
BINOMIAL EDGE IDEALS OF CROWN GRAPHS

ARVIND KUMAR, JOSHUA POMEROY, AND LE TRAN

Abstract. In this article, we explore the class of graphs for which the projective dimension
of the quotient of the binomial edge ideals matches the big height of that ideal. Additionally,
we investigate the Vasconcelos number of binomial edge ideals for cycles and crown graphs.
We also provide proof for a conjecture [3] related to the Vasconcelos number of binomial
edge ideals for cycles.

1. Introduction

It is well-known that if I is a homogeneous ideal in a standard graded polynomial ring S,
then the projective dimension of the quotient S

I
is greater than or equal to the big height of

I, where the big height of an ideal is the largest height of the minimal primes of that ideal.
When S

I
is Cohen-Macaulay, then the projective dimension of S

I
is the same as bight(I).

Our goal is to understand which class of ideals, other than Cohen-Macaulay, has the same
projective dimension as the big height of I. Specifically, we are exploring this question in the
context of binomial edge ideals. In this article, we investigate this question for binomial edge
ideals associated with various classes of graphs, which include block graphs, cycles, wheel
graphs, complete multipartite graphs, crown graphs, etc.

Our other objective is to study the local Vasconcelos number of binomial edge ideals for
graphs. Let I be a proper non-zero homogeneous ideal in S, and let p ∈ Ass(I). The local
Vasconcelos number of I with respect to p, denoted by vp(I), is the least possible degree of
a homogeneous element f such that I : f = p, i.e.,

vp(I) := min{d : ∃f ∈ Sd so that I : f = p}.

The Vasconcelos number, abbreviated as the v-number, of I, denoted by v(I), is the minimum
of the local Vasconcelos numbers of I, i.e.,

v(I) := min{vp(I) : p ∈ Ass(I)},

where Sd is the K-vector space spanned by all the monomials of degree d. The concept of the
v−number of homogeneous ideals was first introduced by Cooper et al. [2]. In this article,
we examine the v-number of binomial edge ideals of crown graphs and cycles. We prove a
recent conjecture by Deblina et al. [3] on the v-number of binomial edge ideals of cycles.

The binomial edge ideal of a graph was introduced by Herzog et al. in [6] and indepen-
dently by Ohtani in [13]. Let G be a simple graph on the vertex set [n] := {1, . . . , n}. Let
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S = K[x1, . . . , xn, y1, . . . , yn] be a standard graded polynomial ring in 2n variables over an
arbitrary field K. The binomial edge ideal of G is defined as

JG := ⟨xiyj − xjyi : {i, j} ∈ E(G)⟩.

The focus of this article is on crown graphs and cycles. We examine the binomial edge
ideals of crown graphs with the intent of achieving our main objectives. To start, we analyze
the structures of the minimal primes of the binomial edge ideals of crown graphs (see Section
3). We utilized the minimal primes description provided by Herzog et al. [6] to deduce the
structure of the minimal primes of binomial edge ideals of crown graphs. And then using
the structure of minimal primes, we determine the big height of the binomial edge ideal of
crown graphs.

In Section 4, our main objective is to determine for which class of graphs the projective
dimension of the quotient of their binomial edge ideals is the same as the big height. We
prove that for cycles, block graphs, wheel graphs, and most complete multipartite graphs, the
projective dimension is the same as the big height. Additionally, we show that the binomial
edge ideals of maximal projective dimension have projective dimension same as their big
height. We compute the projective dimension of the binomial edge ideals of crown graphs
and prove that it is the same as the big height.

In Section 5, we delve into the v-number of binomial edge ideals of crown graphs and
cycles. We utilize Ohtani’s recursive method from [13] to establish this conjecture. Ohtani
demonstrated in [13] that for any graph G and an internal vertex v of G, the following holds:

JG = JGv

⋂
(⟨xv, yv⟩ \ v) .

This technical lemma of Ohtani was initially employed by the first author in [9] and in his
thesis. Subsequently, the first author extended this technical lemma to the case of generalized
binomial edge ideals in [10]. Since then, this technical lemma has been utilized in numerous
papers and has become a central tool. We employ this technical lemma to investigate the
local v-number of binomial edge ideals of crown graphs. Furthermore, we use it to prove a
conjecture by Deblina et al. in [3] regarding the v-number of cycles.

Acknowledgement: This research is part of a summer research program designed and
supervised by the first author. The program is financially supported by the Department of
Mathematical Sciences at New Mexico State University. We would like to express our sincere
gratitude to the Department of Mathematical Sciences at New Mexico State University for
supporting this research.

2. Preliminaries

In this section, we recall some notation and definitions on graphs which we will use
throughout the article.

Let G be a finite simple graph with a vertex set V (G) and an edge set E(G). When we
refer to G[A], we mean the induced subgraph of G on the vertex set A. In other words, for any
two vertices i, j ∈ A, the edge {i, j} is in E(G[A]) if and only if {i, j} is in E(G). If we take a
vertex v, G\v refers to the induced subgraph of G on the vertex set V (G)\{v}. Meanwhile,
NG(v) := {u ∈ V (G) : {u, v} ∈ E(G)} denotes the neighborhood of v. Additionally, Gv is
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the graph on the vertex set V (G) with edge set E(Gv) = E(G) ∪ {{u,w} : u,w ∈ NG(v)}.
The degree of a vertex v, represented by degG(v), is the size of NG(v).

A complete graph is one in which every vertex is adjacent to every other vertex. A complete
graph on n vertices is denoted by Kn. A graph is said to be connected if, for every pair of
distinct vertices, there exists a sequence of edges of the graph connecting them. If a graph
is not connected, it is said to be disconnected. A vertex v of G is called a cut vertex if the
number of connected components of G\v is more than the number of connected components
of G. A maximal connected subgraph of G with no cut vertex is called a block. A graph G
is called a block graph if each block of G is a complete graph.

A vertex v ∈ V (G) is called a free or simplicial vertex if v belongs to exactly one maximal
complete subgraph of G. Any vertex that belongs to more than one maximal complete
subgraph of G is called an internal vertex. The path graph on n vertices, denoted by
Pn, is a graph in which the vertices can be ordered as {v1, . . . , vn} such that the edge
set is {{vi, vi+1} : 1 ≤ i ≤ n − 1}. The cycle graph on n vertices, denoted by Cn,
is a graph in which the vertices can be ordered as {v1, . . . , vn} such that the edge set is
{{vi, vi+1} : 1 ≤ i ≤ n− 1} ∪ {{v1, vn}}. A bipartite graph is a graph whose vertex set can
be partitioned into two sets, such that every edge connects a vertex in one set to a vertex in
the other set.

A crown graph is a bipartite graph denoted by Cn,n, with vertex set [2n] divided into two
sets: X = {2i − 1 : i ∈ [n]} and Y = {2i : i ∈ [n]}. This graph has edges {2i − 1, 2j}
whenever i, j ∈ [n] and i ̸= j. Figure 1 represents the crown graph, C5,5, on 10 vertices.

31 5 7 9

2 4 6 8 10

Figure 1. C5,5

A subset T ⊆ V (G) is called a cut set if the number of connected components of G[T̄ ]
is greater than the number of connected components of G, where T̄ := V (G) \ T . We say
that G is k-vertex-connected if k < |V (G)| and for every A ⊂ [n] with |A| < k, the induced
graph G[Ā] is connected. The vertex connectivity of a connected graph G, denoted by κ(G),
is defined as the maximum positive integer k such that G is k vertex-connected.

A dominating set of a connected graph is a subset T ⊆ V (G) such that for every v ∈ V (G),
either v ∈ T or v is adjacent to a vertex in T . A connected dominating set is a dominating
set for which the induced subgraph is connected. The connected domination number is the
size of the smallest connected dominating set of G.

