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Our team

• Mark Benecke

• Mason Gardner

• Yang Hu (He/him/his.)

– Postdoctoral Fellow at NMSU.

– Algebraic topologist and homotopy theorist.

• Shokhina Jalilova



Our goals

• Learn a variety of cool mathematical topics...

� Analysis – the classical Riemann zeta function.

� Algebra and number theory – groups, rings, fields, Galois theory.

� Graph theory.

� Topology – topologial spaces, fundamental groups, covering spaces.

• Develop skills and enhance our mathematical maturity...

� Mathematical collaboration.
� Mathematical writing in LaTeX.

• Write a paper together...

� Even better, create new mathematical knowledge!
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Our central topic

Riemann Zeta Functions of Graphs.



Our focus today

What is the (classical) Riemann zeta function

and how do you define it for graphs?



Pop quiz

∑
k≥1

1

k2
= 1 +

1

22
+

1

32
+

1

42
+ · · ·+ 1

n2
+ · · · = ??

Answer: The infinite sum equals
π2

6
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History: the Basel problem

∑
k≥1

1

k2
= 1 +

1

22
+

1

32
+

1

42
+ · · ·+ 1

n2
+ · · · = ??

Question: Does the Basel series converge?

If so, what does it converge to?



History: the Basel problem

The Basel series is an example of a p-series.

Definition

A p-series is a series of the form∑
k≥1

1

kp
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · ·+ 1

np
+ · · ·

Example

• The Basel series is a p-series when p = 2.

• The harmonic series is a p-series when p = 1.

Theorem

The p-series converges when p > 1, and diverges when p ≤ 1.
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History: the Basel problem

In a few lucky cases, one can make precise computations with convergent series.

Example

The geometric series
∑

k≥1 ark = a + ar + ar2 + ar3 + · · ·+ arn + · · · is computable.

More generally, the theory of power series (for which one can study the interval of
convergence) produces interesting infinite sums, like:

Example

• 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · · · · = ln 2.
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π

4
.



History: the Basel problem

In a few lucky cases, one can make precise computations with convergent series.

Example

The geometric series
∑

k≥1 ark = a + ar + ar2 + ar3 + · · ·+ arn + · · · is computable.

More generally, the theory of power series (for which one can study the interval of
convergence) produces interesting infinite sums, like:

Example

• 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · · · · = ln 2.

• 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · · · · =

π

4
.



History: the Basel problem

In a few lucky cases, one can make precise computations with convergent series.

Example

The geometric series
∑

k≥1 ark = a + ar + ar2 + ar3 + · · ·+ arn + · · · is computable.

More generally, the theory of power series (for which one can study the interval of
convergence) produces interesting infinite sums, like:

Example

• 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · · · · = ln 2.

• 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · · · · =

π

4
.



History: the Basel problem

A p-series is not one of the lucky cases where one can make direct calculations.

Still, there are elementary ways of showing:

• 1 +
1
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1
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+

1

42
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n2
+ · · · =

π2

6
.
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Today, let’s prove that
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,

just using knowledge from elementary calculus.
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To sum up

So far, we know the following things about the p-series
∑

n≥1

1

np
:

• It converges precisely when p is strictly greater than 1.

• In lucky cases (e.g., p = 2), one can calculate its precise value (e.g., it equals
π2

6
when p = 2).

• Computing
∑

n≥0

1

np
precisely for a generally given p > 1 is still a difficult problem.

Open Problem

It is still an open problem to give a closed-form description of

1 +
1

23
+

1

33
+

1

43
+ · · ·+ 1

n3
+ · · · .
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The naive Riemann zeta function

Let’s now switch our perspective and notation. Replace “p” by “s” in the p-series:∑
n≥1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ · · ·+ 1

ns
+ · · · ,

and treat it as a function of s.

Definition

The (naive) Riemann zeta function is defined to be

ζ(s) =
∑
n≥1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ · · ·+ 1

ns
+ · · · .

At this point, the domain of ζ(s) consists of all real numbers s so that s > 1.
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Time to switch gears

What are prime numbers

and how are they distributed?



History: the Prime Number Theorem

Definition

Let x ≥ 2 be a real number. Write π(x) for the number of primes up to x .

Definition

The logarithmic integration function, defined for x ≥ 2, is

Li(x) =

∫ x

2

1

ln t
dt.

Theorem

When x is large enough, π(x) is roughly Li(x).
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Connecting the two stories

The Riemann zeta function

ζ(s) =
∑
n≥1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ · · ·+ 1

ns
+ · · ·

actually equals

∏
p prime

(1− p−s)−1 =
1

1− 1

2s

× 1

1− 1

3s

× 1

1− 1

5s

× 1

1− 1

7s

× 1

1− 1

11s

× · · · .
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The genuine Riemann zeta function

By analytic continuition, the Riemann zeta function

ζ(s) =
∑
n≥1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ · · ·+ 1

ns
+ · · ·

is defined for all complex numbers s so that s 6= 1.

The Riemann Hypothesis

All nontrivial zeros of ζ(s) are located along the line Re(s) =
1

2
.

You win $1,000,000 if you solve the Riemann Hypothesis.
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Riemann zeta functions for graphs

Throughout this story, a graph X will always be:

• finite;

• connected;

• rank ≥ 1;

• without loose ends.

A prime in X is an equivalent class of closed, backtrackless, tailess, primitive paths.

Definition

Ihara The zeta function associated with a graph X is

ζ(u,X ) :=
∏
[P]

(1− uν(P))−1,

where ν(P) denotes the number of vertices in P.
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Definition

Ihara The zeta function associated with a graph X is
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(1− uν(P))−1.

This zeta function, and its variants, are what we will play with this summer.

Let’s end with a few examples today.
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