiment was performed by A. Aspect in which a stream
of identically prepared qubit couplets were produced; the two qubits in each couplet
sent rapidly in different directions, and tests E or F' randomly performed on each
half of a couplet so close to simultaneous that these tests occurred outside of the
light cone of the other. The statistics matched those of an entangled state. We note
that this does not imply signaling, since as we noted in Example 20, quantum states
are non-signaling. Aspect won a Nobel prize in physics, Bell did not.

The situation can be treated formally in terms of composites. While the details of
a complete treatment are somewhat technically involved, but we can make the point
with an approximate version. We say composite has a local classical explanation if
A and B have classical explanations by measurable spaces and the product of these
measurable spaces provides a classical explanation of the composite.
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Theorem 3. If C is a non-signaling composite with an entangled state, then C does
not have a local classical explanation.

9 Generalized probabilistic theories

A probabilistic theory, or simply a theory, consists of a collection of probabilis-
tic models as well as a specification of the morphisms between models satisfying
natural conditions that amount to it forming a category. Roughly, this means that
each member of the theory has an identity morphism and that morphisms are closed
under composition provided the codomian of one is the domain of the next. PMs
are quite general structures, and the definition of morphisms between them that we
provide is also very general, allowing for a wide range of applications. We note that
there are still more general definitions of morphisms that are considered for some
purposes.

Definition 18. A morphism ¢ from a PM A = (o7 ,Q24) to a PM B = (A,Qp) is a
mapping ¢ from the events of A to the events of B taking tests to tests that preserves
orthogonality, perpectivity, and compatible unions.

If ¢ : A — B is a morphism of PMs, then for each probability weight B on B we
have @ = o ¢ where a(x) =Y {B(y) | y € ¢({x})} is a probability weight on A. It
is common to consider morphisms that have f o ¢ a state of A for each state  of B.
Clearly the identity map provides a such a PM morphism from a model A to itself.
Several other examples are given below.

Example 23. Suppose A and B are PMs associated with finite probability spaces X
and Y. Then each function f : Y — X provides a morphism ¢ : A — B through inverse
image ¢ (e) = f~!(e) for each event e C X. This extends to the setting where A, B
arise from measurable spaces (X,Xy) and (¥,Xy) and f : Y — X is a measurable
function. Thus, we have means to treat random variables through morphisms of
appropriate models.

Example 24. If A and B are PMs arising from Hilbert spaces 5 and %', each unitary
operator U : 5 — ¢ gives rise to a morphism ¢ : A — B taking an orthonormal
set in JZ to its image in % .

Example 25. By the spectral theorem, self-adjoint operators on a Hilbert space ¢
correspond to spectral measures on the projection lattice &?(s¢). These spectral
measures are o-additive mappings E : Bor(R) — #(.) from the Borel subsets
of the reals to Z2(). If A is the PM associated to the measurable space given by
the Borel subsets of the reals and B is the PM whose tests are countable pairwise
orthogonal families of projections that sum to unity, i.e. decompositions of unity,
then E yields a morphism ¢ : A — B of PMs and for each state 8 of B we have o ¢
is a Borel probability measure on the reals.
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There are many examples of probabilistic theories. One might take the collection
of all PMs and the morphisms between them, or the f.d. ones, or the locally finite
ones, or those arising from finite probability spaces, or from measurable spaces,
or from separable Hilbert spaces. Usually we impose additional structure on the
category to reflect the ability to form compound systems. While the following is
quite involved to state precisely [12], we give an informal account.

Definition 19. A symmetric monoidal category is a category C equipped with a
means to produce, from objects A and B, an object A ® B, in such a way that ®
is symmetric and associative and has a unit object I satisfying A® I ~ A.

In slightly more detail, ® is a bifunctor and symmetry, associativity, and the
existence of a unit are all only up to isomorphism; these isomorphisms, moreover,
must be natural in a precise technical sense [12].

When forming a probabilistic theory, one often additionally requires that A ® B
be a specified non-signaling composite. We may assume additional properties such
as local tomography. The setting of probabilistic theories considered as symmetric
monoidal categories provides a general and flexible setting to speak precisely about
probabilistic situations beyond those encountered in classical probability theory.
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