If we are given two graphs, G1 and G2, the join product of G1 and G2, represented as
G1 ∗ G2, is a graph with vertex set V (G1) ⊔ V (G2), and edges from the combined set of
edges from E(G1) and E(G2), along with additional edges connecting each vertex in V (G1)
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to every vertex in V (G2). A complete k-partite graph is a join product of k empty graphs,
where an empty graph is a graph with no edges.

3. Krull dimension of binomial edge ideals

In this section, we study the Krull dimension and the big height of the binomial edge ideals
of the crown graphs. To compute these invariants, we explicitly understand the structure of
the associated primes of the binomial edge ideals of the crown graphs, which will be useful
in studying other related invariants later in the paper.

For a positive integer n, we set [n] := {1, . . . , n}. Let G be a simple graph with the vertex
set V (G) = [n] and edge set E(G). Let S = K[x1, . . . , xn, y1, . . . , yn] be a standard graded
polynomial ring in 2n variables over a field K. The binomial edge ideal of G is defined as

JG := ⟨xiyj − xjyi : {i, j} ∈ E(G)⟩.

This class of ideals was introduced by Herzog et al. in [6] and independently by Ohtani in
[13] and has been the subject of many graduate thesis and research articles since then.

Herzog et al. in [6] and Ohtani in [13] proved that JG is a radical ideal. Herzog et al.
in [6] obtained the complete description of minimal associated primes of JG while Ohtani in
[13] provided a recursive way to obtain associated primes of JG. Both of these descriptions
have been heavily used in the literature. We use both of these descriptions for our research
in this article. We recall here the description of minimal associated primes given by Herzog
et al. in [6], and we will return to the recursive method by Ohtani [13] later in the article.

For T ⊂ [n], we set T̄ := [n] \ T and cG(T ) for the number of connected components of
G[T̄ ], where G[T̄ ] is an induced subgraph of G on the vertex set T̄ . Let G1, . . . , GcG(T ) be
the connected components of G[T̄ ] with vertex sets V (G1), . . . , V (GcG(T )), respectively. For

1 ≤ i ≤ cG(T ), we set G̃i for the complete graph on V (Gi). Set

PT (G) := ⟨xi, yi : i ∈ T ⟩+ JG̃1
+ · · ·+ JG̃cG(T )

.

The notion PT (G) was introduced by Herzog et al. in [6] and they proved that PT (G) is a
prime ideal containing JG and (see [6, Theorem 3.2])

JG =
⋂

T⊆[n]

PT (G).

However, for every T ⊆ [n], PT (G) may not be a minimal prime of JG. The minimal
primes correspond to sets with a special combinatorial property known as cut point prop-
erty. A subset T ⊆ [n] has the cut point property if either T = ∅ or for each i ∈ T ,
i is a cut vertex of the graph G[T̄ ∪ {i}], i.e., cG(T ) > cG(T \ {i}). We set C(G) :=
{T : T has the cut point property}. Then, it follows from Herzog et al. [6, Corollary 3.9]
that PT (G) is a minimal prime of JG if and only if T ∈ C(G).

To compute the Krull dimension, big height, and multiplicity of the binomial edge ideals
of the crown graphs, we understand the structure of sets with the cut point property. We
begin our investigation with a technical lemma.
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Lemma 3.1. Let G = Cn,n with n ≥ 3 and let T ⊆ [2n]. We set X := {1, 3, . . . , 2n − 1}
and Y := {2, 4, . . . , 2n}. Suppose |X \ T | ≥ 2, |Y \ T | ≥ 2, and |X \ T |+ |Y \ T | ≥ 5. Then,
G[T̄ ] is connected.

Proof. First, note that G[T̄ ] is a graph on the vertex set (X \ T )⊔(Y \ T ). Since |X \T | ≥ 2,
|Y \ T | ≥ 2, and |X \ T |+ |Y \ T | ≥ 5, either |X \ T | ≥ 3 or |Y \ T | ≥ 3. Assume, without
loss of generality, that |X \ T | ≥ 3. Then, there exist 1 ≤ i < j < k ≤ n and 1 ≤ ℓ < m ≤ n
such that 2i − 1, 2j − 1, 2k − 1 ∈ X \ T and 2ℓ, 2m ∈ Y \ T. We claim that the induced
subgraph on {2i − 1, 2j − 1, 2k − 1, 2ℓ, 2m} is connected. We have the following cases:

(1) Suppose {i, j, k}∩ {ℓ,m} = {ℓ,m}. Without loss of
generality, assume that i = ℓ and j = m. Then, 2k − 1
is adjacent to both 2ℓ, 2m and 2ℓ is adjacent to both
2j−1, 2k−1, and 2m is adjacent to both 2i−1, 2k−1,
see Figure 2.

2i− 1

2ℓ 2m

2k − 12j − 1

Figure 2

(2) Suppose {i, j, k} ∩ {ℓ,m} = {ℓ}. In this situation,
2m is adjacent to 2i−1, 2j−1, 2k−1, and 2ℓ is adjacent
to two vertices among {2i−1, 2j−1, 2k−1}, see Figure
3.

2j − 1

2ℓ 2m

2k − 12i− 1

Figure 3

(3) Suppose {i, j, k} ∩ {ℓ,m} = {m}. In this situation,
2ℓ is adjacent to 2i−1, 2j−1, 2k−1, and 2m is adjacent
to two vertices among {2i−1, 2j−1, 2k−1}, see Figure
4.

2j − 1

2ℓ 2m

2k − 12i− 1

Figure 4

(4) Suppose {i, j, k} ∩ {ℓ,m} = ∅. In this case, 2i −
1, 2j − 1, 2k− 1 are adjacent to both 2ℓ, 2m, see Figure
5.

2j − 1

2ℓ 2m

2k − 12i− 1

Figure 5

So, in all cases, the induced subgraph on {2i−1, 2j−1, 2k−1, 2ℓ, 2m} is connected. Since
every vertex u ∈ Y \T is adjacent to at least |X \T | − 1 vertices in X \T , i.e., u is adjacent
to at least two vertices among {2i− 1, 2j− 1, 2k− 1} and every vertex v ∈ X \T is adjacent
to at least |Y \ T | − 1 vertices in Y \ T , i.e., v is adjacent to 2ℓ or 2m, G[T̄ ] is a connected
graph. □

Next, we use the above lemma to compute the vertex connectivity of crown graphs.
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Proposition 3.2. Let G = Cn,n with n ≥ 3. Then, κ(G) = n− 1.

Proof. Let T ⊆ [2n]. Suppose that |T | ≤ n−2, then |X \T |+ |Y \T | ≥ n+2 ≥ 5. Moreover,
|X \ T | ≥ 2 and |Y \ T | ≥ 2. Thus, by Lemma 3.1, G[T̄ ] is a connected graph. This implies
that if we remove fewer than n− 1 vertices from G, the remaining graph is still connected.

On the other hand, if we remove all the ver-
tices of X = {1, 3, . . . , 2n− 1} except one, say
2i− 1 for some i ∈ [n], then 2i is not adjacent
to any vertex in the remaining graph, i.e., the
remaining graph is disconnected, see Figure 6.
Thus, the removal of a set of n − 1 vertices
makes the graph disconnected.

2

2i− 1

2i− 2 2i
. . .. . .

2i+ 2 2n

Figure 6
Hence, κ(G) = n− 1. □

Now, we give the complete description of sets of crown graphs with the cut-point property.

Theorem 3.3. Let G = Cn,n with n ≥ 3. Let T ⊆ [2n] be a nonempty set.

