Welcome to REU in Topology

Yang Hu New Mexico State University

May 12, 2025

1. Knowing our team

2. Learning our goals

3. Introducing our topics

- Mark Benecke
- Mason Gardner
- Yang Hu (He/him/his.)
 - Postdoctoral Fellow at NMSU.
 - Algebraic topologist and homotopy theorist.
- Shokhina Jalilova

- Learn a variety of cool mathematical topics...
 - $\hfill\square$ Analysis the classical Riemann zeta function.

- Learn a variety of cool mathematical topics...
 - $\hfill\square$ Analysis the classical Riemann zeta function.
 - $\hfill\square$ Algebra and number theory groups, rings, fields, Galois theory.

- Learn a variety of cool mathematical topics...
 - $\hfill\square$ Analysis the classical Riemann zeta function.
 - $\hfill\square$ Algebra and number theory groups, rings, fields, Galois theory.
 - □ Graph theory.

- Learn a variety of cool mathematical topics...
 - □ Analysis the classical Riemann zeta function.
 - $\hfill\square$ Algebra and number theory groups, rings, fields, Galois theory.
 - \Box Graph theory.
 - □ Topology topologial spaces, fundamental groups, covering spaces.

- Learn a variety of cool mathematical topics...
 - □ Analysis the classical Riemann zeta function.
 - □ Algebra and number theory groups, rings, fields, Galois theory.
 - \Box Graph theory.
 - □ Topology topologial spaces, fundamental groups, covering spaces.
- Develop skills and enhance our mathematical maturity...

- Learn a variety of cool mathematical topics...
 - □ Analysis the classical Riemann zeta function.
 - □ Algebra and number theory groups, rings, fields, Galois theory.
 - \Box Graph theory.
 - □ Topology topologial spaces, fundamental groups, covering spaces.
- Develop skills and enhance our mathematical maturity...
 - □ Mathematical collaboration.

- Learn a variety of cool mathematical topics...
 - □ Analysis the classical Riemann zeta function.
 - □ Algebra and number theory groups, rings, fields, Galois theory.
 - \Box Graph theory.
 - □ Topology topologial spaces, fundamental groups, covering spaces.
- Develop skills and enhance our mathematical maturity...
 - □ Mathematical collaboration.
 - □ Mathematical writing in LaTeX.

- Learn a variety of cool mathematical topics...
 - □ Analysis the classical Riemann zeta function.
 - □ Algebra and number theory groups, rings, fields, Galois theory.
 - \Box Graph theory.
 - □ Topology topologial spaces, fundamental groups, covering spaces.
- Develop skills and enhance our mathematical maturity...
 - □ Mathematical collaboration.
 - □ Mathematical writing in LaTeX.
- Write a paper together...

- Learn a variety of cool mathematical topics...
 - □ Analysis the classical Riemann zeta function.
 - □ Algebra and number theory groups, rings, fields, Galois theory.
 - \Box Graph theory.
 - □ Topology topologial spaces, fundamental groups, covering spaces.
- Develop skills and enhance our mathematical maturity...
 - □ Mathematical collaboration.
 - $\hfill\square$ Mathematical writing in LaTeX.
- Write a paper together...
 - □ Even better, create new mathematical knowledge!

Riemann Zeta Functions of Graphs.

What is the (classical) Riemann zeta function and how do you define it for graphs?

$$\sum_{k\geq 1} \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} + \dots = ??$$

$$\sum_{k\geq 1} \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} + \dots = ??$$

Answer: The infinite sum equals $\frac{\pi^2}{6}$.

$$\sum_{k\geq 1} \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} + \dots = ??$$

Question: Does the Basel series converge?

If so, what does it converge to?

The Basel series is an example of a *p*-series.

Definition

A *p*-series is a series of the form

$$\sum_{k\geq 1} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots$$

The Basel series is an example of a *p*-series.

Definition

A *p*-series is a series of the form

$$\sum_{k\geq 1} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots$$

Example

- The Basel series is a *p*-series when p = 2.
- The harmonic series is a *p*-series when p = 1.

The Basel series is an example of a *p*-series.

Definition

A *p*-series is a series of the form

$$\sum_{k\geq 1} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots$$

Example

- The Basel series is a *p*-series when p = 2.
- The harmonic series is a *p*-series when p = 1.

Theorem

The p-series converges when p > 1, and diverges when $p \le 1$.

In a few lucky cases, one can make precise computations with convergent series.

Example

The geometric series $\sum_{k>1} ar^k = a + ar + ar^2 + ar^3 + \cdots + ar^n + \cdots$ is computable.

In a few lucky cases, one can make precise computations with convergent series.

Example

The geometric series $\sum_{k>1} ar^k = a + ar + ar^2 + ar^3 + \cdots + ar^n + \cdots$ is computable.

More generally, the theory of power series (for which one can study the interval of convergence) produces interesting infinite sums, like:

Example

•
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2.$$

In a few lucky cases, one can make precise computations with convergent series.

Example

The geometric series $\sum_{k>1} ar^k = a + ar + ar^2 + ar^3 + \cdots + ar^n + \cdots$ is computable.

More generally, the theory of power series (for which one can study the interval of convergence) produces interesting infinite sums, like:

Example

•
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2.$$

• $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}.$

A *p*-series is not one of the lucky cases where one can make direct calculations.

A *p*-series is not one of the lucky cases where one can make direct calculations. Still, there are elementary ways of showing:

•
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}$$
.
• $1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots + \frac{1}{n^4} + \dots = \frac{\pi^4}{90}$.

