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Abstract. The classical Riemann zeta function has important variants in a number of

mathematical contexts. In this expository paper, we introduce the zeta function of finite
graphs and study their interactions with the topological structure of covering spaces. We

define the Ihara (vertex) zeta function ζX(u) for a finite connected graph X, and present a

proof of its determinant formula. We show that if Y → X is a finite covering of graphs, then
ζX(u)−1 divides ζY (u)−1.
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1. Introduction

The classical Riemann zeta function ζ(s) is arguably one of the most celebrated functions
in the history of mathematics, known even to non-mathematicians due largely to the notori-
ous Riemann Hypothesis – a critically important unsolved mathematical problem having deep
implications on the distribution of primes. Invented to address questions around prime distri-
butions in analytic number theory, the notion of a zeta function has been generalized to various
forms in different areas of mathematics and physics, playing important and sometimes central
roles in these fields. For example, in arithmetic geometry the study of zeta functions of smooth
projective varieties over finite fields turns out to be highly influential. In fact, the decades of
efforts in proving the analogue of Riemann Hypothesis in this algebro-geometric setting (as a
part of the Weil conjectures) has re-shaped modern algebraic geometry. Other notable zeta
functions in other mathematical disciplines include the Dedekind zeta function defined for al-
gebraic number fields, the Selberg zeta function in differential geometry, and the Artin-Mazur
zeta function in dynamical systems.
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The goal of our research is to explore yet another beautiful interaction of zeta functions,
with the topological structure of covering spaces. More precisely, we make sense of the zeta
function ζX(u) for any finite connected graph X, and explore how such graph-theoretic zeta
functions interact with finite coverings of graphs.

Example 1.1. Below is a 2-sheeted covering of the tetrahedron graph.

Figure 1. A 2-sheeted cover of the tetrahedron graph.

1.1. The classical Riemann zeta function. We begin with a brief historical account of the
story. Perhaps one first encounters the classical Riemann zeta function in a standard calculus
course. Indeed, the Riemann zeta function
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is a particular example of a Dirichlet series, and one learns that the series in Equation (1)
converges whenever s > 1, and diverges otherwise. For example, when s = 1 one obtains the
harmonic series which is one of the most familiar examples of divergent series.

At this point the zeta function ζ(s) is a single-variable, real-valued function defined for all
real numbers s > 1. It is then a reasonable question to ask for precise values of ζ(s), especially
when s is an integer greater than one. For example, the problem of determining ζ(2), known
as the Basel problem, was first proposed by Pietro Mengoli in 1650. Progress in finding precise
zeta values are pioneered by the ground-breaking work of Leonhard Euler, who completely
solved the Basel problem:
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The most surprising feature of Equation (2) is the appearance of (the square of) π in the
formula. There has been a number of proofs of Equation (2) since the original one of Euler,
and we present an elementary proof in the Appendix where only techniques from integral
calculus are involved.

Euler achieved much more than merely solving the Basel problem. In fact, in 1735 he
obtained a closed-form description of ζ(s) for all positive even integers s:

ζ(2n) = (−1)n−1
(2π)2n

2(2n)!
B2n,∀n ≥ 1.

Here the numbers B2n are Bernoulli numbers characterized by the generating function
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In contrast, precise zeta values at odd integers are much harder to determine. To this day, it
is not even known whether ζ(3) is transcendental.

One remarkable contribution of Euler in this subject is to relate zeta function with primes.
Recall that a positive integer greater than one is a prime number (or just a prime for short), if
its only factors are one and itself. Prime numbers are basic building blocks of integers (via the
unique factorization) and human beings have a long history of investigating both properties
of primes and the distribution among integers. The proof of Euclid from 300 B.C. that there
exists infinitely many primes is acknowledged as one of the most beautiful proofs in the history
of mathematics. In 1737, Euler observed that ζ(s) can be expressed purely in terms of primes:

(3) ζ(s) =
∑
n≥1

1

ns
=

∏
p prime

(1− p−s)−1.