(1) If T ⊆ X, then T ∈ C(G) if and only if either T = X or T = X \ {2i− 1} for some
i ∈ [n].

(2) If T ⊆ Y , then T ∈ C(G) if and only if either T = Y or T = Y \ {2i} for some
i ∈ [n].

(3) If T ̸⊆ X and T ̸⊆ Y , then T ∈ C(G) if and only if T = A ∪ {i + 1 : i ∈ A} for
some A ⊆ X with |A| = n− 2.

Proof. Let T ⊆ [2n] be a nonempty set.

(1) Assume that T ⊆ X. If |T | ≤ n − 2, then as we observe in the proof of Proposition
3.2, G[T̄ ] is a connected graph. Thus, if T ∈ C(G), then |T | ≥ n − 1, i.e., either T = X or
T = X \ {i} for some i ∈ X.

Conversely, suppose that T = X. For every i ∈ [n], G[T̄ ∪ {2i − 1}] is the graph shown
in Figure 6. It is clear from Figure 6 that 2i − 1 is a cut vertex in G[T̄ ∪ {2i − 1}]. Thus,
T = X has the cut point property, hence T ∈ C(G).

Next, suppose T = X \ {2i− 1} for some
i ∈ [n]. Then, for every 2j−1 ∈ T , G[T̄ ∪
{2j− 1}] is similar to the graph shown in
Figure 7. Notice that 2j − 1 disconnects
2i − 1 and 2i, see Figure 7. Therefore,
2j − 1 is a cut vertex in G[T̄ ∪ {2j − 1}].
Hence, T = X \{2i−1} has the cut point
property, i.e., T ∈ C(G).

2j

T2j − 1

2

2i− 1

2i− 2 2i
. . .. . . . . .

2i+ 2 2n

Figure 7

(2) The proof follows in the same lines as the proof of part (1) just by replacing the role
of X with the role of Y .
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(3) First, assume that T ̸⊆ X, T ̸⊆ Y and T ∈ C(G). We claim that |X \T | = 2 = |Y \T |.
Suppose |X \ T | ≥ 2, |Y \ T | ≥ 2 with |X \ T | + |Y \ T | ≥ 5, then G[T̄ ] is a connected
graph, i.e., T ̸∈ C(G) which is a contradiction. Furthermore, if |X \ T | = 1, i.e., there

exists a unique i ∈ [n] such that 2i − 1 ̸∈ T ,
then for any 2j ∈ T , the degree of 2j in G[T̄ ∪
{2j}] is at most one, see Figure 8, i.e., 2j is
not a cut vertex of G[T̄ ∪ {2j}], which is a
contradiction to the fact that T ∈ C(G). Thus,
|X \ T | ≠ 1. Similarly, |Y \ T | ≠ 1. This all
together implies that |X \ T | = 2 = |Y \ T |.

2n2

2i− 1 T

2i− 2 2i
. . . . . .. . .

2i+ 2 2j

Figure 8

2j − 1

2i

2ℓ− 1

2j

T

T
2k

Figure 9

Next, suppose there exist 1 ≤ i < j ≤ n so
that 2i − 1, 2j ∈ T and 2i, 2j − 1 ̸∈ T . Then,
the degree of 2j in G[T̄ ∪{2j}] is one, see Fig-
ure 9. Therefore, 2j is not a cut vertex in
G[T̄ ∪ {2j}], which is a contradiction. Thus,
T = A ∪ {a + 1 : a ∈ A} for some A ⊆ X
with |A| = n− 2.

Conversely, if T = A ∪ {a + 1 : a ∈ A} for
some A ⊆ X with |A| = n − 2. Let u ∈ T be
any vertex. Then, G[T̄ ∪ {u}] is a path graph
on five vertices, and u is the middle vertex of
that path, see Figure 10. Therefore, u is a
cut vertex of G[T̄ ∪ {u}]. Thus, T has the cut
point property; hence, T ∈ C(G).

u2i− 1

2i

2j − 1

2jA+1

A

Figure 10
Hence, the assertion follows. □

Now, using the above description of the sets with the cut point property, we compute the
Krull dimension of the quotient ring of the binomial edge ideals of the crown graphs.

Theorem 3.4. Let G = Cn,n with n ≥ 3. Then, dim
(

S
JCn,n

)
= 2n+ 1. Moreover,

(1) if T = ∅, then dim
(

S
PT (G)

)
= 2n+ 1.

(2) if T = X or T = Y , then dim
(

S
PT (G)

)
= 2n.

(3) if T = X \ {2i− 1} or T = Y \ {2j} for some i, j ∈ [n], then dim
(

S
PT (G)

)
= n+ 3.

(4) if T = A ∪ {a+ 1 : a ∈ A} with A ⊆ X and |A| = n− 2, then dim
(

S
PT (G)

)
= 6.
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Proof. It follows from [6, Lemma 3.1] that for any T ⊆ [2n],

dim

(
S

PT (G)

)
= 2n− |T |+ cG(T ).

(1) Since T = ∅, cG(T ) = 1. Thus, dim
(

S
PT (G)

)
= 2n− 0 + 1 = 2n+ 1.

(2) Assume T = X (the case for T = Y is similar). Then, G[T̄ ] is a graph on n vertices

with no edges. So, cG(T ) = n, and hence, dim
(

S
PT (G)

)
= 2n− n+ n = 2n.

(3) Assume T = X \ {2i − 1} for some i ∈ [n] (the case for T = Y \ {2j} for some
j ∈ [n] is similar). Then, G[T̄ ] has two connected components; see Figure 7. Therefore,

dim
(

S
PT (G)

)
= 2n− (n− 1) + 2 = n+ 3.

(4) Assume T = A ∪ {a + 1 : a ∈ A}, where A ⊆ X and |A| = n − 2. Then, G[T̄ ] has

two connected components (see Figure 10). Thus, dim
(

S
PT (G)

)
= 2n− 2(n− 2) + 2 = 6.

By Theorem 3.3, we have a complete description of elements of C(G). Since dim
(

S
JG

)
=

max
{
dim

(
S

PT (G)

)
: T ∈ C(G)

}
, we get that dim

(
S
JG

)
= 2n+ 1, as desired. □

Using Theorem 3.4, we immediately determine the big height of the binomial edge ideals
of crown graphs. The big height of an ideal is the largest height of the minimal primes of
that ideal.

Corollary 3.5. Let G = Cn,n with n ≥ 3. Then, ht(JG) = 2n− 1 and bight(JG) = 4n− 6.

Proof. It is well known that for a homogenous ideal I in S, ht(I) = dim(S)− dim
(
S
I

)
. We

know that dim(S) = 4n. Therefore,

ht(JG) = dim(S)− dim

(
S

JG

)
= 4n− (2n+ 1) = 2n− 1

and

bight(JG) = max {ht(PT (G)) : T ∈ C(G)}

= max

{
dim(S)− dim

(
S

PT (G)

)
: T ∈ C(G)

}
= dim(S)−min

{
dim

(
S

PT (G)

)
: T ∈ C(G)

}
= 4n− 6.

Hence, the assertion follows. □

4. Projective dimension and big height of binomial edge ideals

The projective dimension of the quotient S
I
of a homogeneous ideal I ⊂ S is known to

be greater than or equal to the big height of I. When S
I
is Cohen-Macaulay, then the

8



projective dimension of S
I
is the same as the bight(I). We want to understand which class

of ideals(other than Cohen-Macaulay) has the same projective dimension as the big height
of I. Specifically, we are looking at this question in the context of binomial edge ideals. In
this section, we will explore this question for binomial edge ideals associated with various
classes of graphs.

