Decompositions in Quantum Mechanics

John Harding

New Mexico State University jharding@nmsu.edu

Washington, February 2019

The role of projection operators

In the standard Hilbert space formulation of QM, projections play a central role. Our key ingredients.

- $\mathcal Q$ = the orthomodular lattice of projections of $\mathcal H$
- \mathcal{S} = the convex set of states
- \mathcal{O} = the observables
- \mathcal{B} = the Borel algebra of $\mathbb R$
- \mathcal{G} = a Lie group

The role of projection operators

The Spectral Theorem

Observables correspond to σ -homomorphisms $A: \mathcal{B} \rightarrow \mathcal{Q}$

Gleason's Theorem

States correspond to σ -additive $s: \mathcal{Q} \rightarrow [0, 1]$

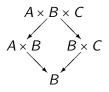
Wigner's Theorem

Unitary and anti-unitary maps of ${\mathcal H}$ correspond to auto's of ${\mathcal Q}$

- Try to replace \mathcal{H} with an object X of a suitable category \mathcal{C}
- To build an omp Q from X.
- To use this as a basis of developing aspects of QM.

The categorical setting

Sufficient conditions on the category C are that it has biproducts, or that it is "honest", meaning it has finite products, projections are epic, and each diagram below is a pushout.



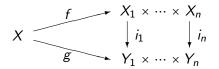
These properties lift to the category $\mathcal{C}^{\textit{G}}$ of group representations.

Set, Group, Top, Graphs, G-Sets, etc. are honest.

Constructing \mathcal{Q}

Definition An *n*-ary product map is an iso $f: X \longrightarrow X_1 \times \cdots \times X_n$.

Definition Two such maps are equivalent if there are iso's i_1, \ldots, i_n making the following diagram commute.



Definition An n-ary decomposition of X is an equivalence class

$$[X \simeq_f X_1 \times \cdots \times X_n]$$

Constructing ${\cal Q}$

Definition Q(X) is all binary decompositions $[X \simeq X_1 \times X_2]$ with

- 1. $0 = [X \simeq \{*\} \times X]$ 2. $1 = [X \simeq X \times \{*\}]$
- 3. \perp is the operation $[X \simeq X_1 \times X_2]^{\perp} = [X \simeq X_2 \times X_1]$
- 4. \leq is the relation $[X \simeq X_1 \times (X_2 \times X_3)] \leq [X \simeq (X_1 \times X_2) \times X_3]$

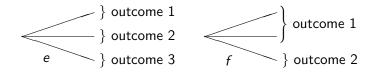
Theorem Q(X) is an omp.

Note: if |X| = 4, then Q(X) is height 2 with 8 elements.

Physical interpretation

Suppose $e: X \to X_1 \times X_2 \times X_3$ is a ternary product.

Then $f : A \rightarrow (X_1 \times X_2) \times X_3$ is a binary product.



Think of *n*-ary decompositions as experiments with *n* outcomes.

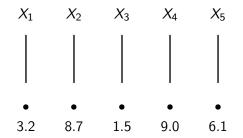
The Spectral Theorem

- Call *n*-ary decompositions $X \simeq X_1 \times \cdots \times X_n$ *n*-ary experiments.
- Members of \mathcal{Q} are binary experiments or questions.
- Finite Boolean $\mathcal{B} \leq \mathcal{Q}$ correspond to *n*-ary experiments.
- Arbitrary $\mathcal{B} \leq \mathcal{Q}$ correspond to sheaf rep's of X in good cases.

The Spectral Theorem

A Boolean subalgebra of Q consists of compatible questions that can be asked simultaneously such as "is it here" or "here". We call a Boolean subalgebra of Q an observable quantity.

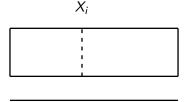
In the finite case, to assign numbers to observable quantity we give a numerical value to each outcome.



The Spectral Theorem

Let \mathcal{B} be an infinite Boolean subalgebra of \mathcal{Q} with Stone space Z.

A scaling of \mathcal{B} is a measurable map $\varphi: \mathsf{Z} \to \mathbb{R} \cup \{\pm \infty\}$.



Ζ

An observable is an observable quantity together with its scaling. We obtain a calculus of compatible observables with A + B, A^2 , e^A as in the Hilbert space setting.

