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Part 1: What is Quantum Logic?

To me, quantum logic is the use of well-motivated mathematical
structures to study foundational aspects of quantum mechanics.

We focus on one path ... the connection between questions of a
quantum system and orthomodular posets.



Part 1: What are Questions?

Definition Questions of a quantum system are measurements that
have two distinguished outcomes, usually called Yes and No.

Examples

• Is spin up?

• Is position in the right half-plane?

One feels there is a sort of logic for the questions. For instance,
you may have an idea what the negation of a question might be.



Part 1: Orthomodular Posets

Definition (P,≤,⊥) is an orthomodular poset (omp) if

1. (P,≤) is a bounded poset

2. ⊥ is an order-inverting, period two, complementation

3. If x ≤ y⊥ then x , y have a join

4. If x ≤ y⊥ then x ∨ (x ∨ y)⊥ = y⊥ (the orthomodular law)

An omp that is a lattice is an orthomodular lattice (oml)

Short story An omp is a bunch of Boolean algebra glued together.



Part 1: Orthomodular Posets

Definition (P,≤,⊥) is an orthomodular poset (omp) if

1. (P,≤) is a bounded poset

2. ⊥ is an order-inverting, period two, complementation

3. If x ≤ y⊥ then x , y have a join

4. If x ≤ y⊥ then x ∨ (x ∨ y)⊥ = y⊥ (the orthomodular law)

An omp that is a lattice is an orthomodular lattice (oml)

Short story An omp is a bunch of Boolean algebra glued together.



Part 1: Brief History

1932 von Neumann formulates Q.M. in terms of Hilbert space

Borel R Σ−→ Proj H µ−→ [0, 1]

1936 Birkhoff, von Neumann: questions are a subalg of Proj H.
Other models for the questions should be considered.

1950-70 A rich theory of omls was developed.

1965 Plausible axioms to show questions form omp.

1970’s Pathological examples, no tensor product for omps.

1980- Ever more general structures.

2002 Bob, Samson: categorical approach for compound systems.
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Bob and Samson’s approach

Setting C is strongly compact closed category with biproducts.

They develop much of Q.M. in this setting, with a novel treatment
of interacting systems. This differs greatly from the quantum logic
stream, still ...

Proposition For A ∈ C, the questions of A lie in an omp.

Examples

• In the category Rel this omp is the power set of A.

• In the category FdHilb this omp is Proj A.
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Part 1: Biased Summary

Slogan Modularity has a rich mathematical theory because it
captures a primitive notion — projective geometry.

Slogan Orthomodularity has a rich mathematical theory.

Slogan Orthomodularity is tied to questions of a Q.M. system.



Part 2

My view of things



Part 2: Objectives

1. Show orthomodularity has a primitive mathematical root.

2. Use this root to build physical axioms for the questions.

3. Possibilities for using this in categorical approaches.



Part 2: Binary Decompositions

Setting S is a set (or group, or top space, or Hilbert space, ....)

Definition A binary product map is an iso f : S → S1 × S2.

Definition Two such maps are equivalent if there are iso’s i , j

S

T1 × T2

S1 × S2
���

���:
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i j

Definition A binary decomposition of S is an equivalence class

[S ∼=f S1 × S2].



Part 2: Decompositions and Orthomodularity

Definition Let BDec S be all binary decompositions of S and let

1. 0 = [S ∼= {∗} × S ]

2. 1 = [S ∼= S × {∗}]

3. ⊥ is the operation [S ∼= S1 × S2]⊥ = [S ∼= S2 × S1]

4. ≤ is the relation [S ∼= S1 × (S2 × S3)] ≤ [S ∼= (S1 × S2)× S3]

Theorem BDec S is an omp.

The source of orthomodularity direct product decompositions



Part 2: Decompositions and Orthomodularity

Definition Let BDec S be all binary decompositions of S and let

1. 0 = [S ∼= {∗} × S ]

2. 1 = [S ∼= S × {∗}]
3. ⊥ is the operation [S ∼= S1 × S2]⊥ = [S ∼= S2 × S1]

4. ≤ is the relation [S ∼= S1 × (S2 × S3)] ≤ [S ∼= (S1 × S2)× S3]

Theorem BDec S is an omp.

The source of orthomodularity direct product decompositions



Part 2: Decompositions and Orthomodularity

Definition Let BDec S be all binary decompositions of S and let

1. 0 = [S ∼= {∗} × S ]

2. 1 = [S ∼= S × {∗}]
3. ⊥ is the operation [S ∼= S1 × S2]⊥ = [S ∼= S2 × S1]

4. ≤ is the relation [S ∼= S1 × (S2 × S3)] ≤ [S ∼= (S1 × S2)× S3]

Theorem BDec S is an omp.

The source of orthomodularity direct product decompositions



Part 2: Decompositions and Orthomodularity

Definition Let BDec S be all binary decompositions of S and let

1. 0 = [S ∼= {∗} × S ]

2. 1 = [S ∼= S × {∗}]
3. ⊥ is the operation [S ∼= S1 × S2]⊥ = [S ∼= S2 × S1]

4. ≤ is the relation [S ∼= S1 × (S2 × S3)] ≤ [S ∼= (S1 × S2)× S3]

Theorem BDec S is an omp.

The source of orthomodularity direct product decompositions



Part 2: Decompositions and Orthomodularity

Definition Let BDec S be all binary decompositions of S and let

1. 0 = [S ∼= {∗} × S ]

2. 1 = [S ∼= S × {∗}]
3. ⊥ is the operation [S ∼= S1 × S2]⊥ = [S ∼= S2 × S1]

4. ≤ is the relation [S ∼= S1 × (S2 × S3)] ≤ [S ∼= (S1 × S2)× S3]

Theorem BDec S is an omp.