The first known result about the projective dimension of binomial edge ideals is attributed
to Ene, Herzog, and Hibi [4]. They investigated the Cohen-Macaulayness of binomial edge
ideals of block graphs. As a first step in this direction, we verify that the quotient of binomial
edge ideals of block graphs has the same projective dimension as the big height.

Proposition 4.1. Let G be a connected block graph on the vertex set [n]. Then,

pd

(
S

JG

)
= bight(JG) = n− 1.

Proof. Based on [4, Theorem 1.1], we have pd
(

S
JG

)
= n− 1. This implies that bight(JG) ≤

pd
(

S
JG

)
= n − 1. To demonstrate that bight(JG) ≥ n − 1, we first note that since G

is a connected graph, it follows from [6, Lemma 3.1] that ht(P∅(G)) = n − 1. Therefore,
n− 1 = ht(P∅(G)) ≤ bight(JG). Thus, the assertion follows. □

The projective dimension of the binomial edge ideals of cycles is well-documented by Zafar
and Zahid [16]. In the following, we will confirm that the quotient of the binomial edge ideal
of cycles has the same projective dimension as the big height.

Proposition 4.2. Let G = Cn with n ≥ 4. Then pd
(

S
JG

)
= bight(JG) = n.

Proof. Based on [16, Corollary 16], we know that pd
(

S
JG

)
= n. This means that bight(JG) ≤

pd
(

S
JG

)
= n. To show that bight(JG) ≥ n, we first observe that the set T = {1, 3} has

the cut point property. Additionally, G[T̄ ] forms a disconnected graph with two connected
components, meaning that cG(T ) = 2. As a result of [6, Lemma 3.1], we deduce that
ht(PT (G)) = n + |T | − cG(T ) = n. Therefore, we have n = ht(PT (G)) ≤ bight(JG). Hence,
the claim follows. □

Kumar and Sarkar [11] determined the projective dimension of the binomial edge ideals
for both wheel graphs and complete multipartite graphs. They also provided a formula for
the projective dimension of the binomial edge ideals for the join product of graphs. In the
next few results, we examine the cone of a graph and complete multipartite graphs, focusing
on when the quotient of the binomial edge ideal has the same projective dimension as the
big height. The cone of a graph G is a graph on the vertex set V (G) ⊔ {v} and edge set
E(G) ⊔ {{v, u} : u ∈ V (G)}.

Proposition 4.3. Let G be a connected graph on the vertex set [n] and let v be a new vertex.
Let H = v ∗G and SH = S[xv, yv]. Then, we have the following:

(1) pd
(

SH

JH

)
= 2 + pd

(
S
JG

)
.
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(2) if ht(PT (G)) < n− 1 for all T ∈ C(G) \ {∅}, then bight(JH) = n.
(3) if ht(PT (G)) ≥ n− 1 for some T ∈ C(G) \ {∅}, then bight(JH) = 2 + bight(JG).

(4) pd
(

SH

JH

)
= bight(JH) if and only if pd

(
S
JG

)
= bight(JG) and ht(PT (G)) ≥ n− 1 for

some T ∈ C(G) \ {∅}.

Proof. (1) This part follows using the Auslander-Buchsbaum formula in [11, Theorem 3.4].

(2-3) Based on [8, Proposition 4.1], we have

C(H) = {∅} ∪ {{v} ∪ T : T ∈ C(G) \ {∅}} .
Using [6, Lemma 3.1], we know that for any A ∈ C(H), ht(PA(H)) = (n+ 1) + |A| − cH(A).
Consequently, ht(P∅(H)) = n, and for any A ∈ C(H) with A ̸= ∅, we have

ht(PA(H)) = 2 + n+ |A \ {v}| − cG(A \ {v}) = 2 + ht(PA\{v}(G)).

In this way, we get the respective conclusion by using the hypothesis of the respective part
of the definition of the big height.

(4) Using parts (1) and (3), we get pd
(

SH

JH

)
= bight(JH) if pd

(
S
JG

)
= bight(JG) and

ht(PT (G)) ≥ n− 1 for some T ∈ C(G) \ {∅}.

Conversely, suppose pd
(

SH

JH

)
= bight(JH). Since G is a connected graph, pd

(
S
JG

)
≥

bight(JG) ≥ ht(P∅(G)) = n − 1. Using part (1), we get pd
(

SH

JH

)
≥ n + 1, which means

bight(JH) ≥ n+1. According to parts (2− 3), this implies that ht(PT (G)) ≥ n− 1 for some
T ∈ C(G) \ {∅}, and hence, bight(JH) = 2+ bight(JG). We get the desired result using part
(1). □

As an immediate consequence of Proposition 4.3, we confirm that the projective dimension
of the quotient of the binomial edge ideal of wheel graphs is the same as the big height. Recall
that the wheel graph on n+ 1 vertices is the cone of a cycle graph on n vertices.

Corollary 4.4. Let H = v ∗ Cn be the wheel graph on the vertex set [n] ∪ {v} with n ≥ 4.

Then, pd
(

SH

JH

)
= bight(JH) = n+ 2, where SH = S[xv, yv].

Proof. By Proposition 4.2, we know that pd
(

S
JCn

)
= bight(JCn) = n. This implies that

there exists T ∈ C(Cn) so that ht(PT (Cn)) = n ≥ n − 1. Thus, using Proposition 4.3,

pd
(

SH

JH

)
= bight(JH) = n+ 2. □

Proposition 4.5. Let G be a disconnected graph on the vertex set [n] and let v be a new
vertex. Let H = v ∗G and SH = S[xv, yv]. Then, we have the following:

(1) pd
(

SH

JH

)
= max

{
n, 2 + pd

(
S
JG

)}
.

(2) bight(JH) = max {n, 2 + bight(JG)} .
(3) if bight(JG) ≥ n− 2, then pd

(
SH

JH

)
= bight(JH) if and only if pd

(
S
JG

)
= bight(JG).

(4) if bight(JG) < n− 2, then pd
(

SH

JH

)
= bight(JH) if and only if pd

(
S
JG

)
≤ n− 2.
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Proof. (1) This part follows using the Auslander-Buchsbaum formula in [11, Theorem 3.9].

(2) Based on [8, Proposition 4.5], we have

C(H) = {∅} ∪ {{v} ∪ T : T ∈ C(G)} .

Using [6, Lemma 3.1], we know that for any A ∈ C(H), ht(PA(H)) = (n+ 1) + |A| − cH(A).
Consequently, ht(P∅(H)) = n, and for any A ∈ C(H) with A ̸= ∅, we have

ht(PA(H)) = 2 + n+ |A \ {v}| − cG(A \ {v}) = 2 + ht(PA\{v}(G)).

Thus,

bight(JH) = max {ht(P∅(H)),max {ht(PA(H)) : A ∈ C(H)}}
= max

{
n,max

{
2 + ht(PA\{v}(G)) : A \ {v} ∈ C(G)

}}
= max {n, 2 + max {ht(PT (G)) : T ∈ C(G)}}
= max {n, 2 + bight(JG)} .

(3) Assume that bight(JG) ≥ n − 2. Then, pd
(

S
JG

)
≥ bight(JG) ≥ n − 2. Therefore,

by parts (1 − 2), pd
(

SH

JH

)
= max

{
n, 2 + pd

(
S
JG

)}
= 2 + pd

(
S
JG

)
and bight(JH) =

max {n, 2 + bight(JG)} = 2 + bight(JG). Thus, the desired result follows.

(4) Assume that bight(JG) < n−2. Then, by part (2), bight(JH) = n. Therefore, by part

(1), pd
(

SH

JH

)
= bight(JH) if and only if pd

(
SH

JH

)
= n if and only if pd

(
S
JG

)
≤ n− 2. Thus,

the desired result follows. □

Next, we study complete multipartite graphs where the quotient of the binomial edge
ideals has the same projective dimension as the big height.