The intuition of Equation (3) is coming from the sieve of Eratosthenes – another Greek math-
ematician around Euclid’s time.

The next dominant figure in the history of this subject is Bernhard Riemann, who approached
ζ(s) from complex analysis, with the motivation of studying the distribution of primes. As a
function of complex variable, ζ(s) has Re(s) > 1 as its domain of convergence. In his famous
1859 paper, he pointed out that ζ(s) can be analytically continued to a meromorphic function
over the entire complex plane, with the single simple pole at s = 1. This extended ζ(s) has
lots of trivial zeros, e.g., one at every negative even integer, but there are also non-trivial ones.
In the same paper, Riemann conjectured that all non-trivial zeros of ζ(s) should lie on the
line Re(s) = 1

2 , and expected that a positive answer to the conjecture would help to prove the
Prime Number Theorem. For a real number x ≥ 2, write π(x) for the number of primes less
than or equal to x. The function π(x) is known as the prime-counting function, and studying
the distribution of primes is essentially amounts to understanding the asymptotic behavior of
π(x) as x tends to infinity. The Prime Number Theorem states that

π(x) ∼ x

lnx
∼ Li(x), x→∞,

where Li(x) =
∫ x
2

1
ln tdt is the logarithmic integration function. With the help of Euler’s Equa-

tion (3) and various other techniques, Riemann was able to relate π(x) to the zeros of ζ(s)
and made the conjecture that all non-trivial zeros of ζ(s) should lie on the line Re(s) = 1

2 .
This Riemann Hypothesis has not been proved or disproved as of the year of 2025, though the
Prime Number Theorem itself was proved already in 1896, independently by Hadamard and de
la Vallée Poussin.

1.2. Main results. The main focus of our paper is to develop a theory of zeta functions in
a combinatorial and topological context, namely that of finite graphs and their coverings. As
one-dimensional CW complexes, graphs are among the most fundamental examples of topolog-
ical spaces, and coverings of graphs give rise to a rich source of examples of covering spaces.
However, difficulties immediately arise as one attempts to define the zeta function for a graph
as an infinite series, as there is no obvious way to encode the basic features of the given graph
(e.g., its data of edges and vertices) in the formula. At this point, Euler’s formula Equation (3)
provides a key insight – if one is able to make sense of “primes” in a graph, then a reasonable
definition would be to take the zeta function as appropriate products over all primes. This is
exactly how the story is developed in history. Consider a finite connected graph X without
degree-one vertices. One can make sense of prime loops in X – roughly speaking, they are
backtrackless, tailless, primitive paths in X (see Section 3 for details). The zeta function of X
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is then defined as
ζX(u) =

∏
[P ]

(1− uν(P ))−1,

where the product is taken over equivalence classes of primes in X, and ν(P ) denotes the length
of the prime P (see Definition 3.3 for details).

Example 1.2. Zeta functions of cyclic graphs are straightforward to compute, since they
contain exactly two prime loops up to equivalence.

Figure 2. A cyclic graph C4 with zeta function ζC4
(u) = (1− u4)−2.

This notion of zeta function of graphs was first introduced by Ihara [Iha66] for the purpose
of studying discrete subgroups of projective linear groups over p-adic fields, and was further
developed by Hashimoto [Has89] and Bass [Bas92]. In particular, Hashimoto and Bass indepen-
dently proved an equivalent form of the graph-theoretic zeta function, known as the determinant
formula, and this is the first main result we would like to present:

Theorem 1.3. The inverse of the graph zeta function ζX(u) equals

(1− u2)rX−1 det(I −AXu+QXu
2).

In the above theorem, AX is the adjacency matrix of X, and QX is a diagonal matrix whose
entries along the main diagonal come from the degree of vertices in X. The number rX is the
rank of the fundamental group of X, so that rX − 1 equals the number of edges in X minus
the number of vertices. (See Section 3 for detailed explanations.)

