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Abstract. A pseudo ordered set (X,≤) is a set X with a binary relation ≤ that is reflexive
and antisymmetric. We associate to a pseudo ordered set X, a partially ordered set Γ(X) called
the covering poset. Taking any completion (C, f) of the covering poset Γ(X), and a special
equivalence relation θ on this completion, yields a completion C/θ of the pseudo ordered set X.
The case when (C, f) is the MacNeille completion of Γ(X) gives the pseudo MacNeille completion
of X.

1. Introduction

In 1971, Skala [11] introduced the notions of pseudo ordered sets, and trellises. A pseudo
ordered set is a set with a relation that is reflexive, and transitive; and a trellis is a pseudo
ordered set where any two elements have a greatest lower bound, and a least upper bound.
Trellises, in a different signature, are the weakly associate lattices introduced by Fried [3]. Skala
proved that every trellis can be order embedded into a complete trellis, that is, into a trellis
where each subset has a greatest lower bound and a least upper bound. While Skala states
this for trellises, her results show that any pseudo ordered set has an order embedding into a
complete trellis.

In this note, for each pseudo ordered set X we construct a poset Γ(X), called the covering
poset of X, and show that X is a quotient of its covering poset by what we term a convex bounded
relation. This is a relation in which each equivalence class is convex and has a least and largest
element. It is shown that for any order embedding of the poset Γ(X) into a complete lattice C,
there is a quotient of C by a convex bounded relation that is a complete trellis into which X is
order embedded. Thus, each of the many methods to complete posets provides a corresponding
method to complete trellises. Using the MacNeille completion of the poset Γ(X) gives what we
call the pseudo MacNeille completion of the trellis X. This completion has attractive features,
and reduces to the ordinary MacNeille completion when applied to a poset.

In her monograph [12], Skala showed that each pseudo ordered set can be order embedded
into a complete trellis. However, Skala’s method of completion did not have such attractive
features. For example, when applied to a chain, it need not yield even a lattice. Gladstein [6]
gave a characterization of when a trellis of finite length is complete. This path has been followed
by Bhatta and Shashirekha [8, 9] to give conditions for completeness of arbitrary trellises, similar
in spirit to the result of Dilworth that a lattice is complete if and only if each chain has a least
upper bound. Otherwise, there seems to be little known about complete trellises and completions
of pseudo ordered sets.

This note is arranged in the following way. In the second section, we give background.
In the third section, we construct the covering poset Γ(X) of X, and in the fourth section we
describe a general method for completing pseudo ordered sets. In the fifth section, we provide an
abstract characterization of the pseudo MacNeille completion of a pseudo ordered set X. This
note has been adapted from the Ph.D. thesis of the first listed author [2].
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2. Preliminaries

Around 1970, Skala and Fried independently began to work with generalizations of partial
orders and lattices where the underlying order was not required to be transitive. For Skala,
[11, 12] these not necessarily transitive generalizations of posets and lattices were called pseudo
orders and trellises, respectively. Fried [3] considered not necessarily transitive generalizations
of lattices from a universal algebraic viewpoint under what eventually became known as weakly
associative lattices. For a guide to some literature on weakly associated lattices, see [5, p. 313].

Definition 2.1. A relation ≤ on a set X is a pseudo order if for any a ∈ X, a ≤ a and if for any
a, b ∈ X, a ≤ b and b ≤ a implies a = b. We call (X,≤) a pseudo ordered set if ≤ is a pseudo
order on X.

The notion of a pseudo ordered set is a very general one. Any poset is a pseudo ordered set.
A tournament is an assignment of a direction to each edge of a complete graph. Tournaments
are exactly those pseudo ordered sets that are totally ordered in that they satisfy a ≤ b or b ≤ a
for all a, b. In fact, pseudo ordered sets obviously correspond to looped directed graphs that
contain no 2-cycles.

Definition 2.2. If B is a subset of a pseudo ordered set X, an element c of X is called an upper
bound of B if b ≤ c for every b ∈ B; c is called a least upper bound (join) of B if c is an upper
bound of B and c ≤ d for any upper bound d of B. Lower bounds and greatest lower bounds
(meets) are defined dually. We often write the join of B as

∨
B and the meet of B as

∧
B.

Definition 2.3. A trellis is a pseudo ordered set (X,≤) in which any two elements have a least
upper bound and a greatest lower bound. We say that X is a complete trellis if every subset has
a least upper bound and a greatest lower bound.

Trellises have an alternate description [4, 11] as algebras (X,∧,∨) with two idempotent,
commutative binary operations that satisfy the absorption laws and the weak associative laws

((x ∧ z) ∨ (y ∧ z)) ∨ z = z and ((x ∨ z) ∧ (y ∨ z)) ∧ z = z.

Aspects of trellises may be counterintuitive to those used to working with lattices. In a trellis,
we need not have a∧ b ≤ a∨ b, and as the following example shows, there are finite trellises that
are not complete.

Example 2.4. The three element cycle Z = ({a, b, c} ,≤) in which a < b < c < a is a trellis,
but not a complete trellis.

Definition 2.5. Let X be a pseudo ordered set and A ⊆ X.

(1) The set of lower bounds of P is L(A) = {a ∈ X : a ≤ p for all p ∈ A}.
(2) The set of upper bounds of P is U(A) = {a ∈ X : p ≤ a for all p ∈ A}.
(3) We say A is a normal ideal if LU(A) = A.

In the case that A = {a} for some a ∈ X we use L(a) for L(A) and U(a) for U(A).

While these definitions are familiar from posets, care must be taken because many familiar
properties no longer hold in the setting of pseudo ordered sets. For instance, it need not be the
case that LL(A) = L(A) or that LU(a) = L(a). However, even in the setting of a pseudo order
the pair L,U is a Galois connection since these are the polars of the order relation. In particular
(a) L,U are order inverting, (b) A ⊆ LU(A), A ⊆ UL(A), and (c) LUL = L, ULU = U .
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Lemma 2.6. If every subset of a pseudo ordered set X has a least upper bound then X is a
complete trellis.

