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MacNeille completions

Defn A MacNeille completion of a lattice L is an embedding L < C
into a complete lattice C that is

e meet dense: c=A{ael:c<a}

e join dense: c=V{ael:a<c}

Thm Each lattice has a MacNeille completion and it is unique up
to unique commuting isomorphism.
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Proof. Uniqueness is not hard (try it!). Essentially, each ce Cis
determined by the a € L above and below it.

Existence is usually established by taking normal ideals of L. These

are subsets N ¢ L such that N = LU(N) where

U(S) ={a:s<a for each seS}
L(S) ={a:a<sforeach seS}

In other language, normal ideals are the fixed points of the polarity
given by the relation < on L.
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MacNeille Completions

MacNeille completions have good and bad. They have nice
order-theoretic properties, but poor algebraic ones.

e They preserve all existing joins and meets

The MC of a Boolean algebra is Boolean

The MC of a Heyting algebra is a Heyting algebra

Only two varieties of lattices are closed under MC's

Only three varieties of Heyting algebras are closed under MC's

Quick question: What are the two/three?

6

23



MacNeille Completions and Stone Duality

Thm For a Boolean algebra B with Stone space X its MacNeille
completion is given by

B MC(B)

Clopen(X) Reg(X)

IN

IN

Here, Reg(X) is the collection of regular open sets, ones that equal
the interior of their closure.
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Canonical Completions

What about the following completion?

B < BS
[ I

Clopen(X) Pow(X)

IN

This is called the canonical completion (CC) of B. It is known since
Stone. First used by Jénsson and Tarski in 1950's to study relation
algebras. Later used in modal logic and Kripke completeness.
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Canonical Completions

Defn For a completion L < C we say

e ke Cis closed if it is a meet of elements of L

e ue Cisopen if it is a join of elements of L

Let K be the closed elements and O be the open ones.

Note In the completion Clopen(X) < Pow(X),

Closed = topologically closed

Open = topologically open
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Canonical Completions

Defn A completion L < C of a bounded lattice L is a canonical
completion if for each ce Cand A,BcL

1. each ce Cis a join of closed elements
2. each ce Cis a meet of open elements
3. AA<VB= 3 finite A" c A,B'c B with AA’<VB’

1 + 2 are called density. 3 is called compactness.

Thm Each bounded lattice L has a CC L® and this is unique up to
unique commuting isomorphism.
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Canonical Completions — Boolean Algebras

Prop Clopen(X) < Pow(X) is a CC.

Proof
Hausdorff = each singleton {x} is closed. This gives density.

Topological compactness of X = compactness.
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Canonical Completions — General Case

Proof of Uniqueness

Compactness shows the poset K u O is uniquely determined.

Density shows that a canonical completion is MC(K u O).
Proof of Existence

Define sets F, Z and a relation Rc F x T as follows.

F ={F:Fis a filter of L}
Z={l:1is an ideal of L}
R={(F,1):Fnlzg)}

Then L° is the fixed points of the polarity given by R.
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Notes on the General Case

Note The existence proof is a template for completions by
choosing particular sets of filters and ideals.

e MacNeille completion: F,Z are principle filters and ideals

e |deal completion: F is principle filters, Z is all ideals

Note None of this uses the axiom of choice except the particular
realization of B® via Stone duality.
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Extending Maps

Consider an order preserving map f : L - M between lattices.
Using the order dual LY and finite products, this is quite general.

Example Heyting implication —: L9 x L — L is order preserving.

Defn A lattice expansion (LE) is a bounded lattice with a family of
operations that preserve or reverse order in each coordinate.

Many of the strongest results require a map f: L" — L to preserve
finite joins in each coordinate. These are called operators. They
are prominent in modal logic.
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Extending Maps

Defn For f: L — M, let f°:L° - M° be given as follows

fo(k) = A{f(a) : k<a} (kclosed)

fo(c) = V{f°(k) :k<c}
There is a dual notion f*: L® — M® using meets of open elements.
A similar thing can be done for MacNeille completions. Easier.

Defn The MacNeille and canonical completion of a LE (L, f;) is the
completion of the lattice with the extension of its operations.

16
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Kripke frames
Example Let X be a set with an n+1-ary relation R. Then fg is an

n-ary operator on Pow(X) where

fr(A) = {x € X: 3Rx for some 3 € A}
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Kripke frames

Thm For (B, f;) a Boolean algebra with f; an nj-ary operator, there
are n; + 1l-ary relations R; on the Stone space X with

(B, fi)° = (Pow(X),fg,)

Note This has as a consequence that a variety of modal algebras
that is closed under canonical completions is Kripke complete.
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A Laundry List of Theorems

Thm 1

The classes of lattices, distributive lattices, Boolean algebras, and
Heyting algebras are all closed under CCs.

Thm 2

The canonical completion for LEs is functorial.

Thm 3

If a class K of LEs is closed under CCs and ultraproducts, then the
variety V(K) it generates is closed under CCs.
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A Laundry List of Theorems

Thm 4

Sahlqvist's Theorem provides sufficient syntactic conditions for an
equation to be preserved by CCs.

Thm 5

For (L,f;) a LE, the CC (L,f;)° can be embedded into the MC of
an ultrapower of (L, f;).

Cor

If a variety of LEs is closed under MCs, then it is closed under CCs.
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A Laundry List of Theorems

Thm 6

If D is distributive and C is completely distributive, any lattice
homo f: D — C extends to a complete homo f: D® — C.

D——m D“‘

f f
c
Note

This says that CCs for distributive lattices are free completely
distributive extensions. This provides a simple path to various
classical results about completely distributive lattices.
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A Laundry List of Theorems

Thm 7

If V is a finitely generated variety of LEs, then the canonical
completion is the profinite completion for members of V.
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