Example 1.4. In Example 1.1, the tetrahedron graph T has adjacency matrix

AT =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ,
and therefore

ζT (u)−1 = (1− u2)rT−1 det(I −ATu+QTu
2)

= (1− u2)2 det


1 + 2u2 −u −u −u
−u 1 + 2u2 −u −u
−u −u 1 + 2u2 −u
−u −u −u 1 + 2u2


= (1− u2)2(1− u)(1− 2u)(1 + u+ 2u2)3.

The interaction of graph zeta functions with the topological structure of covering spaces
was extensively studied by Stark and Terras in a sequence of papers [ST96, ST00, ST07]. In
particular, it is proved that if Y → X is a finite covering of graphs then the inverse of the zeta
functions satisfy a divisibility property. This is the second main result we would like to present
in this paper:
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Theorem 1.5. Let p : Y → X be a finite covering of graphs. Then ζX(u)−1 divides ζY (u)−1.

Example 1.6. In Example 1.1, the covering graph T̃ (namely the cube graph) has

ζT̃ (u)−1 = (1− u2)4(1− 4u2)(1− u+ 2u2)3(1 + u+ 2u2)3,

which is clearly divisible by ζT (u)−1 = (1− u2)2(1− u)(1− 2u)(1 + u+ 2u2)3.

1.3. Structure of the paper. Later sections of the paper are organized as follows. In Sec-
tion 2, we survey the needed background knowledge from algebraic topology, mainly the ma-
terial of fundamental groups and covering spaces, with [Hat02] as our main reference. Next
in section Section 3 we specialize covering spaces to the case of finite coverings of graphs. We
set up the basic notions about finite graphs, and define the graph-theoretic zeta function. The
final part of the paper, Section 4, is dedicated to proving the main results, Theorem 1.3 and
Theorem 1.5. Our proofs follow largely from the excellent book of Terras [Ter10]. As promised
earlier, we give an elementary solution of the Basel problem in the Appendix.
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at the Department of Mathematical Sciences, New Mexico State University, mentored by the
third author. The authors would like to thank the Department of Mathematical Sciences
at New Mexico State University for providing financial support and for a welcoming work
environment. The first author would like to thank his mother and father for their lifelong
support and his friend Jan for the mathematical discussions over the years. The second author
would like to thank his parents Grant Gardner and Sara Gardner for their support, and God
for the opportunity. The fourth author would like to thank my parents Shokhrukh Jalilov, Alex
Carrillo, and Donokhon Jalilova. I couldn’t have gotten this far without all of your sacrifices,
Happy Father’s Day.

2. Background: Fundamental groups and covering spaces

2.1. The notion of a homotopy. In topology, we often care about shapes up to ”continuous
deformation.” A homeomorphism is a bijective, continuous map with a continuous inverse—it
allows us to transform one space to another by bending, stretching, and twisting, but without
tearing things apart or gluing them together. It is a very strong equivalence, implying spaces
are topologically ”identical,” meaning all topological properties are preserved [Sti16, Definition
1.10].

However, proving or disproving that two spaces are homeomorphic can be difficult. To study
spaces more flexibly, we introduce a weaker equivalence relation: homotopy. Homotopy gives
us a more relaxed way of classifying spaces (and maps between them) by allowing further
deformation through shrinking and expanding, but still no gluing or tearing [Hu23]. This is
what helps classify spaces based on properties like ”holes” or ”connectivity.”

Example 2.1. A classic illustrative example is the deformation of a coffee mug into a donut:
both possess a single ”hole,” and while they may appear different geometrically, they are in
fact homeomorphic (and thus homotopy equivalent) because they can be deformed into each
other without cutting or gluing.