Proof. Let A ⊆ X. Then L(A) has a least upper bound ` =
∨
L(A). For b ∈ A, we have ` ≤ b

since b is an upper bound of L(A). So ` ∈ L(A). But if a ∈ L(A), then a ≤ `. Thus ` =
∧
A. �

An equivalence relation θ on a pseudo ordered set has an associated relation E on the
quotient given by a/θ E b/θ if there exist xθa and yθb with x ≤ y. The relation θ is a pseudo
congruence if the existence of x, x′θa and y, y′θb with x ≤ y and y′ ≤ x′ imply aθb. It is easily
seen that the quotient of a pseudo ordered set by a pseudo congruence is a pseudo order and
that a ≤ b implies a/θ E b/θ. We shall apply these ideas only in a special situation in which the
descriptions have a form that is particularly useful for computations.

Definition 2.7. An equivalence relation θ on a poset P is bounded if each equivalence class a/θ
has a least element (a/θ)l and a largest element (a/θ)u.

The proof of the following is routine.

Proposition 2.8. Let θ be a bounded equivalence relation on a poset P and E be its associated
relation. Then

(1) a ≤ b implies a/θ E b/θ.
(2) a/θ E b/θ iff (a/θ)l ≤ (b/θ)u.
(3) θ is a pseudo congruence iff (a/θ)l ≤ (b/θ)u and (b/θ)l ≤ (a/θ)u imply aθb.

Any lattice congruence is a pseudo congruence, but a lattice congruence even on a complete
lattice need not be bounded. The following extends the known result that the quotient of a
complete lattice by a bounded lattice congruence is again a complete lattice.

Proposition 2.9. If P is a complete poset and θ is a bounded pseudo congruence on P , then
the quotient (P/θ,E) is a complete trellis.

Proof. Given D ⊆ P/θ, let D = {(a/θ)l : a/θ ∈ D}. For a/θ ∈ D, we have (a/θ)l ≤
∨
D,

so a/θ = (a/θ)l/θ E (
∨
D)/θ. Therefore (

∨
D)/θ is an upper bound of D. Suppose b/θ is an

upper bound of D. Then for a/θ ∈ D we have (a/θ)l ≤ (b/θ)u, so
∨
D ≤ (b/θ)u. This implies

that (
∨
D)/θ E (b/θ). So (

∨
D)/θ is the least upper bound of D. Greatest lower bounds are

established dually. �

We next adapt the notions of completions of posets to the setting of pseudo ordered sets in
an obvious way. To begin, a map f : X → Y between pseudo ordered sets is order preserving if
a ≤ b implies f(a) ≤ f(b). We say that f is an order embedding if a ≤ b iff f(a) ≤ f(b), and an
order isomorphism if it is an order embedding and onto. As is common, we denote the pseudo
orders on X and Y by the same symbol since confusion is not likely.

Definition 2.10. An extension of a pseudo ordered set X is a pair (E, f) where E is a pseudo
ordered set and f : X → E is an order embedding. If E is a complete trellis, we say that the
extension (E, f) is a completion of X.

It is well known that every poset can be embedded into a complete lattice. Skala [11, 12]
gave a result showing that every trellis can be order embedded into a complete trellis. In fact,
Skala’s proof showed more, that every pseudo ordered set can be order embedded into a complete
trellis, that is, that every pseudo ordered set has a completion. To describe Skala’s completion,
we first need the following.
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Definition 2.11. For any subset A of a pseudo ordered set X we define the closure of A, denoted
as A∗, to be the intersection of all subsets Q of X satisfying the following:

(1) A ⊆ Q
(2) if Q′ ⊆ Q and

∨
Q′ exists, then

∨
Q′ is in Q.

Thus A∗ is the smallest set that contains A and is closed under existing joins.

Definition 2.12 (Skala’s Completion). For a pseudo ordered set X, let B = X ∪ S∗ where
S = {A ⊆ X : A has no join} and S∗ = {A∗ : A ∈ S}. The pseudo order E on B is given as
follows. Here x, y ∈ X and P,Q ∈ S∗.

(1) x E y iff x ≤ y
(2) x E P iff x is in P
(3) P E x iff z ≤ x for every z in P
(4) P E Q iff P ⊆ Q

In order to distinguish between joins and meets in X and in B, we use
∨

and
∧

for joins
and meets in X, and Σ and Π for joins and meets in B. Skala established the following [11].

Proposition 2.13. For C ⊆ B let D = {x : x ∈ X and x ∈ C} ∪ {x : x ∈ C for some C ∈ C}.
Then

Σ C =

{ ∨
D if it exists;

D∗ otherwise.

Then by Lemma 2.6, we have the result.

Theorem 2.14. For a pseudo ordered set X, the pair (B, f) is a completion of X, where B is
the pseudo ordered set constructed in Definition 2.12 and f is the inclusion map.

While Skala’s completion shows that every pseudo ordered set can be order embedded into
a complete trellis, it is artificial, and quite poorly behaved in nearly every other aspect.

Example 2.15. Skala’s completion applied to a chain X.

v0

v1

v2

v3

X

u3

u2

u1

u0

MacNeille completion of X

v0

v1

v2

v3

z

u3

u2

u1

u0

Consider the chain X shown at left. This is a bounded lattice, but is not complete. Its
MacNeille completion is the complete lattice shown at right. It is also a chain. To describe
Skala’s completion B = X ∪S∗ of X, we note that S is the set of subsets of X that have no join.
Thus S is the set of infinite subsets of V = {vn : n ∈ N}. Since v0 is the join of the empty set,
the set S∗ of closures of members of S is the set of infinite subsets of V that contain v0. The
pseudo order of B is not even a partial order. Indeed, for P = {v2n : n ∈ N} we have P ∈ S∗.
Then v1 E v2, and v2 E P since v2 ∈ P , but it is not the case that v1 E P .
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Remark 2.16. One might ask why Skala looked to unusual methods to complete pseudo ordered
sets. One can complete a poset in well known and elegant ways. For a poset P , the collection
D(P ) of its downsets, or M(P ) of its normal ideals, are complete lattices; and there is an order
embedding of P into these complete lattices that in both cases is given by a L(a). For pseudo
orders, the notion of a downset is problematic since the ordering is not transitive. However, the
notion of a normal ideal remains intact, and as the pair L,U is a Galois connection on a pseudo
ordered set, the collection of all normal ideals forms a complete lattice under set inclusion. But
herein lies the problem. One has no hope of finding an order embedding of pseudo ordered set
with a non-transitive relation into a complete lattice, not even into a poset whose order relation
is necessarily transitive. For a pseudo ordered set, this failure is realized by the observation that
L(a) ⊆ L(b)⇒ a ≤ b, but not conversely.

