Subalgebras of Orthomodular Lattices

John Harding (with Andreas Döring and Mirko Navara)

 $\label{eq:linear} \begin{array}{l} \mbox{New Mexico State University} \\ \mbox{www.math.nmsu.edu}/{\sim}\mbox{JohnHarding.html} \end{array}$

jharding@nmsu.edu

Chapman, November 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- 1. Preliminaries
- 2. Main Result
- 3. Why I am interested in the main result
- 4. Remarks on the proof
- 5. Further results
- 6. Open problems

Preliminaries

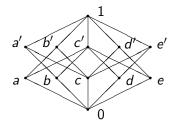
Definition $(L, \land, \lor, ', 0, 1)$ is an orthomodular lattice (OML) if

1. $(L, \land, \lor, 0, 1)$ is a bounded lattice 2. $x \le y \Rightarrow y' \le x'$ 3. x'' = x4. $x \land x' = 0$ and $x \lor x' = 1$ 5. $x \le y \Rightarrow x \lor (x' \land y) = y$

Preliminaries – Examples

1. Any Boolean algebra (BA) is an OML.

2.



Note Like all OMLS, this one is formed by *gluing* together BAS. The devil is in the way the glueing is done.

Preliminaries – Examples

- 3. *Proj* \mathcal{H} for a Hilbert space \mathcal{H} .
- 4. *Proj* \mathcal{M} for any von Neumann (VN) algebra \mathcal{M} .

These are key in quantum mechanics and motivated OMLS.

Observables	\equiv	Borel $\mathbb{R} o$ Proj $\mathcal H$	(Spectral)
States	\equiv	$\textit{Proj} \ \mathcal{H} \rightarrow [0,1]$	(Gleason)
Unitary+antiunitary	\equiv	auto's of <i>Proj</i> ${\cal H}$	(Wigner)

Note In *Proj* \mathcal{H} the maximal Boolean subalgebras (blocks) correspond to orthonormal bases of \mathcal{H} . It is how they overlap that gives the structure of \mathcal{H} and *Proj* \mathcal{H} .

Main Result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition For L an OML let BSub(L) be the poset of Boolean subalgebras of L under set inclusion.

Main Result

Definition For L an OML let BSub(L) be the poset of Boolean subalgebras of L under set inclusion.

Theorem For OMLs L and M and a poset isomorphism

$$f: BSub(L) \rightarrow BSub(M)$$

there is an OML-isomorphism $F : L \to M$ with f(S) = F[S] for each Boolean subalgebra S of L. Further, this map F is unique provided L has no blocks with four elements.

Main Result

Definition For L an OML let BSub(L) be the poset of Boolean subalgebras of L under set inclusion.

Theorem For OMLs L and M and a poset isomorphism

$$f: BSub(L) \rightarrow BSub(M)$$

there is an OML-isomorphism $F : L \to M$ with f(S) = F[S] for each Boolean subalgebra S of L. Further, this map F is unique provided L has no blocks with four elements.

Corollary *L* is determined up to isomorphism by BSub(L).

Why?

In the 1990's, Isham and Butterfield introduced a topos approach to quantum mechanics.

Quantum notions were replaced with sheaf-theoretic versions of "more classical" counterparts over some base space X.

Example They show the Kochen-Specker theorem is equivalent to a certain sheaf having no global element.

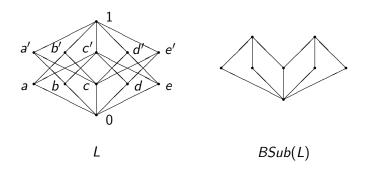
Why?

Isham and Butterfield creat the base space X as follows:

- Start with a Hilbert space ${\mathcal H}$ or ${\rm vn}\text{-algebra}\ {\mathcal M}$
- Make OML $L = Proj \mathcal{H}$ or $Proj \mathcal{M}$
- Form the frame of downsets of BSub(L)
- X = corresponding space

Actually, they just work with the frame.

Remarks on Proof – Example



Maximal elements of BSub(L) = Blocks of LAtoms of $BSub(L) = \{0, a, a', 1\}, \{0, b, b', 1\}, \dots, \{0, e, e', 1\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We can easily prove some interesting special cases.

Proposition The subalgebras $\{0, x, x', 1\}$ where $x \in L - \{0, 1\}$ are exactly the atoms of BSub(L).

Corollary |L| = 2n + 2 where n = number of atoms of BSub(L).

Corollary A finite BA B is determined by Sub(B).

Proposition For $x, y \in L$ TFAE

- 1. x is comparable to one of y, y'
- 2. $\{0, x, x', 1\} \lor \{0, y, y', 1\}$ exists & has height ≤ 2

Proposition Let $x \in L - \{0, 1\}$ and set $a = \{0, x, x', 1\}$. TFAE

- 1. At least one of x, x' is an atom of L.
- 2. *b* and atom of BSub(L) & $a \lor b$ exists \Rightarrow height $a \lor b \le 2$.

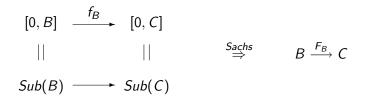
As we can determine the atoms of *L* and when $x \leq y'$ for atoms ...

Corollary If L is a finite OML it is determined by BSub(L).

Lets describe the general case ...

- Use Sachs' solution for the general case for BAs (1962).
- This provides solutions for blocks of L
- Show we can piece these together to solve things for *L*.

Let $BSub(L) \xrightarrow{f} BSub(M)$, Boolean $B \leq L$ and C = f(B)



Show F_B 's agree on their overlap (a bit tricky).

Further Results

Theorem Our main theorem with BSub(L) replaced by Sub(L).

Theorem A duality between the category of OMLs having no 4-element blocks with onto homomorphism as morphisms, and a subcategory of the category of algebraic lattices with morphisms preserving arbitrary meets and up-directed joins.

Note This sounds nice, I doubt it is much use.

Further results

Definition For a von Neumann algebra \mathcal{M} let $AbSub \mathcal{M}$ be its poset of abelian VN-subalgebras.

Theorem For VN-algebras \mathcal{M}, \mathcal{N} without type I_2 summand and poset isomorphism

$$f: AbSub \ \mathcal{M} \to AbSub \ \mathcal{N}$$

there is a unique Jordan iso $F : \mathcal{M} \to \mathcal{N}$ with f(S) = F[S] for each abelian subalgebra S of \mathcal{M} .

Note This is the most we can ask as there exists $\mathcal{M} \not\approx \mathcal{M}^{op}$.

Open Problems

- 1. Describe the posets that occur as BSub(L) for some OML L.
- Is a C* algebra A determined up to Jordan iso by AbSub(A)? (Yes if it is abelian)
- 3. Is AbSub \mathcal{M} linked to orientations of the Jordan part of \mathcal{M} ?

Thank you for listening.

Papers at www.math.nmsu.edu/~jharding