Proposition 4.6. Let G = Kn1,...,nk
be a complete multipartite graph with 2 ≤ n1 ≤ · · · ≤ nk.

Then, we have the following:

(1) pd
(

S
JG

)
= 2(n2 + · · ·+ nk) + n1 − 2.

(2) bight(JG) = 2(n2 + · · ·+ nk).

(3) pd
(

S
JG

)
= bight(JG) if and only if n1 = 2.

Proof. (1) We use the Auslander-Buchsbaum formula in [11, Corollary 4.5] to get the pro-
jective dimension.

(2) Let V1 ⊔ · · · ⊔ Vk be a partition of the vertex set V (G), where |Vi| = ni for i ∈ [k].
According to [13, Lemma 2.2], we have C(G) = {∅} ∪ {V (G) \ Vi : i ∈ [k]}. It’s important
to observe that the connected components of G[ ¯V (G) \ Vi] correspond to the vertices that
are part of Vi. Therefore, using [6, Lemma 3.1], we get

ht(PV (G)\Vi
(G)) = (n1 + · · ·+ nk) + |V (G) \ Vi| − |Vi| = 2(n1 + · · ·+ nk)− 2ni.

11



Applying the definition of the big height, we get

bight(JG) = max{ht(PT (G)) : T ∈ C(G)}
= max{n1 + · · ·+ nk − 1,max{2(n1 + · · ·+ nk)− 2ni : i ∈ [k]}}
= 2(n2 + · · ·+ nk).

(3) This part clearly follows using parts (1− 2). □

Malayeri et al. [15, Theorem 5.3] proved that the projective dimension of the quotient of
the binomial edge ideals is at most 2n−4. They also [15] characterized graphs whose binomial
edge ideals have the maximal projective dimension. Here, we verify that for binomial edge
ideals of maximal projective dimension, the projective dimension is the same as the big
height.

Proposition 4.7. Let G be a graph on the vertex set [n] with pd
(

S
JG

)
= 2n− 4. Then,

pd

(
S

JG

)
= bight(JG) = 2n− 4.

Proof. First, it is sufficient to prove that bight(JG) ≥ 2n−4. From [15, Theorem 5.3] and the

Auslander-Buchsbaum formula, we know that pd
(

S
JG

)
= 2n− 4 if and only if G = 2K1 ∗H,

where H is any graph on n−2 vertices. According to [8, Propositions 4.5, 4.14], we also know
that T = V (H) ∈ C(G). It is important to note that G[T̄ ] is a disconnected graph with two
isolated vertices. Therefore, we have ht(PT (G)) = n+ |T |−cG(T ) = n+(n−2)−2 = 2n−4,
and hence, bight(JG) ≥ ht(PT (G)) = 2n− 4. This concludes the proof. □

In this sequel, we establish that the projective dimension of the quotient of the binomial
edge ideals of crown graphs is equal to the big height. We recall the definitions of the graph
family GT , where T ⊆ [n], and the D5-type graph below from [14], which are useful in proving
Theorem 4.8.

Let T ⊆ [n] with |T | = n−2. In [14], the authors defined a family of graphs on [n], denoted
by GT . For each G ∈ GT , there exist two non-adjacent vertices u and w of G outside T , and
three disjoint subsets of T , denoted as V0, V1, and V2 where V1, V2 ̸= ∅ and

⋃2
i=0 Vi = T .

In addition, it satisfies NG(u) = V0 ∪ V1, NG(w) = V0 ∪ V2, and {v1, v2} ∈ E(G) for every
v1 ∈ V1 and every v2 ∈ V2.

The authors in [14] defined D5-type graphs. A graph G on [n] is said to be a D5-type
graph if G ̸= G′ ∗ 2K1 for any graph G′ and either G ∈ GT for some T ⊆ [n] or G = H ∗ 3K1,
for some graph H or G = H ∗ (K1∪̇K2), for some graph H.

Theorem 4.8. Let G = Cn,n for n ≥ 3. Then,

pd

(
S

JG

)
= bight(JG) = 4n− 6.

Proof. Based on [15, Theorem 5.2] and the Auslander-Buchsbaum formula, we establish

that pd
(

S
JG

)
≤ 4n − 4. If it were the case that pd

(
S
JG

)
= 4n − 4, then according to [15,
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Theorem 5.3], it would follow that G = H ∗ 2K1, where H is a graph on 2n − 2 vertices.
However, this would lead to the contradiction that G must have two non-adjacent vertices
of degree 2n − 2, whereas we know that degG(v) = n − 1 for all v ∈ V (G). Therefore, we

conclude that pd
(

S
JG

)
≤ 4n− 5. Again, assuming pd

(
S
JG

)
= 4n− 5, by [14, Theorem 5.4],

we deduce that G is a D5−type graph. This means that either G ∈ GT for some T ⊆ [2n]

with |T | = 2n−2, or G = H ∗3K1 for some graph H on 2n−3 vertices, or G = H ′∗(K1

.
∪K2)

for some graph H ′ on 2n − 3 vertices. One could observe that G cannot be the latter two
graphs. In fact, if G = H ∗ 3K1 or G = H ′ ∗ (K1

.
∪K2), then G must have a vertex of degree

2n− 3, which contradicts the fact that degG(v) = n− 1 for all v ∈ V (G).

Suppose G ∈ GT for some T ⊆ [2n] with |T | = 2n − 2. According to the construction
of GT , there are two non-adjacent vertices u and w in [2n]\T , and three disjoint subsets of

T denoted as V0, V1, and V2, where V1 and V2 are not empty and
2⋃

i=0

Vi = T . Additionally,

NG(u) = V0 ∪ V1, NG(w) = V0 ∪ V2, and {v1, v2} ∈ E(G) for v1 ∈ V1 and v2 ∈ V2. As u and
w are non-adjacent, we will consider the following cases:

• If u = 2i − 1 and w = 2i for some i ∈ [n], then we have V0 = ∅, V1 = NG(u) =
{2j : j ∈ [n], j ̸= i}, and V2 = NG(w) = {2k − 1 : k ∈ [n], k ̸= i}. It is clear that
for any k ∈ [n] with k ̸= i, 2k ∈ V1, 2k − 1 ∈ V2, and {2k − 1, 2k} /∈ E(G), which
leads to a contradiction.

• If u = 2i−1, w = 2j−1 for some i, j ∈ [n], then T = NG(u)∪NG(w) = {2i : i ∈ [n]},
which is a contradiction to the fact that |T | = 2n− 2.

• If u = 2i, w = 2j for some i, j ∈ [n], then T = NG(u) ∪NG(w) = {2i− 1 : i ∈ [n]},
which is a contradiction to the fact that |T | = 2n− 2.

Thus, all possible cases lead us to the conclusion that G is not a D5-type graph, and

hence pd
(

S
JG

)
≤ 4n− 6. By Corollary 3.5, bight(JG) = 4n− 6. This implies that 4n− 6 =

bight(JG) ≤ pd
(

S
JG

)
≤ 4n− 6, and hence, the desired result follows. □

Proposition 4.6 demonstrates that the projective dimension and the big height differ for
the binomial edge ideal of K3,3,3. This leads to a natural question:

Question 4.9. For which class of graphs does pd
(

S
JG

)
= bight(JG) hold?