3. The Covering Poset

It is obvious that to each pseudo ordered set (X,≤), one can associate a poset. One repairs
the defect of lack of transitivity in the order ≤ by taking its transitive closure tr (≤). The result
is reflexive and transitive, but perhaps antisymmetry is lost. But tr (≤) is a quasi order, so gives
rises to an equivalence relation θ and the quotient X/θ then naturally carries a partial order.
Further, the canonical quotient map x  x/θ is order preserving. However, all this is of little
use in obtaining a completion of X for a variety of reasons, including that a completion must be
an embedding. The idea here is a different one. Rather than finding a poset that is a quotient
of X, we find a poset that has X as a quotient.

Definition 3.1. Let X be a pseudo ordered set. For an element a ∈ X, we say that a is
transitive if for all b, c ∈ X, we have that b ≤ a ≤ c implies b ≤ c.

Definition 3.2. Let X be a pseudo ordered set, T be the set of its transitive elements, and N
be the set of its elements that are not transitive. Let Γ(X) be the set (N × {0, 1}) ∪ T . Define
unary operations +,− on Γ(X) in the following way. For a ∈ X:

(1) if a ∈ N then a+ = (a, 1) and a− = (a, 0),
(2) if a ∈ T then a+ = a = a−.

Note that from the above definition, each element x of Γ(X) can be expressed as a+ or a−

for some a ∈ A. The choice of a ∈ A is unique, but some elements a ∈ Γ(X) are given by both
a+ and a− for some a ∈ X, and this happens exactly when a is transitive.

Definition 3.3. Let v be the binary relation on Γ(X) given by:

(1) a+ v b+ iff ` ≤ a implies ` ≤ b.
(2) a+ v b− iff ` ≤ a and b ≤ u implies ` ≤ u.
(3) a− v b+ iff a ≤ b.
(4) a− v b− iff b ≤ u implies a ≤ u.

One must take care to note that if a+ = a−, or if b+ = b−, then there is no conflict in the
definition. This is a simple consequence of the observation that in such case a or b is transitive.
In fact, a is transitive iff a− = a+ iff L(a) = LU(a). To work with the relation v, it is convenient
to reformulate it in terms of the operations L,U of taking lower bounds and upper bounds. For
this, recall that L,U are a Galois connection on X.

Lemma 3.4. For X a pseudo ordered set and v the associated relation on Γ(X), for all a, b ∈ X
we have the following.
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(1) a+ v b+ iff L(a) ⊆ L(b)
(2) a+ v b− iff L(a) ⊆ LU(b)
(3) a− v b+ iff LU(a) ⊆ L(b)
(4) a− v b− iff LU(a) ⊆ LU(b)

Proof. Statements (1) and (2) are immediate from the definitions. For (3), if a− v b+ then
a ≤ b. So {a} ⊆ L(b). This gives LU(a) ⊆ LUL(b) = L(b). Conversely, since a ∈ LU(a), if
LU(a) ⊆ L(b), then a ∈ L(b), so a ≤ b, hence a− v b+. For (4), the definition of a− v b− is
equivalent to {a} ⊆ LU(b). This implies that LU(a) ⊆ LULU(b) = LU(b). Conversely, since
a ∈ LU(a), if LU(a) ⊆ LU(b), then {a} ⊆ LU(b), hence a− v b−. �

Proposition 3.5. For a pseudo ordered set X, the relation v on Γ(X) is a partial ordering and
the poset Γ(X) is isomorphic to the poset whose underlying set is N = {L(a), LU(a) : a ∈ X}
and whose partial ordering is set inclusion.

Proof. We begin by showing that v is antisymmetric. From the symmetry inherent in the
definition, it is enough to consider the cases (a) a+ v b+, b+ v a+, and (b) a− v b+, b+ v a−. In
case (a), 3.4.1 gives L(a) = L(b). Since a ∈ L(a) we then have a ≤ b, and similarly b ≤ a. Then
a = b, so a+ = b+. In case (b) 3.4.2 and 3.4.3 give LU(a) ⊆ L(b) ⊆ LU(a). So LU(a) = L(b).
This then gives a = b, and therefore L(a) = LU(a). This implies that a is transitive, so a− = b+.

Next, define f : Γ(X)→ N by setting f(a+) = L(a) and f(a−) = LU(a). If a− = a+ then
a is transitive, so L(a) = LU(a). Thus f is well defined. It is clearly onto. For x, y ∈ Γ(X),
Lemma 3.4 gives f(x) ⊆ f(y) iff x v y. Then if f(x) = f(y), we have x v y and y v x, and
since v is antisymmetric, x = y. So f is a bijection with x v y iff f(x) ⊆ f(y). It follows that
v is a partial ordering and f is an order isomorphism between the posets Γ(X) and N . �

Example 3.6. The covering poset Γ(Z) of three element cycle Z of Example 2.4 is shown in
Figure 1. This example illustrates that the covering poset of a trellis is not necessarily a lattice.
In general, the covering poset of an n-cycle is an n-crown.

a− b− c−

a+ b+ c+

Figure 1. The covering poset Γ(Z) of the 3-element cycle Z

Definition 3.7. For a pseudo ordered set X, let θX be the relation on its covering poset Γ(X)
given by

xθXy iff x, y ∈ {a−, a+} for some a ∈ X.