States

A state is a (σ) additive map $s: \mathcal{Q} \rightarrow [0,1]$

Theorem Let \mathcal{B} be an observable quantity with Stone space Z scaled by φ . Each state *s* gives a measure μ_s on Z. Set

$$\mu_s(\varphi^{-1}(U))$$
 = the probability of an outcome in U
 $\int \varphi d\mu_s$ = the expected value

Note: In standard Hilbert space QM, observables and states arise the same way, but with additional conditions.

Dynamics

Let \mathcal{C}^{G} be the category of group representations where $G = (\mathbb{R}, +)$.

Objects are pairs (X, E) where X is an object of C and E is a group homomorphism called the "natural frequency"

 $E: \mathbb{R} \to \operatorname{Aut} X$

For a Hilbert space ${\mathcal H}$ the standard choice of natural frequency is

$$E(t)v = e^{it}v$$

Dynamics

The Hamiltonian *H* is an observable of Q(X, E) associated with a finite scaling $\lambda_1, \ldots, \lambda_n$ and decomposition

$$(X, E) \simeq (X_1, E_1) \times \cdots \times (X_n, E_n)$$

Let E^H be the 1-parameter group of automorphisms of X given by

$$E^{H}(t) = E_{1}(\lambda_{1}t) \times \cdots \times E_{n}(\lambda_{n}t)$$

Then the dynamical group U of (X, E) is given by the generalized time independent Schrödinger equation

$$U = E^H$$

Intuitively, pieces at higher energy vibrate more quickly.

Treating Hamiltonians H given by an arbitrary observable rather than a finite one requires more structure on the objects of C.

In the Hilbert space setting the action of the unitary group U for a Hamiltonian H can be approximated within ϵ for all $v \in \mathcal{H}$ and all $t \in [-T, T]$ by some finite observable H' as Hamiltonian.

For systems with structures X_1, X_2 and logics Q_1, Q_2 we want a structure X for the compound system so that for its logic Q:

- 1. There is $f : \mathcal{Q}_1 \times \mathcal{Q}_2 \rightarrow \mathcal{Q}$
- 2. This f preserves orthogonal joins in each argument
- 3. For states σ_i of Q_i , there is a state ω of Q with

$$\omega(f(q_1,q_2)) = \sigma_1(q_1)\sigma_2(q_2)$$

Let $\ensuremath{\mathcal{C}}$ be a dagger symmetric monoidal category with biproducts.

Q(X) is the set of biproduct decompositions of X. Its elements correspond to orthogonal projections $p: X \to X$.

Scalars of C are morphisms C(I, I) from the tensor unit I to itself. A scalar s is positive if $s = s^{\dagger}$ and $s \le t$ if s + r = t for a positive r.

$$[0,1]_{\mathcal{C}} = \{s \in \mathcal{C}(I,I) \mid 0 \le s \le 1\}$$

An element $u: I \to X$ is normal if $u^{\dagger}u = 1$.

Each normal $u: I \to X$ gives a pseudo-state $\sigma_u: \mathcal{Q} \to [0,1]_{\mathcal{C}}$ where

$$\sigma_v(p) = u^\dagger p u$$

If the interval unit interval $[0,1]_{\mathcal{C}}$ is contained in real unit interval, these become actual states of the omp \mathcal{Q} .

Let Q_1 , Q_2 and Q be omps of decompositions of X, Y and $X \otimes Y$. Define $f : Q_1 \times Q_2 \rightarrow Q$ by

 $f(p,q) = p \otimes q$

If $u: I \to X$ and $v: I \to Y$ are normal, so is $u \otimes v$ and

$$\sigma_{u\otimes v}(p,q) = \sigma_u(p)\sigma_v(q)$$

So the tensor \otimes of C lifts to a tensor of the omps Q_1 and Q_2 .

Concluding remarks

Current work is to carry out this program in specific cases, such as for the categories of sets, normed groups or vector bundles. One example is a Wigner type theorem for sets.

Theorem For X an infinite set, Aut $Q(X) \simeq$ Aut X.

Mackey's theorem shows that under mild assumptions, any theory of quantum mechanics will produce an omp of questions Q for each quantum system.

To me, decompositions provide a geometric root for omps.

Thank You