Example 2.2. Consider the digits ’0’, ’6’, and ’9’ as one-dimensional figures drawn in a plane.
All three can be deformed into a simple circle S1. While ’0’ is directly homeomorphic to
S1, ’6’ and ’9’ are homeomorphic to eachother but not S1 (as their ”tails” can’t be smoothly
absorbed). However, these spaces are all considered homotopy equivalent to S1. This illustrates
how homotopy helps categorize shapes by their essential features, such as the presence of a single
loop.
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Definition 2.3 (Homotopy). Let X and Y be topological spaces. Two continuous maps
f, g : X → Y are said to be homotopic, if there exists a continuous map

H : X × I→ Y

such that
H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

In this case, we say that f is homotopic to g, and such an H is called a homotopy from f to g,
and we write f ' g.

Here, the unit interval I = [0, 1] plays the role of a “time” parameter. At time t = 0, we
start with the function f , and by t = 1, we continuously deform it into the function g. Each
fixed time t ∈ I gives a map

Ht(x) := H(x, t),

so the homotopyH can be viewed as a continuous family of maps {Ht : X → Y }t∈I interpolating
between f and g.

Intuitively, f is homotopic to g if f can be continuously deformed to g inside Y within unit
time. Geometrically, we can think of X × I as a cylinder. The homotopy H maps this cylinder
into Y , where the “bottom” X × {0} is mapped by f , and the “top” X × {1} is mapped by
g. Each point x ∈ X traces a continuous path t 7→ H(x, t) in Y , showing how f(x) transitions
into g(x).

More than just a concept, homotopy defines an equivalence relation on continuous maps.

Proposition 2.4. Homotopy is an equivalence relation on the set C(X,Y ) of continuous maps
from X to Y .

Sketch of Proof. We must check that ' is reflexive, symmetric, and transitive [Hu23, Page 13]:

• Reflexivity: f ' f via the constant homotopy H(x, t) = f(x).

• Symmetry: If f ' g via H, then g ' f via H̃(x, t) := H(x, 1− t). The continuity of

H̃ follows from the continuity of H.
• Transitivity: If f ' g via H1 and g ' h via H2, define:

H(x, t) =

{
H1(x, 2t) if 0 ≤ t ≤ 1

2 ,

H2(x, 2t− 1) if 1
2 ≤ t ≤ 1.

The map H is continuous. Its continuity at t = 1/2 follows from H1(x, 1) = g(x) and
H2(x, 0) = g(x). This map H provides a homotopy from f to h.

�

Because homotopy is an equivalence relation, it partitions C(X,Y ) into homotopy classes.
The homotopy class of a map f is denoted by [f ], and the set of all such classes is denoted
[X,Y ] [Hu23, Page 13].

We now introduce some important concepts related to homotopy:

Definition 2.5 (Null-Homotopic Map). A map f : X → Y is called null-homotopic if it is
homotopic to a constant map.

Intuitively, a null-homotopic map can be ‘shrunk’ continuously to a point.

Example 2.6. Any map from any space X into a convex subset of Rn (such as an open disk
Dn or Rn itself) is null-homotopic, as it can be linearly contracted to a point.

Definition 2.7 (Contractible Space). A space X is said to be contractible if its identity map
idX : X → X is null-homotopic. Equivalently, a space is contractible if it is homotopy equivalent
to a single point X ' {∗}.
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Contractible spaces are important because they behave like a point in homotopy theory, and
their fundamental group is always trivial.

Example 2.8. Examples of contractible spaces include any convex subset of Rn, such as an
open disk Dn or the entire space Rn itself. Conversely, the unit circle S1 is not contractible,
which will be demonstrated by its non-trivial fundamental group.

Definition 2.9 (Homotopy Equivalence). A continuous map f : X → Y is called a homotopy
equivalence if there exists a continuous map g : Y → X such that f ◦ g ' idY and g ◦ f ' idX .
In this case, we say that X and Y are homotopy equivalent, denoted X ' Y , and that they
share the same homotopy type.

Example 2.10. The real plane R2 is homotopy equivalent to a single point {∗} [Sti16, Example
1.15]. This signifies that, from a homotopy perspective, R2 can be continuously shrunk to a
point.