For the following, we suggest the reader review Definition 2.7, the material that precedes
it, and the Proposition 2.8 that follows it. We also recall that a subset C of a poset P is convex
if a, c ∈ C and a ≤ b ≤ c imply b ∈ C. An equivalence relation on a poset is convex if each of its
equivalence classes is convex.
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Proposition 3.8. The relation θX is a convex bounded pseudo congruence on Γ(X).

Proof. Since {a−, a+} and {b−, b+} are disjoint or equal, it follows that θX is an equivalence
relation and the sets {a−, a+} for a ∈ X are its equivalence classes. Let a ∈ X. Since a− v a+

the equivalence class {a−, a+} has a smallest element {a−, a+}l = a− and a largest element
{a−, a+}u = a+. So this relation is bounded. If a− v b+ and b− v a+, then by Definition 3.3 we
have a ≤ b and b ≤ a, and as X is a pseudo order a = b. So θX is a pseudo congruence.

To see that θX is convex, suppose x, y, z ∈ Γ(X), xθXz, and x v y v z. We must show
xθXy. Since Γ(X) is a poset, we have x v z, and our conclusion is trivial if x = z. So we may
assume that x = a− and z = a+ for some a ∈ X. Assume y = bi for i ∈ {+,−}. Consider
first the case that y = b+ so a− v b+ v a+. Then by Definition 3.3.3 we have a ≤ b, and by
Definition 3.3.1 we have ` ≤ b ⇒ ` ≤ a. But b ≤ b, so this implies that b ≤ a, hence a = b.
Then x = a− and y = a+, and this implies that xθXy. In the case y = b−, then a− v b− v a+,
so Definition 3.3.3 gives b ≤ a. Then Definition 3.3.4 gives a ≤ b. �

Definition 3.9. For a pseudo ordered set X, its covering map cX : Γ(X) → X is given by
setting cX(a−) = a and cX(a+) = a for a ∈ X.

Proposition 3.10. The covering map cX : Γ(X)→ X is order preserving.

Proof. Consider the four cases of Definition 3.3. For 3.3.1, if a+ v b+, then using ` = a, since
a ≤ a, we have a ≤ b. The other cases are similar. �

By Proposition 3.8, we have that θX is a pseudo congruence on Γ(X). So the associated
relation E on the quotient Γ(X)/θX is a pseudo order. The equivalence classes of θX are the
sets {a−, a+} for a ∈ X, with a− its least element and a+ its largest. So by Proposition 2.8.2
we have {a−, a+} E {b−, b+} iff a− v b+. By Definition 3.3.3 this is equivalent to a ≤ b. This
establishes the following.

Theorem 3.11. Let X be a pseudo ordered set. Then the covering map cX and canonical quotient
map κX are order preserving, and the map ιX : Γ(X)/θX → X given by ιX({a−, a+}) = a is an
order isomorphism with cX = ιX ◦ κX .

Γ(X)/θX

Γ(X) X
cX

κX ιX

4. A general method of completing pseudo ordered sets

In this section, we provide a general method to complete a pseudo ordered set X by com-
pleting its covering poset Γ(X) then taking a quotient. Throughout, we assume X is a pseudo
ordered set, P is a poset and f : Γ(X)→ P is an order embedding.

Definition 4.1. Define θf on P by

xθfy iff x = y or f(a−) ≤ x, y ≤ f(a+) for some a ∈ A.

Proposition 4.2. The relation θf is a convex bounded pseudo congruence and for a ∈ X, the
interval [f(a−), f(a+)] is an equivalence class of θf , and each non-trivial class is of this form.



8 MARIA D CRUZ-QUINONES AND JOHN HARDING (CORRESPONDING AUTHOR) JHARDINGNMSU.EDU

Proof. First we show that θf is an equivalence relation. The relation is clearly reflexive and
symmetric. For transitivity, let x, y, z ∈ P such that xθfy and yθfz. If x = y or y = z, clearly
xθfz. For the remaining possibility, f(a−) ≤ x, y ≤ f(a+) and f(b−) ≤ y, z ≤ f(b+) for some
a, b ∈ X. Then f(a−) ≤ f(b+) and f(b−) ≤ f(a+). Since f is an order embedding, we have
a− v b+ and b− v a+, which imply a ≤ b and b ≤ a. So, a = b. Then f(a−) ≤ x, y, z ≤ f(a+).
Therefore, xθfz.

We next show that x/θf has a least and largest element. If x/θf = {x} clearly x is the
least and largest element. Suppose there is y 6= x with y ∈ x/θf . Then there is a ∈ X such that
f(a−) ≤ x, y ≤ f(a+). If z ∈ x/θf with z 6= x there is a b ∈ X such that f(b−) ≤ x, z ≤ f(b+).
So f(a−) ≤ x ≤ f(b+) implies a− v b+. Hence a ≤ b. And f(b−) ≤ x ≤ f(a+), so b− v a+.
Then b ≤ a. So a = b. Therefore for any y ∈ x/θf we have that f(a−) ≤ y ≤ f(a+). Clearly
f(a−), f(a+) are in x/θf . Then f(a−) = (x/θf )l and f(a+) = (x/θf )u.

To see that x/θf is convex, note that this is trivial if x/θf = {x}. If there is y 6= x with
y ∈ x/θf , then there is a ∈ X such that each element of x/θf lies in the interval [f(a−), f(a+)].
But by the definition of θf , each element in this interval is θf -related to x. Thus x/θf is equal
to this interval, and hence is convex.

Since θf is a bounded, to show it is a pseudo congruence, it is sufficient by Proposition 2.8.3
to show that (x/θf )l ≤ (y/θf )u and (y/θf )l ≤ (x/θf )u imply that xθfy. If x/θf = {x}, the
assumptions give (y/θf )l ≤ x, y ≤ (y/θf )u. Then as θf is convex and bounded, this gives
xθfy. The situation is similar if y/θf = {y}. In the remaining case, there are a, b ∈ X with
f(a−) = (x/θf )l, f(a+) = (x/θf )u, f(b−) = (y/θf )l and f(b+) = (y/θf )u. The assumptions then
give f(a−) ≤ f(b+) and f(b−) ≤ f(a+). As we have argued several times, this gives a = b. Then
by the definition of θf , or by the fact that it is bounded and convex, we have xθfy. �

Using Propositions 2.8, 2.9 and 4.2 we have the following.

