Seminar 1 Problems

1. Construct a model where the following formulas are not true.
(a) $\square \perp$
(b) $\square \square \perp$
(c) $\diamond p \rightarrow \square p$
(d) $\diamond \square p \rightarrow \square \diamond p$
2. $M, s \models \diamond p$ iff $\exists t \in R(s)=\{x \in M \mid s R x\}$ such that $M, t \models p$
3. Is there a model where $\square T$ is not true?
4. Let $M=(X, R, v)$ be a model where R is transitive (if $x R y$ and $y R z$ then $x R z$). For every $x \in X$ and every modal formula, φ, prove:
(a) $M, x \models \square \varphi \Rightarrow M, y \models \varphi \quad \forall y$ s.t. $y \in R(x)$
(b) $M, x \models \varphi \Rightarrow M, y \models \diamond \varphi \quad \forall y$ s.t. $x \in R(y)$
5. Construct a reflexive $(\forall x x R x)$ model where $\square(\square p \rightarrow p) \rightarrow \square p$ is not true.
6. Show the following (Show that a model where the LHS is true doesn't necessarily have that the RHS is true):
(a) $\square(p \rightarrow q) \mid \vDash p \rightarrow \square q$
(b) $p \rightarrow \square q \not \vDash \square(p \rightarrow q)$
7. (See text example 1.15) Give an interpretation for the following formula within the context provided: $\left[\pi^{*}\right](\phi \rightarrow[\pi] \phi) \rightarrow\left(\phi \rightarrow\left[\pi^{*}\right] \phi\right)$
Here π denotes a program, π^{*} denotes a program that executes pi after a finite (possibly zero) number of times, $[\pi] \phi$ is read as 'every execution of π from the present state leads to a state bearing the information ϕ '

Seminar 2 Problems

1. Show the following are valid in all frames:
i
ii $\square(p \rightarrow q) \longrightarrow(\square p \rightarrow \square q)$
iii $\square(p \wedge q) \longleftrightarrow(\square p \wedge \square q)$
iv $\diamond(p \vee q) \longleftrightarrow(\diamond p \vee \diamond q)$
2. Show the following are not valid in all frames:
i $\square p \rightarrow p$
ii $\square p \rightarrow \square \square p$
iii $\diamond p \rightarrow \square p$
iv $\square(\square p \rightarrow p) \rightarrow \square p$
3. Prove for any frame and any modal formulas φ, ψ
i If $F \models \varphi$ and $F \models \varphi \rightarrow \psi$ then $F \models \psi$
ii If $F \models \varphi$ then $F \models \square \varphi$
4. Show if R is reflexive and transitive with $S \subseteq R$ then $S^{*} \subseteq R$.
5. For which of the following frames is the modal formula $\diamond \square p \wedge(\square(\square p \rightarrow p)) \rightarrow \square p$ valid:

$$
(\mathbb{R},<),(\mathbb{Q},<),(\mathbb{N},<),(\omega+1,<)
$$

6. Let $R, S \subseteq X^{2}$. Show $\left(R^{-1} \circ(R \circ S)^{c}\right) \cap S=\emptyset$
7. A relation is called a strict order if it is transitive, asymmetric (a relation R is called asymmetric if whenever $(x, y) \in R$ then $(y, x) \notin R)$ and irreflexive. Show that a relation which is transitive and irreflexive is a strict order.

Seminar 3 Problems

Just because there are fewer problems doesn't mean we care less.

1. Determine the minimal/maximal and maximum/minimum elements of $\{p \in \mathbb{N}: p$ is prime $\}$ as a subset of the poset (\mathbb{N}, \mid) (here | denotes the relation "divides").
2. Let F be a preorder. Show $F \models \square \square p \longleftrightarrow \square p$

Seminar 4 Problems

1. Determine whether the following frames are well-founded, Noetherian, both or neither?
i $(\mathbb{P}(\mathbb{N}), \subseteq)$
ii (\mathbb{R}, \leq)
iii $\left(\mathbb{Z}^{-}, \leq\right)$
iv Finite strings of 0's and 1's ordered lexicographically (this is the fancy word for the dictionary order)
v (A, \leq) where $A \subseteq \mathbb{N}$
2. Find a model $M=(X, R, v)$ and a point $x \in X$ such that $M, x \models \square(\square p \rightarrow p) \rightarrow \square p$ but $M, x \not \models \diamond p \rightarrow(\diamond(p \wedge \neg \diamond p))$
3. $F \models \square \square p \rightarrow \square p$ iff $F \models \diamond p \rightarrow \diamond \diamond p$
4. Let $F=(X, R)$ be a frame that validates the Gödel-Löb formula. Show $F \models \diamond \diamond p \rightarrow \Delta p$
5. Consider the frame $F=(X, \neq X)$. Here $\neq x=\left\{(a, b) \in X^{2}: a \neq b\right\}$.
(a) Are the following statements true:
i. $F \models \diamond \diamond p \rightarrow(\diamond p \vee p)$
ii. $F \models p \rightarrow \square \diamond p$
(b) When are the following statements true:
i. $F \models \Delta \Delta p \rightarrow \Delta p$
ii. $F \models \diamond p \rightarrow \diamond \diamond p$
iii. $F \models \square(\square p \rightarrow p) \rightarrow \square p$ (Hint: What types of frames validate this formula?)