A *p*-series is not one of the lucky cases where one can make direct calculations. Still, there are elementary ways of showing:

•
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2} + \dots = \frac{\pi^2}{6}.$$

• $1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots + \frac{1}{n^4} + \dots = \frac{\pi^4}{90}.$

Today, let's prove that

$$1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots+\frac{1}{n^2}+\cdots=\frac{\pi^2}{6},$$

just using knowledge from elementary calculus.

So far, we know the following things about the *p*-series $\sum_{n\geq 1} \frac{1}{n^p}$:

• It converges precisely when p is strictly greater than 1.

So far, we know the following things about the *p*-series $\sum_{n\geq 1} \frac{1}{n^p}$:

• It converges precisely when p is strictly greater than 1.

• In lucky cases (e.g., p = 2), one can calculate its precise value (e.g., it equals $\frac{\pi^2}{6}$ when p = 2).

So far, we know the following things about the *p*-series $\sum_{n\geq 1} \frac{1}{n^p}$:

- It converges precisely when p is strictly greater than 1.
- In lucky cases (e.g., p = 2), one can calculate its precise value (e.g., it equals $\frac{\pi^2}{6}$ when p = 2).
- Computing $\sum_{n\geq 0} \frac{1}{n^p}$ precisely for a generally given p>1 is still a difficult problem.

So far, we know the following things about the *p*-series $\sum_{n\geq 1} \frac{1}{n^p}$:

- It converges precisely when p is strictly greater than 1.
- In lucky cases (e.g., p = 2), one can calculate its precise value (e.g., it equals $\frac{\pi^2}{6}$ when p = 2).
- Computing $\sum_{n\geq 0} \frac{1}{n^p}$ precisely for a generally given p>1 is still a difficult problem.

Open Problem

It is still an open problem to give a closed-form description of

$$1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \dots + \frac{1}{n^3} + \dots$$

The naive Riemann zeta function

Let's now switch our perspective and notation. Replace "p" by "s" in the *p*-series:

$$\sum_{n\geq 1} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{n^s} + \dots$$

and treat it as a function of s.

The naive Riemann zeta function

Let's now switch our perspective and notation. Replace "p" by "s" in the *p*-series:

$$\sum_{n\geq 1} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{n^s} + \dots ,$$

and treat it as a function of s.

Definition

The (naive) Riemann zeta function is defined to be

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{n^s} + \dots$$

.

The naive Riemann zeta function

Let's now switch our perspective and notation. Replace "p" by "s" in the *p*-series:

$$\sum_{n\geq 1} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{n^s} + \dots ,$$

and treat it as a function of s.

Definition

The (naive) Riemann zeta function is defined to be

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{n^s} + \dots$$

At this point, the domain of $\zeta(s)$ consists of all real numbers s so that s > 1.

What are prime numbers and how are they distributed?

Let $x \ge 2$ be a real number. Write $\pi(x)$ for the number of primes up to x.

Let $x \ge 2$ be a real number. Write $\pi(x)$ for the number of primes up to x.

Definition

The logarithmic integration function, defined for $x \ge 2$, is

$$\mathsf{Li}(x) = \int_2^x \frac{1}{\ln t} dt.$$

Let $x \ge 2$ be a real number. Write $\pi(x)$ for the number of primes up to x.

Definition

The logarithmic integration function, defined for $x \ge 2$, is

$$\operatorname{Li}(x) = \int_2^x \frac{1}{\ln t} dt.$$

Theorem

When x is large enough, $\pi(x)$ is roughly Li(x).

The Riemann zeta function

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{n^s} + \dots$$

actually equals

The Riemann zeta function

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{n^s} + \dots$$

actually equals

$$\prod_{p \text{ prime}} (1-p^{-s})^{-1} = \frac{1}{1-\frac{1}{2^s}} \times \frac{1}{1-\frac{1}{3^s}} \times \frac{1}{1-\frac{1}{5^s}} \times \frac{1}{1-\frac{1}{7^s}} \times \frac{1}{1-\frac{1}{11^s}} \times \cdots$$

By analytic continuition, the Riemann zeta function

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{n^s} + \dots$$

is defined for all complex numbers s so that $s \neq 1$.

By analytic continuition, the Riemann zeta function

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \dots + \frac{1}{n^s} + \dots$$

is defined for all complex numbers s so that $s \neq 1$.

The Riemann Hypothesis

All nontrivial zeros of $\zeta(s)$ are located along the line $\operatorname{Re}(s) = \frac{1}{2}$.

You win \$1,000,000 if you solve the Riemann Hypothesis.

Riemann zeta functions for graphs

Throughout this story, a graph X will always be:

- finite;
- connected;
- rank \geq 1;
- without loose ends.

Riemann zeta functions for graphs

Throughout this story, a graph X will always be:

- finite;
- connected;
- rank \geq 1;
- without loose ends.

A prime in X is an equivalent class of closed, backtrackless, tailess, primitive paths.

Riemann zeta functions for graphs

Throughout this story, a graph X will always be:

- finite;
- connected;
- rank \geq 1;
- without loose ends.

A prime in X is an equivalent class of closed, backtrackless, tailess, primitive paths.

Definition

Ihara The zeta function associated with a graph X is

$$\zeta(u,X) := \prod_{[P]} (1 - u^{\nu(P)})^{-1},$$

where $\nu(P)$ denotes the number of vertices in P.

Ihara The zeta function associated with a graph X is

$$\zeta(u,X) := \prod_{[P]} (1 - u^{\nu(P)})^{-1}.$$

This zeta function, and its variants, are what we will play with this summer.

Ihara The zeta function associated with a graph X is

$$\zeta(u,X) := \prod_{[P]} (1 - u^{\nu(P)})^{-1}.$$

This zeta function, and its variants, are what we will play with this summer. Let's end with a few examples today.