Corollary 4.3. If P is a complete lattice, then P/θf is a complete trellis whose ordering E is
given by

x/θf E y/θf iff (x/θf )l ≤ (y/θf )u.

From a pseudo ordered set X, we construct its covering poset Γ(X). Then for an order
embedding f : Γ(X) → P into a complete lattice P , that is, for a completion in the ordinary
sense of the poset Γ(X), we obtain a complete trellis P/θf . Of course, we seek a completion of
the pseudo ordered set X. For this, we require an order embedding of X into P/θf .

Definition 4.4. Let gf : X → P/θf be given by gf (a) = f(a+)/θf .

Theorem 4.5. For a completion f : Γ(X) → P of the poset Γ(X) into a complete lattice,
gf : X → P/θf is a completion of the trellis X. Further, for the covering map cX and canonical
quotient map κf , the following diagram commutes.

Γ(X)

P/θfX

P

cX

f

κf

gf
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Proof. Let a, b ∈ X. By Definition 3.3.3 we have a ≤ b iff a− v b+. Since f is an order
embedding, this is equivalent to f(a−) ≤ f(b+). By Proposition 4.2, f(a−) = (f(a+)/θf )l and
f(b+) = (f(b+)/θf )u. So by Corollary 4.3, a ≤ b is equivalent to f(a+)/θf E f(b+)/θf , and hence
to gf (a) E gf (b). So gf is an order embedding. It is trivial that the diagram commutes. �

There are several additional properties of this method of completing a pseudo order that
are of interest. In the following, we use Im f for the image of a function f .

Definition 4.6. An order embedding f : A → C between pseudo ordered sets is strict if it
satisfies the following. If n ≥ 1 and c1, c2, ..., cn ∈ C with f(a) ≤ c1 ≤ · · · ≤ cn ≤ f(b), then
either ci ∈ Im f for some i ≤ n or a ≤ b.

We use the terms strict extension and strict completion with the obvious meaning.

Proposition 4.7. If f : Γ(X) → P is an order embedding of the poset Γ(X) into a complete
lattice P , then the completion gf : X → P/θf is strict.

Proof. Let a, b ∈ X, n ≥ 1 and p1, ..., pn ∈ P with gf (a) E p1/θf E · · · E pn/θf E gf (b). Suppose
that pi/θf /∈ Im gf for all i ≤ n. Then by Proposition 4.2, each equivalence class pi/θf is trivial
for each i ≤ n. From the description of E in Corollary 4.3 and the description of the largest and
least members of the equivalence classes θf , we have f(a−) ≤ p1 ≤ · · · ≤ pn ≤ f(b+). Since P
is a complete lattice, its order is transitive. So f(a−) ≤ f(b+). Since f is an order embedding,
then a− v b+. Then by Definition 3.3.3 we have a ≤ b. �

The following result shows that the diagram in Theorem 4.5 has a universal property.

Proposition 4.8. Suppose Q is a pseudo ordered set and u : P → Q and v : X → Q are order
preserving with v ◦ cX = u ◦ f . Then there exists a unique order preserving map h : P/θf → Q
with h ◦ κf = u and h ◦ gf = v.

Γ(X)

P/θfX

P

Q

cX

f

κf

gf
u

hv

Proof. Define h(x/θf ) = u(x). To see that h is well defined, let x, y ∈ P with xθfy. Then either
x = y or f(a−) ≤ x, y ≤ f(a+) for some a ∈ X. If x = y clearly u(x) = u(y). Otherwise,
u ◦ f(a−) = v ◦ cX(a−) = v(a) and u ◦ f(a+) = v ◦ cX(a+) = v(a). So, u ◦ f(a−) = u ◦ f(a+).
Since u is order preserving, u ◦ f(a−) ≤ u(x), u(y) ≤ u ◦ f(a+). So u(x) = u(y).

Also for each x ∈ P and a ∈ X, we have h ◦ κf (x) = h(x/θf ) = u(x). So h ◦ k = u. And
h ◦ gf (a) = h(f(a+)/θf ) = u ◦ f(a+) = v ◦ cX(a+) = v(a). So h ◦ gf = v.

To see that h is an order preserving map, let x/θf and y/θf be such that x/θf E y/θf . By
Corollary 4.3, (x/θf )l ≤ (y/θf )u. We have several cases. For the first case, suppose (x/θf )l = x
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and (y/θf )u = y. Then x ≤ y. Since u is an order preserving map, we have u(x) ≤ u(y) this
implies h(x/θf ) ≤ h(y/θf ). For the second case, let (x/θf )l = f(a−) and (y/θf )u = f(b+) for
some a, b ∈ X. Then f(a−) ≤ f(b+). Since u is an order preserving map, uf(a−) ≤ uf(b+).
Since u = h ◦ κf , we have h(f(a−)/θf ) ≤ h(f(b+)/θf ). In addition we know that f(a−)θfx and
f(b+)θfy, so h(x/θf ) ≤ h(y/θf ). For the third case, assume f(a−) = (x/θf )l and (y/θf )u = y
for some a ∈ X. Then f(a−) ≤ y. Applying u in both sides gives uf(a−) ≤ u(y) = h(y/θf ).
Also, uf(a−) = h ◦ κf (f(a−)) = h(x/θf ) as above, so h(x/θf ) ≤ h(y/θf ). The fourth case is
similar to the third. Therefore, h is an order preserving map. The uniqueness of h is given by
the commutativity of the lower part of the diagram. �

5. The pseudo MacNeille completion

One of the best known methods to complete a poset is the MacNeille completion. This is
also known as the Dedekind completion, normal completion, completion by cuts, among other
names. It was introduced by MacNeille as an extension of Dedekind’s method of conditionally
completing the rationals to the reals by “cuts”. A normal ideal of a poset P is a subset N ⊆ P
with N = LU(P ). The collection of all normal ideals of P is a complete lattice and there is an
order embedding of P into it taking a to the principle ideal L(a) it generates. This embedding
is both join and meet dense, and it was shown by Banaschewski and Schmidt [1, 10] that these
properties characterize the MacNeille completion up to unique commuting isomorphism. In
hindsight, it is advantageous to define the MacNeille completion of a poset as a join and meet
dense completion, and to use the construction via normal ideals as a means to establish existence.
We will follow this path to introduce the pseudo MacNeille completion of a pseudo ordered set
and establish its basic properties.