5. v-number of binomial edge ideals

Let I be a proper non-zero homogeneous ideal in S, and let p ∈ Ass(I). The local
Vasconcelos number of I with respect to p, denoted by vp(I), is the least possible degree of
a homogeneous element f such that I : f = p, i.e.,

vp(I) := min{d : ∃f ∈ Sd so that I : f = p}.
The Vasconcelos number, abbreviated as the v-number, of I, denoted by v(I), is the minimum
of the local Vasconcelos numbers of I, i.e.,

v(I) := min{vp(I) : p ∈ Ass(I)},
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where Sd is the K-vector space spanned by all the monomials of degree d. The concept of
the v−number of homogeneous ideals was first introduced by Cooper et al. [2]. In this
section, we examine the local v−number of the binomial edge ideals of graphs. The initial
investigation of the local v−number of the binomial edge ideals was undertaken by Jaramillo-
Velez and Seccia [7], where they explored the local v−number of the binomial edge ideals of
connected graphs in relation to the binomial edge ideal of a complete graph with the same
vertex set. Specifically, they proved that if G is a connected graph, then vP∅(G)(JG) = γc(G),
where γc(G) represents the connected domination number of G. Simultaneously, Ambhore
et al. [1] independently derived similar and additional results.

5.1. v-number of binomial edge ideals of crown graphs: In this subsection, we inves-
tigate the v-number of the binomial edge ideals of crown graphs.

The following lemma may be familiar to researchers in graph theory, but we couldn’t find
a reference. Therefore, we are providing a proof for completeness.

Lemma 5.1. Let G = Cn,n with n ≥ 3. Then, γc(G) = 4.

Proof. First, we prove that any set U with |U | ≤ 3 is not a connected dominating set. If
|U | = 1, then U = {2i− 1} or U = {2j} for some 1 ≤ i, j ≤ n. Then, either 2i or 2j − 1 are
not in the neighbor of vertices of U . Therefore, U is not a dominating set. Assume 2 ≤ |U |.
If U ⊆ X or U ⊆ Y , then G[U ] is a disconnected graph, i.e., U is not a connected dominating
set. Assume G[U ] is connected. Then, either U = {2k − 1, 2ℓ} or {2k − 1, 2ℓ, 2m − 1} or
{2j, 2k − 1, 2ℓ} for some 1 ≤ j, k, ℓ,m ≤ n with j ̸= k, k ̸= ℓ, ℓ ̸= m. Then, 2ℓ − 1 is
not a neighbor of any vertices of U in the first two cases, and 2k is not a neighbor of any
vertices of U in the last case. Thus, if |U | ≤ 3, then U is not a connected dominating set.

Next, take U = {1, 2, 4, 5}. We claim that U is a min-
imally connected dominating set of G. Notice that
G[U ] is a path graph on four vertices as the edges
of G[U ] are {1, 4}, {4, 5}, {2, 5}. Therefore, G[U ] is a
connected graph. Recall from Lemma 3.1 that X =
{1, 3, . . . , 2n − 1} and Y = {2, 4, . . . , 2n}. Now, every
vertex of X is a neighbor 2 or 4, and every vertex of Y
is a neighbor of 1 or 5, see Figure 11.

1 3 5 2n-1

2 4 6 2n-2

2n-3

2n. . .

. . .

Figure 11
Thus, U is a connected dominating set. Hence, γc(G) = 4. □

Proposition 5.2. Let G = Cn,n with n ≥ 4. Then, vPT (G)(JG) ≤ 4 for all T ∈ C(G).

Proof. We know by [7, Theorem 3.2] (see also [1, Theorem 3.6]) that if G is a connected
graph, then vP∅(G)(JG) = γc(G). Therefore, by Lemma 5.1 we see vP∅(G)(JG) = 4. Let
T ∈ C(G) be a nonempty set. Then, by Theorem 3.3, we have the following cases:

• Suppose T = X. Take f = (x2y4 − x4y2)(x2iy2i+2 − x2i+2y2i) for some 3 ≤ i ≤ n− 1.
Notice that x2y4 − x4y2 ∈ P∅(G). Since x2, y2 ∈ PY (G) and for any 1 ≤ j ≤ n, either
x2, y2 ∈ PY \{2j}(G) or x4, y4 ∈ PY \{2j}(G), we get x2y4 − x4y2 ∈ PY (G), PY \{2j}(G).
Also, if T ′ = A ∪ {a + 1 : a ∈ A} for some A ⊆ X with |A| = n − 2, then either
x2, y2 ∈ PT ′(G) or x4, y4 ∈ PT ′(G) or x2i, y2i ∈ PT ′(G). This implies that f ∈ PT ′(G).
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Finally, if T ′ = X \ {2j− 1} for some 1 ≤ j ≤ n, then either x2y4 − x4y2 ∈ PT ′(G) or
x2iy2i+2 − x2i+2y2i ∈ PT ′(G) which implies that f ∈ PT ′(G). Thus, f ∈ PT ′(G) for all
T ′ ∈ C(G) \ {X}, and f ̸∈ PX(G). So, (JG : f) = PX(G), and hence, vPX(G)(JG) ≤ 4.

• Suppose T = Y . Take f = (x1y3−x3y1)(x2i−1y2i+1−x2i+1y2i−1) for some 3 ≤ i ≤ n−1.
Using similar argument as above, we get (JG : f) = PY (G), and hence, vPY (G)(JG) ≤ 4

• Suppose T = X \ {2i − 1} for some i ∈ [n]. Take f = x2i−1x2k(x2iy2j − x2jy2i),
where i, j, k are distinct with 1 ≤ k, j ≤ n. Notice that x2i−1 ∈ PX(G), PX\{2ℓ−1}(G)
for any ℓ ̸= i. This implies that f ∈ PX(G) and f ∈ PX\{2ℓ−1}(G) for any ℓ ̸= i.
Since x2iy2j − x2jy2i ∈ P∅(G), we get f ∈ P∅(G). Next, x2k ∈ PY (G) and either x2k

or x2i, y2i are elements of PY \{2ℓ}(G), we know that f ∈ PY (G), PY \{2ℓ}(G) for any
1 ≤ ℓ ≤ n. Finally, if T ′ = A ∪ {a + 1 : a ∈ A} for some A ⊆ X with |A| = n− 2,
then either x2i, y2i ∈ PT ′(G) or x2j, y2j ∈ PT ′(G) or x2k ∈ PT ′(G). In either case, we
get f ∈ PT ′(G). Thus, f ∈ PT ′(G) for all T ′ ∈ C(G) \ {X}, and f ̸∈ PX(G). So,
(JG : f) = PX(G), and hence, vPX\{2i−1}(G)(JG) ≤ 4.

• Suppose T = Y \ {2i} for some i ∈ [n]. Take f = x2k−1x2i(x2i−1y2j−1 − x2j−1y2i−1)
where i, j, k are distinct with 1 ≤ j, k ≤ n. Using the similar arguments to the
previous case, we get (JG : f) = PY \{2i}(G). Thus, vPY \{2i}(G)(JG) ≤ 4.

• Suppose T = A ∪ {a + 1 : a ∈ A} where A ⊆ X with |A| = n − 2 and 2i −
1, 2i, 2j − 1, 2j /∈ T . Take f = (x2i−1y2j−1 − x2j−1y2i−1)(x2iy2j − x2jy2i). Then
x2i−1y2j−1 − x2j−1y2i−1 is in P∅(G), PX(G), PX\{2ℓ−1} for every 1 ≤ ℓ ≤ n. Also,
x2iy2j−x2jy2i ∈ PY (G) and PY \{2ℓ} for 1 ≤ ℓ ≤ n. Finally, for any subset B ̸= A of X
with |B| = n−2, either 2i−1 ∈ B or 2j−1 ∈ B, i.e., x2i−1y2j−1−x2j−1y2i−1 ∈ PT ′(G),
where T ′ = B∪{b+1 : b ∈ B}. So, if we take f = (x2i−1y2j−1−x2j−1y2i−1)(x2iy2j −
x2jy2i), then (JG : f) = PT (G). Hence, vPT (G)(JG) ≤ 4.