Bonus: (This is the remaining part of the proof that was not finished) Prove: If $F \models \diamond p \rightarrow \diamond(p \wedge \neg \diamond p)$ then F is a strict Noetherian poset.

Seminar 5 Problems

1. Let $F=\left(T, R_{F}, R_{P}\right)$ be any frame.
i Show $F \models q \rightarrow[P]\langle F\rangle q$ iff $\forall s \forall t\left(s R_{P} t \Rightarrow t R_{F} s\right)$
ii Suppose $R_{F}=R_{P}^{-1}$. Show $F \models\langle P\rangle q \rightarrow[F]\langle P\rangle q$ iff R_{P} is transitive.
2. Let R be a relation on the set X.
i Show $R \subseteq R \circ R^{-1} \circ R$ if $X=\{y \in X \mid \exists x \in X x R y\}$.
ii When is $\Delta_{X} \subseteq R \circ R^{-1}$? (Recall $\left.\Delta_{X}=\{(x, x) \mid x \in X\}\right)$
iii When is $\Delta_{X} \subseteq R^{-1} \circ R$?
3. Let S and T be equivalences on the same set. Show $S \circ T=T \circ S$ iff $S \circ T$ is an equivalence relation.
4. Consider the bimodal frame $F=\left(X, R, X^{2}\right)$. Find a modal formula φ such that:
i $F \models \varphi$ iff F satisfies $\forall x \exists y(y R x)$
ii $F \models \varphi$ iff F satisfies $\exists x \neg \exists y(x R y)$
5. Let D be the operator where $M, x \models D \varphi$ iff $\exists y \in X \backslash\{x\}$ s.t. $M, y \models \varphi$. Write $E \varphi$ in terms of D (where E is the universal diamond). Can we write $D \varphi$ in terms of E ?
6. Let $F=\left(T, R_{F}, R_{P}\right)$ be a temporal frame. How does one interpret truth of the formula $[P] q \wedge q \wedge[F] q$ at a point?

Seminar 6 Problems

1. Let R, S be equivalence relations on X. Show $R \circ S=X^{2}$ iff $S \circ R=X^{2}$.
2. Let X be a set, $R \subseteq X^{2}$. Fix a valuation , v, on X. For any $x \in X$ and for any formula φ show:
i. $\left(X, R^{*}, v\right), x \models \square \varphi \Rightarrow(X, R, v), y \models \square \varphi \quad \forall y \in R(x)$
ii. $(X, R, v), x \models \diamond \varphi \Rightarrow\left(X, R^{*}, v\right), y \models \diamond \varphi \quad \forall y \in R^{-1}(x)$
3. Consider a temporal frame $\left(T, R_{F}, R_{P}\right)$ (Recall a temporal frame is one such that $R_{F}=R_{P}^{-1}, R_{F}$ and R_{P} are both transitive and irreflexive). Is it true that $R_{F} \circ R_{P}=X^{2}$.
4. Let (X, R) be a frame. Interpret the following for that frame (here A is the universal box and E is the universal diamond):
i. $p \rightarrow E \diamond p$
ii. $E p \rightarrow p$
iii. $E p \rightarrow \Delta p$
iv. $E \square \top$
v. $p \rightarrow A E p$
vi. $p \rightarrow E p$
5. Let $R=\{(x, x+1) \mid x \in \mathbb{Z}\}$. What is R^{*} ?
6. Let $F=\left(T, R_{F}, R_{P}\right)$ be a temporal frame such that R_{P} is a strict total order. Show:

$$
F \models(q \wedge[P] q) \rightarrow\langle F\rangle[P] q \Longleftrightarrow \forall x \exists y\left(x R_{F} y \text { and } \neg \exists z\left(x R_{F} z R_{F} y\right)\right)
$$