Definition 5.1. Let f : X → Y be an order preserving map between pseudo ordered sets. We
say that f is join dense if for each y ∈ Y we have that y =

∨
{f(x) : f(x) ≤ y} and that f is

meet dense if for each y ∈ Y we have y =
∧
{f(x) : y ≤ f(x)}.

A map f : X → Y between pseudo ordered sets preserves existing joins if for each S ⊆ X,
if S has a join in X, then its image f(S) has a join in Y and f(

∨
S) =

∨
f(S). A similar

condition describes when f preserves existing meets.

Proposition 5.2. Let f : X → Y be a strict order embedding between pseudo ordered sets. If f
is meet dense, then it preserves existing joins; and if f is join dense, then it preserves existing
meets.

Proof. We only show the statement that meet dense implies preserving existing joins, the other
is dual. Suppose S ⊆ X has a join. Since f is order preserving, f(

∨
S) is an upper bound of

the image f(S). Suppose y is another upper bound of f(S), that is, f(s) ≤ y for all s ∈ S. By
meet density y =

∧
{f(x) : y ≤ f(x)}. So,

f(s) ≤ y ≤ f(x) for all s ∈ S and for all x ∈ X with y ≤ f(x).

Since f is strict, either y is in the image of f , or s ≤ x for all s ∈ S and all x ∈ X with y ≤ f(x).
If y is in the image of f , then there is z ∈ X with f(z) = y. Then f(s) ≤ f(z) for all s ∈ S.

Since f is an order embedding, s ≤ z for all s ∈ S, hence
∨
S ≤ z. Therefore f(

∨
S) ≤ f(z) = y.

If y is not in the image of f , then we have that f(s) ≤ f(x) for all s ∈ S and all x ∈ X with
y ≤ f(x). Since f is an order embedding, we have

∨
S ≤ x for each x ∈ X with y ≤ f(x),

and therefore f(
∨
S) ≤ f(x) for each x ∈ X with y ≤ f(x). Since y =

∧
{f(x) : y ≤ f(x)}, it

follows that f(
∨
S) ≤ y. �
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Definition 5.3. A completion (E, e) of a pseudo ordered set X is called a pseudo MacNeille
completion of X if e : X → X is join dense, meet dense, and strict.

We use the article “a” in this definition because at this point we do not know of the
existence of a pseudo MacNeille completion, and as there may potentially be many. As we
will see later, each pseudo ordered set has a pseudo MacNeille completion that is unique up to
unique commuting isomorphism. Once established, the article “the” becomes appropriate, when
understood in the correct way.

Lemma 5.4. Let (E, e) and (F, f) be pseudo MacNeille completions of X. For g : E → F given
by g(c) =

∨
{f(x) : e(x) ≤ c}

(1) g ◦ e = f .
(2) g is order preserving.
(3) If g(c) = f(z) then c = e(z).
(4) g is an order embedding.
(5) g is strict.

Proof. For (1), let z ∈ X. Then g(e(z)) =
∨
{f(x) : e(x) ≤ e(z)}. Since e(x) ≤ e(z) iff x ≤ z,

which occurs iff f(x) ≤ f(z), we have g(e(z)) =
∨
{f(x) : f(x) ≤ f(z)} = f(z).

For (2), suppose a, b ∈ E with a ≤ b. Suppose first that a ∈ Im(e). Then a = e(z) for some
z ∈ X and by (1), g(a) = f(z). Since g(b) =

∨
{f(x) : e(x) ≤ b} and e(z) = a ≤ b, we have

g(a) = f(z) ≤ g(b). Suppose a /∈ Im(e). We show the following

(∗) if x ∈ X and e(x) ≤ a ≤ b, then e(x) ≤ b.

If b ∈ Im(e), this follows since e is strict. Suppose that b /∈ Im(e), then for any y ∈ X, if
e(x) ≤ a ≤ b ≤ e(y), then since e is strict and a, b 6∈ Im(e) we have e(x) ≤ e(y). Since e is meet
dense, b =

∧
{e(y) : b ≤ e(y)}, and therefore e(x) ≤ b. This establishes (∗). Using (∗) we then

have g(a) =
∨
{f(x) : e(x) ≤ a} ≤

∨
{f(x) : e(x) ≤ b} = g(b).

For (3), suppose g(c) = f(z) and let S = {x : e(x) ≤ c}. By definition, g(c) =
∨
f(S). So

f(x) ≤ f(z) for all x ∈ S. Since f is an order embedding, z is an upper bound of S, and as e is
order preserving we have e(z) is an upper bound of e(S). The join density of e gives c =

∨
e(S),

and therefore c ≤ e(z). To see e(z) ≤ c, by meet density c =
∧
{e(y) : c ≤ e(y)}, so it is enough

to show that e(z) ≤ e(y) for all y such that c ≤ e(y). But if c ≤ e(y), then since g preserves
order and g ◦ e = f , we have f(z) = g(c) ≤ g(e(y)) = f(y), hence z ≤ y, and so e(z) ≤ e(y).

For (4), suppose g(a) ≤ g(b) for some a, b ∈ E. Using join and meet density of e we have

a =
∨
{e(x) : e(x) ≤ a} b =

∧
{e(y) : b ≤ e(y)}

For any x, y ∈ X with e(x) ≤ a and b ≤ e(y), since g ◦ e = f and g is order preserving,

f(x) ≤ g(a) ≤ g(b) ≤ f(y).