Example 2.11. The punctured plane R2 \ {0} is homotopy equivalent to the unit circle S1.
This is a key example, as it shows that the ”hole” at the origin is the essential feature preserving
the homotopy type with S1, despite the large difference in overall shape.

2.1.1. Important Special Cases and Related Notions.

Definition 2.12 (Path Homotopy). A path homotopy is a special case of homotopy between
paths γ, γ′ : I → X where the endpoints remain fixed throughout the deformation. A path
homotopy H : I× I→ X satisfies:

H(0, t) = γ(0) = γ′(0), and H(1, t) = γ(1) = γ′(1), for all t ∈ I.

We denote this by γ 'rel ∂I γ
′ or simply γ ' γ′ when the context of fixed endpoints is clear,

where ∂I = {0, 1} is the boundary of the unit interval. This concept is foundational for defining
the fundamental group.

Let γ : I → X be a path from x to y, and σ : I → X be a path from y to z. We can
concatenate these two paths to form a new path γ · σ : I→ X from x to z, defined as:

(γ · σ)(t) =

{
γ(2t) if 0 ≤ t ≤ 1

2 ,

σ(2t− 1) if 1
2 ≤ t ≤ 1.

This operation is called path concatenation or path multiplication. Intuitively, this definition
traverses the path γ in the first half of the time interval I, and then the path σ in the second
half.

The inverse path of γ, denoted γ−1, is defined as γ−1(t) = γ(1 − t) for t ∈ I. This path
traverses γ in the reverse direction.

Path concatenation has several important properties under path homotopy:

• Associativity (up to homotopy): Given paths α : x→ y, β : y → z, and γ : z → w,
we have (α · β) · γ ' α · (β · γ).

• Identity (up to homotopy): For a path α : x→ y, let cx be the constant path at x
(i.e., cx(t) = x for all t ∈ I). Then α · cy ' α and cx · α ' α.

• Inverse (up to homotopy): For a path α : x → y, we have α · α−1 ' cx (a loop at
x) and α−1 · α ' cy (a loop at y).

These properties together will allow us to define the product of loops in the fundamental group.

Definition 2.13 (Deformation Retraction). A map r : X → A ⊆ X is a deformation retraction
if r is a retraction (i.e., r|A = idA) and the inclusion map i : A ↪→ X is a homotopy equivalence
such that i ◦ r ' idX . In this case, X can be continuously “shrunk” onto A while preserving
homotopy type.
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Homotopy provides a robust framework for understanding spaces up to deformation, helping
us classify them based on qualitative features like the number of holes, paths, and loops. This is
incredibly useful because the fundamental group is constructed by considering homotopy classes
of loops (paths whose start and end points coincide) based at a fixed point. The crucial condition
of path homotopy, which requires endpoints to remain fixed, ensures that the concatenation of
loops is well-defined as a group operation on these homotopy classes. This leads directly to the
definition of the fundamental group, which is the next major topic in our development.

2.2. The fundamental group of a space. We have already seen the appearance of a notion
of fundamental group in the determinant formula for the graph zeta function Theorem 1.3 where
rx was defined as the rank of the fundamental group. Its presence is no surprise since, intu-
itively, the fundamental group is a collection of all possible loops in a space, up to homotopy,
and for which an extra group structure emerges. In fact, the fundamental group is a topological
invarient which is a foundational concept in algebraic-topology. It is a vital concept for the
connection between topology and algebra, where it was realized that covering spaces of topo-
logical spaces correspond to subgroups of the fundamental group of that space. This bridges
algebra and topology, allowing us to study problems in algebra from a topological perspective
and vice versa. A classical result of this is in a topological proof that the subgroups of a free
group are also free. Now, In order to form a definition of the fundamental group we must start
with loops.

Definition 2.14. (Loop) Let X be a topological space. A path σ which both starts and ends
at the point x0 in X, i.e. σ(0) = σ(1) = x0, is called a loop in X based at x0.