The desired result follows from all the considered cases □

Remark 5.3. When G = C3,3, using the same reasoning as in the proof of Proposition 5.2,
we find that vPT (G)(JG) ≤ 4 for all T ∈ C(G) \ {X, Y }. This implies that Proposition 5.2
applies to all cases except for certain instances where T ∈ C(G). It’s worth mentioning that
C3,3 is a cycle graph with six vertices.

Lemma 5.4. Let G = Cn,n with n ≥ 3. Then vPT (G)(JG) ≥ 3 for all T ∈ C(G).

Proof. It is known from [1, Theorem 3.20] that for a connected graph H on the vertex set
[n], v(JH) = 1 if and only if H has a vertex of degree n − 1. Since G is a connected graph
on 2n vertices and G has no vertex of degree 2n− 1, v(JG) ≥ 2.

For any two vertices u and v in the graph G, we have degG(u) = n − 1 = degG(v). If
{u, v} ∈ E(G), then |NG(u)∪NG(v)| ≤ 2n−2, which means that NG(u)∪NG(v) is not equal
to V (G). Also, if {u, v} ̸∈ E(G), then either NG(u)∩NG(v) = ∅ or |NG(u)∩NG(v)| = n−2.
From Proposition 3.2, we conclude that NG(u) ∩NG(v) is not a cut set of G. Therefore, by
[3, Theorem 4.1], we infer that v(JG) ̸= 2, and thus, v(JG) ≥ 3. □

Next, we study the local v-numbers of binomial edge ideals of crown graphs. We use the
recursive method of Ohtani [13] to study the v-number of crown graphs and cycles. Ohtani
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in [13] proved that for any graph G and an internal vertex v of G,

JG = JGv

⋂(
⟨xv, yv⟩+ JG\v

)
.

This technical lemma of Ohtani was first used by the first author in [9] and in his thesis.
Later, the first author generalized this technical lemma for the case of generalized block
graphs, see [10]. Since then, this technical lemma has been used in several papers and has
been the central tool in many papers. We showcase a few applications of this in the rest of
the section.

Lemma 5.5. Let G = Cn,n with n ≥ 3. Let A ⊂ X with |A| = n− 2. Then vPT (G)(JG) = 4
for T = A ∪ {i+ 1 : i ∈ A}.

Proof. Due to [2, Proposition 4.2], it follows that

vPT (G)(JG) = α

(
JG : PT (G)

JG

)
,

here for a finitely generated positively graded module M , α(M) denoted the least positive
integer n so that Mn ̸= 0. This means that to calculate vPT (G)(JG), we need to examine
JG : PT (G). We present the proof for the case where A = {1, 3, . . . , 2n − 5} for simplicity,
noting that the same proof applies to any A ⊂ X with |A| = n − 2, with some changes in
notation. According to Theorem 3.3, PT (G) is a minimal prime of JG and

PT (G) = ⟨xi, yi : i ∈ T ⟩+ ⟨x2n−3y2n − x2ny2n−3⟩+ ⟨x2n−1y2n−2 − x2n−2y2n−1⟩.

According to [13, Lemma 4.8], for every internal vertex v of G:

JG = JGv

⋂(
⟨xv, yv⟩+ JG\v

)
.

This implies that JG : xv = JG : yv = JGv for every v ∈ T. As a result, (JG : xv)∩ (JG : yv) =
JGv for all v ∈ T . We also know that x2n−3y2n − x2ny2n−3, x2n−1y2n−2 − x2n−2y2n−1 ∈ JG.
Thus, we have JG : x2n−3y2n − x2ny2n−3 = S = JG : x2n−1y2n−2 − x2n−2y2n−1.

Therefore, we can express JG : PT (G) as follows:

JG : PT (G) =

(⋂
v∈T

(JG : xv)

)
∩ (JG : x2n−3y2n − x2ny2n−3) ∩ (JG : x2n−1y2n−2 − x2n−2y2n−1)

=

(⋂
v∈T

(JG : xv)

)
∩ S ∩ S =

⋂
v∈T

JGv .

Let f ∈ (JG : PT (G)) \ JG be a nonzero homogeneous element. Observe that JG : f =
PT (G) and f ∈ JGv \ JG for v ∈ T. Thus, for every v ∈ T , f can be expressed as

f =
∑

e∈E(Gv)

cv,efe,

where cv,e are homogeneous polynomials in S, and fe = xiyj − xjyi if e = {i, j}. For some
u ∈ T , we may assume that

f =
∑

e∈E(Gu)\E(G)

cu,efe.
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Indeed, if not, then we can replace f by f ′ where f = f ′ + f ′′ with f ′ =
∑

e∈E(Gu)\E(G)

cu,efe

and f ′′ =
∑

e∈E(G)

cu,efe. Without loss of generality, we may assume that u = 1.

We know from Lemma 5.4 that deg(f) ≥ 3. Suppose that deg(f) = 3. Then, every
nonzero homogeneous polynomial cv,e appearing in the expression of f is of degree one.
Since f ∈ JGv \ JG, there exists ev ∈ E(Gv) \ E(G) such that cv,ev ̸= 0, i.e., cv,ev is a
degree one homogeneous polynomial. Now, for u = 1, fe ∈ ⟨xi, yi : i ∈ {2, 4 . . . , 2n}⟩2
for all e ∈ E(Gu) \ E(G). Thus, at most one variable from each terms of f can be in
⟨{xi, yi : i ∈ {1, 3, . . . , 2n− 1}}⟩. This implies that for all v ∈ {a+ 1 : a ∈ A},

f =
∑

e∈E(Gv)

cv,efe =
∑

e∈E(Gv)\E(G)

cv,efe +
∑

e∈E(G)

cv,efe ̸∈ JGv \ JG

as fev ∈ ⟨{xi, yi : i ∈ {1, 3, . . . , 2n− 1}}⟩2. This leads to a contradiction. Thus, deg(f) ≥ 4,
and hence, using Proposition 5.2, we get that vPT (G)(JG) = 4. □

Based on Proposition 5.2 and Lemma 5.4, it can be deduced that if G = Cn,n with n ≥ 4,
then for all T ∈ C(G), 3 ≤ v(JG) ≤ vPT (G)(JG) ≤ 4. According to Lemma 5.1, we know that
vP∅(G)(JG) = 4, and by Lemma 5.5, we know that vPT (G)(JG) = 4 if T = A∪{i+1 : i ∈ A}
where A ⊆ X with |A| = n − 2. From this, we strongly believe that vPT (G) = 4 for all
T ∈ C(G), and thus, v(JG) = 4. Hence, we conjecture the following:

Conjecture 5.6. Let G = Cn,n with n ≥ 4. Then vPT (G)(JG) = 4 for all T ∈ C(G).

Theorem 5.7. Let G = Cn,n with n ≥ 4. Then, 3 ≤ v(JG) ≤ 4.

5.2. v-numbers of binomial edge ideals of cycles: Deblina et al. in [3] conjectured
that (see [3, Conjecture 4.11]) the v-number of binomial edge ideal of Cn is

⌈
2n
3

⌉
. In this

subsection, we prove this conjecture.

Theorem 5.8. Let G = Cn with n ≥ 6. Then, vPT (G)(JG) ≥
⌈
2n
3

⌉
for all T ∈ C(G).

Moreover, v(JG) =
⌈
2n
3

⌉
.

Proof. Let T ∈ C(G) be any subset. If T is empty, then by [7, Theorem 3.2] (also see [1,
Theorem 3.6]), we know that vP∅(G)(JG) = γc(G). It is well-known that γc(Cn) = n − 2.