If g(a), g(b) /∈ Im(f), then as f is strict, x ≤ y, and hence e(x) ≤ e(y), whenever e(x) ≤ a
and b ≤ e(y). It follows from join and meet density that a ≤ b. If g(a) ∈ Im(f) and g(b) /∈ Im(f),
then g(a) = f(z) for some z ∈ X. By (3), a = e(z). So for all y with b ≤ e(y) we have f(z) ≤
g(b) ≤ f(y), and since f is strict and g(b) /∈ Im(f), then z ≤ y, and hence a = e(z) ≤ e(y).
By meet density, we have a ≤ b. A similar argument applies if g(a) /∈ Im(f) and g(b) ∈ Im(f).
Finally, if g(a), g(b) ∈ Im(f), then g(a) = f(z) and g(b) = f(w) for some z, w ∈ X. By (3),
a = e(z) and b = e(w). Then g(a) ≤ g(b) gives f(z) ≤ f(w), so z ≤ w. Hence a ≤ b.
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For (5), suppose that a, b ∈ E and w1, ..., wn ∈ F with

g(a) ≤ w1 ≤ · · · ≤ wn ≤ g(b).

If any of w1, ..., wn belong to Im(g) there is nothing to show. So suppose w1, ..., wn /∈ Im(g). We
must show that g(a) ≤ g(b), or equivalently, that a ≤ b. Note that by (1), Im(f) ⊆ Im(g), so
none of w1, . . . , wn belong to Im(f). Consider several cases.

Suppose first that g(a), g(b) ∈ Im(f). So g(a) = f(z) and g(b) = f(w) for some z, w ∈ X.
Then f(z) ≤ w1 ≤ · · · ≤ wn ≤ f(w). Since f is strict and w1, ..., wn /∈ Im(f), then z ≤ w, giving
f(z) ≤ f(w) and hence g(a) ≤ g(b).

Next, suppose g(a) ∈ Im(f) and g(b) /∈ Im(f). Then g(a) = f(z) for some z ∈ X. Note
that by (3), this gives a = e(z). For any y ∈ X with b ≤ e(y) we have g(b) ≤ g(e(y)) = f(y),
so f(z) ≤ w1 ≤ · · · ≤ wn ≤ g(b) ≤ f(y). Since f is strict and w1, ...wn, g(b) /∈ Im(f) we have
f(z) ≤ f(y), hence z ≤ y. This gives a = e(z) ≤ e(y) for all y with b ≤ e(y). Using that e is
meet dense, we have a ≤ b. The case when g(a) /∈ Im(f) and g(b) ∈ Im(f) is similar.

Finally, suppose g(a), g(b) /∈ Im(f). Then for any x, y ∈ X with e(x) ≤ a and b ≤ e(y) we
have f(x) = g(e(x)) ≤ g(a) and g(b) ≤ g(e(y)) = f(y). So

f(x) ≤ g(a) ≤ w1 ≤ · · · ≤ wn ≤ g(b) ≤ f(y).

Since none of g(a), g(b), w1, ..., wn belong to Im(f), by strictness f(x) ≤ f(y), so x ≤ y, hence
e(x) ≤ e(y). It follows from join and meet density that a ≤ b. �

Theorem 5.5. Let (E, e), (F, f) be pseudo MacNeille completions of a pseudo ordered set X.
Then there exists a unique order isomorphism g : E → F with f = g ◦ e.

E

X F

e g

f

Proof. Let g1 : E → F be defined by g1(c) =
∨
{f(x) : e(x) ≤ c} for every c ∈ E and g2 : F → E

is given by g2(a) =
∨
{e(x) : f(x) ≤ a} for each a ∈ F . By Lemma 5.4, g1 and g2 are order

embeddings with g1 ◦ e = f and g2 ◦ f = e. We have that f(X) ⊆ g1(E) since any element of
f(X) is of the form g1(e(x)) for some x ∈ X. Similarly e(X) ⊆ g2(F ). Since f is meet dense,
for any p ∈ F we have p =

∧
{f(x) : p ≤ f(x)}. Since every f(x) = g1(a) for some a ∈ E,

namely for a = e(x), we have p =
∧
{g1(a) : p ≤ g1(a)}. So g1 is meet dense. Similarly g2 is

meet dense. For any a ∈ E, g2(g1(a)) = g2(
∨
{f(x) : e(x) ≤ a}). By Proposition 5.2, since

g2 is strict and meet dense, it preserves existing joins. Since g2 preserves joins and g2 ◦ f = e,
we have g2(g1(a)) =

∨
{e(x) : e(x) ≤ a}. Then as e is join dense, we have g2(g1(a)) = a.

So g2 ◦ g1 is the identity map on E, and similarly g1 ◦ g2 is the identity on F . Therefore, g1
is a bijection and an order embedding. Thus, g1 is an order isomorphism. Now suppose that
h : E → F is another order isomorphism such that h ◦ e = f . Let c ∈ E. Since e is join
dense, c =

∨
{e(x) : e(x) ≤ c}. Since g, h are order isomorphisms, they preserve joins. So

g(c) =
∨
{g(e(x)) : e(x) ≤ c} =

∨
{h(e(x)) : e(x) ≤ c} = h(c). �



COMPLETIONS OF PSEUDO ORDERED SETS 13

This shows that a pseudo ordered set has, up to unique commuting isomorphism, at most
one pseudo MacNeille completion. We now turn to existence of a pseudo MacNeille completion.
There are two approaches. One is a direct one, through modification of the construction of the
MacNeille completion by normal ideals. We will only briefly mention this. We will focus on a
more transparent method via the MacNeille completion of the covering poset.

Definition 5.6. For a pseudo ordered set X, let (M Γ(X), ι) be the MacNeille completion of its
covering poset. We assume that M Γ(X) is a complete lattice that contains Γ(X) as a sublattice,
that ι : Γ(X)→ M Γ(X) is the inclusion map, and that ι is join and meet dense.