Seminar 7 Problems

1. Find the supremum and infimum of the following subsets of \mathbb{R}, (if they exist):
i. $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}, n \neq 0\right\}$
ii. $(0,1)$
iii. \mathbb{N}
iv. $\left\{\left.(-1)^{n}-\frac{1}{n} \right\rvert\, n \in \mathbb{N} \backslash\{0\}\right\}$
2. Let $A, B \subseteq \mathbb{R}$ such that both A and B are bounded above. What is $\sup \{a+b \mid a \in A, b \in B\}$
3. Let (X, R) be a poset with the least upper bound property. Show that for any subset $S \subseteq X$, if S is bounded below then $\inf (S)$ exists.
4. A strict total order $(X,<)$ is said to be continuous if for every pair of nonempty, disjoint sets U, V such that $U \cup V=X$ and $\forall x \in U, \forall y \in V x<y$, there exists $z \in X$ such that $\forall x \in U \forall y \in V$ $x \leq z \leq y$.
Let $F=(X,<)$ be a strict linear order. Show that F is continuous iff every nonempty subset of X with an upperbound has a supremum.

Seminar 8 Problems

1. Let X be a set and R a partial order on X. Suppose there are $a, b \in X$ such that $(a, b) \notin R$ and $(b, a) \notin R$ (that is, R is not a linear order). Show that S^{*} extends R where $S=R \cup\{(a, b)\}$.
2. Show $\mathbb{R}[x]$ is a vector space over \mathbb{R}.
3. Let V be a vector space over \mathbb{R} and $U \subseteq V$ be a linearly independent set. If $v \notin \operatorname{span}(U)$, show that $U \cup\{v\}$ is a linearly independent set.
4. Let (V, R) be a frame with $V=\left\{v_{1}, \cdots, v_{n}\right\}$ a finite set. The adjacency matrix $A=\left(a_{i j}\right)$ of (V, R) is an n by n matrix where an element $a_{i j}$ is 1 if $v_{i} R v_{j}$ and 0 otherwise. Find the adjacency matrices of the following:
(a) $\left(V, R^{-1}\right)$
(b) $(V, R \circ S)$
(c) $\left(V, R^{n}\right)$ where $n \in \mathbb{Z}^{+}$

Note: When doing operations on adjacency matrices, treat $1+1$ as 1 .
5. Let (V, R) be a frame with V finite. What property of the adjacency matrix of (V, R) corresponds to (V, R) being symmetric? What property corresponds to (V, R) being disconnected?
6. Show that all subsets of \mathbb{N} can be made "small" or "big" in the following sense.
(a) Finite sets are small.
(b) X is big if X^{c} is small.
(c) A subset of a small set is small and a superset of a big set is big.
(d) If X and Y are small then $X \cup Y$ is small.
(e) If X and Y are big then $X \cap Y$ is big.
(f) If X^{c} is finite then X is big.

Seminar 9 Problems

1. Is (\mathbb{Q}, \leq) a generated subframe of (\mathbb{R}, \leq) ?.
2. Let $F=(X, R)$ be a frame such that R is reflexive and Euclidean. (A relation $R \subseteq X^{2}$ is Euclidean if it satisfies $\forall a, b, c \in X \quad a R b \wedge a R c \rightarrow b R c)$. Show that every two point-generated subframes of F are either disjoint or identical.
3. Let $F=(X, R)$ be a frame and φ a modal formula. Show the following are equivalent:
i. $F \models \varphi$
ii. $G \models \varphi$ for all generated subframes $G \subset F$
iii. $G \models \varphi$ for all rooted subframes $G \underset{\rightarrow}{\subset} F$
4. Show there is no set Φ of modal formulas such that $(X, R) \models \Phi \Longleftrightarrow(X, R)$ is connected.

Bonus: Let G be a generated subframe of F. For every modal formula φ show:
i. $\forall x \in G$ we have $G, x \models \varphi \Leftrightarrow F, x \models \varphi$
ii. $F \models \varphi \Rightarrow G \models \varphi$

Seminar 10 Problems

1. Show there is no set Φ of modal formulas such that $(X, R) \models \Phi$ iff R is asymmetric.
2. Show there is no set Φ of modal formulas such that $(X, R) \models \Phi$ iff R is anti-symmetric.
3. Show that $(\mathbb{N}, \leq) \rightarrow\left(X, X^{2}\right)$ where:
i. $X=\{0, \ldots, n: n \in \mathbb{N}\}$
ii. $X=\mathbb{N}$

Turtle

He's not upset at you. He's upset I wasted my time drawing a turtle.