Therefore, we have vP∅(G)(JG) = n − 2 ≥
⌈
2n
3

⌉
. Now, assume that T is not empty, i.e.,

there exists a vertex v such that v ∈ T . Without loss of generality, let’s assume that v = n.
Let f ∈ S be a homogeneous polynomial such that JG : f = PT (G). According to [13,
Lemma 4.8], we have

JG = JGv

⋂(
⟨xv, yv⟩+ JG\v

)
.

Since f ∈ PA(G) for all A ∈ C(G) with A ̸= T , it follows that f ∈ PA(G) when v /∈ A.
This means that f ∈ JGv . It’s worth noting that Gv is a graph with vertex set [n] and edge
set E(Gv) = E(G) ∪ {{1, n − 1}}. Thus, we can express f as f =

∑
e∈E(Gv)

cefe, where ce
are homogeneous polynomials in S, and fe = xiyj −xjyi if e = {i, j}. We set e′ = {1, n− 1}.
It is easy to observe that f = g+ ce′fe′ where g ∈ JG, and hence, JG : f = JG : (ce′fe′). This
leads to PT (G) = JG : ce′fe′ = (JG : fe′) : ce′ .
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It follows from [12, Theorem 3.7] that

PT (G) =
(
JGe′

+ ⟨xn, yn, x2x3 · · ·xn−2, y2x3 · · ·xn−2, . . . , y2y3 · · · yn−2⟩
)
: ce′ ,

where Ge′ is the graph on the vertex set [n] and edge set E(Ge′) = E(G)∪{{2, n}, n− 2, n}} .
One can observe that JGe′

+ (xn, yn) = JPn−1 + ⟨xn, yn⟩, where Pn−1 is the path graph on
vertices 1, 2, . . . , n − 1. We set K = ⟨x2x3 · · ·xn−2, y2x3 · · · xn−2, . . . , y2y3 · · · yn−2⟩. Then,
PT (G) =

(
⟨xn, yn⟩+ JPn−1 +K

)
: ce′ . If xn or yn appear in some terms of ce′ , we can

express ce′ as axn + byn + c where a, b, and c are homogeneous polynomials in S. Then,
we have PT (G) =

(
⟨xn, yn⟩+ JPn−1 +K

)
: ce′ =

(
⟨xn, yn⟩+ JPn−1 +K

)
: c. Without loss of

generality, we assume that c = ce′ , meaning xn or yn do not appear in any term of ce′ . From
[5, Lemma 3.6], we have PT (G) = ⟨xn, yn⟩+

(
JPn−1 +K

)
: ce′ . Let R = K[xi, yi : i ∈ [n−1]].

Contracting PT (G) to R, we obtain PT\{n}(G \ {n}) =
(
JPn−1 +K

)
: ce′ .

Let A = T \ {n}. Note that A ∈ C(Pn−1) and A ̸= ∅. Suppose now, to the contrary,
deg(f) ≤

⌈
2n
3

⌉
− 1. Then, deg(c) = deg(f) − 2 ≤

⌈
2n
3

⌉
− 3. Now, for any i ∈ A, xi, yi ∈

PA(Pn−1) which implies xic, yic ∈ JPn−1 +K as PA(Pn−1) =
(
JPn−1 +K

)
: c. That is,

xic =
∑

e∈E(Pn−1)

uefe + v1(x2x3 · · ·xn−2) + v2(y2x3 · · ·xn−2) + · · ·+ vn−2(y2y3 · · · yn−2),

where ue’s and vi’s are homogeneous polynomials in R. Since n ≥ 6,
⌈
2n
3

⌉
− 2 < n − 3.

Thus, we get that xic ∈ JPn−1 by comparing degrees on both sides. Similarly, we get
yic ∈ JPn−1 . That is xi, yi ∈ JPn−1 : c. Now, for each i ∈ A, it holds that 2 ≤ i ≤ n − 2.
Thus, we have K ⊆ JPn−1 : c. Additionally, we also know that JPn−1 ⊆ JPn−1 : c. As
a result, JPn−1 + K ⊆ JPn−1 : c, implying that

(
JPn−1 +K

)
: c ⊆ JPn−1 : c2 = JPn−1 :

c. Therefore, PA(Pn−1) =
(
JPn−1 +K

)
: c = JPn−1 : c. Now, due to [3, Corollary 3.6],

deg(c) ≥ vPA(Pn−1)(JPn−1) ≥ v(JPn−1) =
⌈
2(n−2)

3

⌉
. This leads to a contradiction as we assume

deg(c) ≤
⌈
2n
3

⌉
− 3. Therefore, deg(f) ≥

⌈
2n
3

⌉
, and hence, vPT (G)(JG) ≥

⌈
2n
3

⌉
, completing the

proof of first assertion. Next, using the definition, we have v (JG) ≥
⌈
2n
3

⌉
. Now, the rest

follows from [3, Corollary 4.10]. □

As an immediate consequence, we obtain the v-number of the binomial edge ideal of the
crown graph C3,3.

Corollary 5.9. Let G = C3,3. Then, v(JG) = 4.

Proof. As we pointed out in Remark 5.3 C3,3 is a cycle graph on six vertices. The rest follows
from Theorem 5.8. □

We conclude the article by posing the following question:

Question 5.10. What are the local v-numbers of the binomial edge ideal of cycles?
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[6] J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, and J. Rauh. Binomial edge ideals and
conditional independence statements. In: Adv. in Appl. Math. 45.3 (2010), pp. 317–333.

[7] D. Jaramillo-Velez and L. Seccia. Connected domination in graphs and v-numbers of
binomial edge ideals. In: arXiv e-prints (Apr. 2023), arXiv:2304.04898.

[8] D. Kiani and S. Saeedi Madani. Some Cohen-Macaulay and unmixed binomial edge
ideals. In: Comm. Algebra 43.12 (2015), pp. 5434–5453.

[9] A. Kumar. Binomial edge ideals and bounds for their regularity. In: J. Algebraic Com-
bin. 53.3 (2021), pp. 729–742.

[10] A. Kumar. Regularity bound of generalized binomial edge ideal of graphs. In: J. Algebra
546 (2020), pp. 357–369.

[11] A. Kumar and R. Sarkar. Depth and extremal Betti number of binomial edge ideals.
In: Math. Nachr. 293.9 (2020), pp. 1746–1761.

[12] F. Mohammadi and L. Sharifan. Hilbert function of binomial edge ideals. In: Comm.
Algebra 42.2 (2014), pp. 688–703.

[13] M. Ohtani. Graphs and ideals generated by some 2-minors. In: Comm. Algebra 39.3
(2011), pp. 905–917.

[14] M. Rouzbahani Malayeri, S. Saeedi Madani, and D. Kiani. On the depth of binomial
edge ideals of graphs. In: J. Algebraic Combin. 55.3 (2022), pp. 827–846.

[15] M. Rouzbahani Malayeri, S. Saeedi Madani, and D. Kiani. Binomial edge ideals of
small depth. In: J. Algebra 572 (2021), pp. 231–244.

[16] S. Zafar and Z. Zahid. On the Betti numbers of some classes of binomial edge ideals.
In: Electron. J. Combin. 20.4 (2013), Paper 37, 14.

Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM
88003

Email address: arvkumar@nmsu.edu

Email address: reuel@nmsu.edu

Email address: letran95@nmsu.edu

URL: https://sites.google.com/view/tran-ngocle

19


	1. Introduction
	2. Preliminaries
	3. Krull dimension of binomial edge ideals
	4. Projective dimension and big height of binomial edge ideals
	5. v-number of binomial edge ideals
	5.1. v-number of binomial edge ideals of crown graphs:
	5.2. v-numbers of binomial edge ideals of cycles:

	References