We begin with X pseudo ordered by ≤. Proposition 3.3 gives a partial ordering v on
its covering poset Γ(X). We also use v for the partial ordering on the MacNeille completion
M Γ(X). Definition 4.1 specialized to this situation provides an equivalence relation θ on M Γ(X)
where

x θ y iff x = y or a− v x, y v a+ for some a ∈ X
Proposition 4.2 gives that θ is a convex bounded pseudo congruence, and that the equivalence
class x/θ is a singleton, or an interval [a−, a+] for some a ∈ X, with values of (x/θ)l and (x/θ)u

given accordingly. We use M(X) for the quotient M Γ(X)/θ. Corollary 4.3 gives that M(X) is
a complete trellis under the pseudo ordering E where

x/θ E y/θ iff (x/θ)l v (y/θ)u.

Finally, Proposition 4.7 shows that the map g : X → M(X) given by g(x) = x+/θ is a strict
order embedding. This completion g : X → M(X) is the completion described in Section 4 using
the MacNeille completion of the covering poset.

Theorem 5.7. For a pseudo ordered set X, the completion g : X → M(X) constructed using
the MacNeille completion of the covering poset is a pseudo MacNeille completion of X.

Proof. All that remains to be shown is that g is meet and join dense. We will show that it is
meet dense, join density follows by symmetry. Let x/θ ∈ M(X). We must show

x/θ =
∧
{g(c) : x/θ E g(c)}.

Since M(X) is complete, there is γ ∈ M Γ(X) with γ/θ =
∧
{g(c) : x/θ E g(c)}. It is clear that

x/θ E γ/θ, so we must prove that γ/θ E x/θ. If x/θ is an interval [a−, a+], then x/θ = g(a), and
this is clear. It remains to consider the case when x/θ is the singleton {x}. For this, we consider
separately the cases when γ/θ is an interval [a−, a+], and when γ/θ is the singleton {γ}.

Assume γ/θ is the interval [a−, a+] and x/θ is {x}. Having γ/θ E x/θ is equivalent to
having a− v x. Since Γ(X) is meet dense in its MacNeille completion, to show a− v x, it is
sufficient to show that a− lies beneath each element of Γ(X) that lies above x. So we must show
for each c ∈ X that

x v c+ ⇒ a− v c+ and x v c− ⇒ a− v c−.

Suppose x v c+. This implies that x/θ E g(c). Since γ/θ is the meet of all such elements,
we have γ/θ E g(c), and this implies a− v c+. This provides the first item. For the second item,
assume x v c−. By Proposition 3.3.4, to show that a− v c−, we must show that if u ∈ X, then
c ≤ u implies a ≤ u. By Proposition 3.3.3, c ≤ u gives c− v u+, so x v c− v u+. Since v is
a partial ordering, x v u+, and this gives x/θ E g(u). From the definition of γ/θ as a certain
meet, we then have γ/θ E g(u). This implies that a− v u+. Then a ≤ u by Proposition 3.3.3.



14MARIA D CRUZ-QUINONES AND JOHN HARDING (CORRESPONDING AUTHOR) JHARDINGNMSU.EDU

It remains to show that γ/θ E x/θ in the case when γ/θ is the singleton {γ}. Since we are
assuming that x/θ is the singleton {x}, this amounts to showing that γ v x. Since Γ(X) is meet
dense in its MacNeille completion, it is enough to show

x v c+ ⇒ γ v c+ and x v c− ⇒ γ v c−.

If x v c+, then x/θ E g(c). By the definition of γ/θ as a certain meet, we have γ/θ E g(c),
and this gives γ v c+. This establishes the first item. For the second item, suppose x v c−. To
show that γ v c−, since Γ(X) is join dense in its MacNeille completion, it is enough to show
that each element of Γ(X) that lies beneath γ also lies beneath c−. So, under the assumption
that x v c− we must show

b+ v γ ⇒ b+ v c− and b− v γ ⇒ b− v c−.

Assume b+ v γ. To show b+ v c−, by Proposition 3.3.2 we must show that ` ≤ b and
c ≤ u imply ` ≤ u. By Proposition 3.3, these conditions imply `− v b+ v γ and x v c− v u+.
Since v is a partial ordering, we have x v u+. This gives x/θ E g(u), and by the definition of
γ/θ as a meet, we have γ/θ E g(u). This gives γ v u+. Since `− v γ, this gives `− v u+, so
by Proposition 3.3.3, ` ≤ u as required. This establishes the first item. For the second item,
suppose b− v γ. To show b− v c−, by Proposition 3.3.4 we must show that c ≤ u implies
b ≤ u. By Proposition 3.3.3, c ≤ u gives x v c− v u+. Since v is transitive, x v u+, so
x/θ E g(u). The definition of γ/θ then gives γ/θ E g(u), hence b− v γ v u+. So b− v u+ and
by Proposition 3.3.3 we have b ≤ u as required. �

Remark 5.8. There is an alternate approach to construct a pseudo MacNeille completion of
a pseudo ordered set X that at first looks quite similar to the construction of the MacNeille
completion of a poset via normal ideals. Say a subset P ⊆ X is a normal ideal if P = LU(P ).
Let M be the set of normal ideals of the form LU({a}) for some a ∈ X, and let N be the set of
all normal ideals of X that do not have a join. Note that there can be normal ideals of X not
of either form, such as L({a}) for an element a that is not transitive. Define a relation E on the
set M ∪N as follows. For a, b ∈ X and P,Q ∈ N :

(1) LU({a}) E LU({b}) iff LU({a}) ⊆ L({b})
(2) LU({a}) E P iff LU({a}) ⊆ P
(3) P E LU({a}) iff P ⊆ L({a})
(4) P E Q iff P ⊆ Q

One can show directly that M ∪N is a complete trellis, and that the map e : X →M ∪N
defined by e(a) = LU({a}) is a strict order embedding that is join and meet dense. For details,
see [2]. However, there is a lack of transparency with this construction and why it should work.
Indeed, it was by peering into the workings of this construction that we discovered the covering
poset, bounded convex pseudo congruences, and the general method of completing a pseudo
order via a completion of its partial order.
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