The source of orthomodularity direct product decompositions



Part 2: Examples of BDec

Some standard methods of constructing omps are special cases

• Proj H for a Hilbert space

• the splitting subspaces of an inner product space

• the idempotents of a ring R

• omps from modular lattices



Part 2: Physical setting

Setup E is the set of experiments of a physical system. Assume

• each experiment e ∈ E has finitely many outcomes

• the outcomes are mutually exclusive and exhaustive

• the outcomes are called outcome 1, ..., outcome n.



Part 2: New Experiments from Old

Example If e is ternary, we can build a binary f as follows:

• combine outcomes 1,2 of e and call this outcome 1 of f .

• let outcome 3 of e be outcome 2 of f .

p������PPPPPP

} outcome 1

} outcome 2

} outcome 3e

p������PPPPPP

}
outcome 1

} outcome 2f

Write f = ({1, 2}, {3})e.

Call ({1, 2}, {3}) a partition of 3, ({2}, {3}, {1}) is another.



Part 2: Decompositions and Probabilities

Definition Dec S is all decompositions [S ∼= S1 × · · · × Sn].

Definition Prob S is all maps p : S → [0, 1]n where for each s ∈ S

p1(s) + · · ·+ pn(s) = 1

Again, we can build new from old.

Example

• ({1, 2}, {3})[S ∼= S1 × S2 × S3] = [S ∼= (S1 × S2)× S3]

• ({1, 2}, {3})(p1, p2, p3) = (p1 + p2, p3)



Part 2: Axioms of an Experimental System

Definition An experimental system is a map D : E → Dec S where

1. If e is an n-ary experiment, De is an n-ary decomposition

2. D(σe) = σ(De) when defined.

It has probabilities if there is a map P : E → Prob S with

4. If e is an n-ary experiment, Pe is an n-ary probability map.

5. P(σe) = σ(Pe) when defined.

A few bits left out, such as ({1}, {2})e = e etc.
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Part 2: The Standard Model

For H a Hilbert space,

• An n-ary experiment e gives closed subspaces A1, . . . ,An

• De is the decomposition H ∼= A1 × · · · × An

• Pe is the n-ary probability map (p1, . . . , pn) where

pi (s) =
‖sAi
‖2

‖s‖2

here sAi
is the projection of s onto Ai .

This gives an experimental system with probabilities.



Part 2: Questions of an Experimental System

Theorem The set Ques E of binary experiments forms an omp

Definition A set of questions is compatible if they can be built
from a common experiment f .

Theorem For a finite subset A ⊆ Ques E these are equivalent

1. A is compatible

2. Any two elements of A are compatible

3. A is contained in a Boolean subalgebra of Ques E

There is some content to this, physical and mathematical.



Part 2: The Logic of Questions

Proposition For e, f compatible there is a unique g with

e = ({1, 3}, {2, 4})g
f = ({1, 2}, {3, 4})g

pHH
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Yes f}
No f} No e

} Yes e
} No e
} Yes e

g

Definition For e, f compatible, set e or f = ({1, 2, 3}, {4})g etc.

Proposition When defined, we get such familiar rules as

1. e or (f and g) = (e or f ) and (e or g)

2. not (e or f ) = (not e) and (not f ).

3. etc.



Part 2: Observables

Cavemen know position means is it here, or is it here, or is it here

• Position is a word for a family of compatible questions.

• Position in an interval can be measured. Position at a point is
an ideal concept for a maximally consistent set of questions.

• Assigning numbers to “ideal questions” is called a scaling.

Definition

1. An observable quantity is a Boolean subalg B of Ques E .

2. Ideal questions are points of the Stone space X of B.

3. A scaling is a measurable map f : X → R ∪ {±∞}.
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Part 2: Computing with observables

Proposition Each state s ∈ S gives a probability measure µs on X .

Definition For an observable quantity B with scaling f

µs(f −1(U)) = probability of a result in U when in state s∫
X

fdµs = the expected value

Hilbert spaces: Self-adjoint A give B,X , f . (Spectral theorem)



Part 2: Biased Opinions

• The axioms for an experimental system have only one fancy
assumption, and this uses a primitive idea — decompositions

• From these axioms we get many features of isolated systems

• This addresses only part of the problem — what about
interactions?



Part 2: Use in Categorical Quantum Logic?

Products are a purely categorical notion. But assumptions on the
category are needed for the algebra of decomp’s to behave well.

Definition A category C is honest if it has finite products and

�
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�
�	
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A× B × B

A× B B × C

B

is a pushout

Theorem For C honest, Dec A forms an orthoalgebra.



Part 2: Why Decompositions?

Dirac explained why vector spaces in his monograph

The superposition process is a kind of additive process
and implies that states can in some way be added to give
new states. The states must therefore be connected with
mathematical quantities of a kind which can be added
together to give other quantities of the same kind. The
most obvious of such quantities are vectors.

Perhaps Instead of adding u + v , form the ordered pair (u, v)

Decompositions!
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Thank you for listening.

Papers at www.math.nmsu.edu/JohnHarding.html



Part 2: Open Problems

• Which omps arise as BDec S?

• Explore BDec S for special S (normed groups, etc).

• Develop BDec S in a categorical setting.

• Explore BDec (S1 × S2) and BDec (S1 ⊗ S2) etc.

• Find conditions on S for BDec S to be well behaved.