Since there is an equivalence relation under path homotopy, we may create the notion of the
set of all homotopy classes of loops in X based at x0. We shall denote this set as π1(X,x0). A
typical element of π1(X,x0) would be like [σ] where σ is a loop based at x0 and is a representative
of the homotopy class of loops at x0 to which σ belongs. This is to say that, [σ] = [τ ] precisely
when σ is path homotopic to τ , as loops.

Now, two loops at x0 may be concatenated to create a third loop at x0. Treating loop
concatenation as a product of loops, does this form a group structure on π1(X,x0)? Indeed,
the answer is yes.

Claim 2.15. π1(X,x0) becomes a group under path concatenation.

Proof. First,

π1(X,x0)× π1(X,x0)→ π1(X,x0)

([γ], [σ]) 7→ [γ · σ]

is well defined. Take any two paths as representatives of [γ], say γ and γ′, likewise for σ and σ′.
Since path concatenation is well-defined up to homotopy and γ ' γ′, σ ' σ′, then γ ·σ ' γ′ ·σ′,
thus we may pick either product as the representative of [γ · σ] without losing generality.

In a similar manner, associativity ([γ][σ])[τ ] = [γ]([σ][τ ]) follows from the associativity of
path concatentation up to homotopy, the identity is [cx0 ], and it is clear that [σ]−1 is simply
[σ−1]. �

Now we are prepared to define the notion of the fundamental group.

Definition 2.16. Let X be a topological space and choose some base point x0 ∈ X. The set
π1(X,x0) together with the operation of path concatentation is called the fundamental group
of X based at x0. Henceforth, π1(X,x0) will refer to the fundamental group itself.
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Notice that the above definition for Definition 2.16 depends on a choice of base point x0, but
it turns out that, up to isomorphism, the choice of base point is irrelevant. In fact, this brings
us to an important property.

Theorem 2.17. If a topological space X is path connected, then π1(X,x0) ∼= π1(X,x1) for
every x0, x1 ∈ X. We may refer to this isomorphism class simply as the fundamental group of
X and denote it as π1(X).

Proof. The main idea is to construct a bijection and verify that it satisfies homomorphism.
Consider the map,

f : π1(X,x0)→ π1(X,x1)

[σ] 7→ [γ−1σγ]

where γ is a path from x0 to x1. f is well defined in the same manner as the proof of Claim
2.15. Also,

f([σ][τ ]) = [γ−1στγ] = [γ−1σγγ−1τγ] = f([σ])f([τ ])

So, f satisfies homomorphism. Next, we need only notice that f−1(σ) = [γσγ−1] works to
bring us to an isomorphism. �

In essence, this means there is a group for every space and we can discuss the fundamental
group of a space without the necessity of specifying a base point.

Looking forward to the a treatment of covering spaces a useful fact is that the fundamental
group is functorial.

Theorem 2.18. Suppose that f : (X,x0)→ (Y, y0) is a continuous based map between topo-
logical spaces. Then, f induces a group homomorphism.

f∗ : π1(X,x0)→ π1(Y, y0)

[σ] 7→ [f ◦ σ]

Proof. The homomorphism f∗ is well defined since from the definition of loop and f · σ is a
mapping such that I × I → X → Y . Clearly the image is again a loop in π1(Y, y0). Also, that
f∗ satisfies homomorphism follows directly from applying the definition of path concatentation
to f ◦ (σ · τ) (f ◦ σ) · (f ◦ τ). �

In fact, if f is an homotopy equivalence we can immediately say more, that f∗ is an isomor-
phism.

Corollary 2.19. Suppose that f : X → Y is a continuous map between topological spaces and
that f is a homotopy equivalence. Then, f∗ : π1(X,x0)→ π1(Y, f(x0) is an isomorphism.

Thus, π1 is homotopy invariant. We may deform a topological space in any way up to
homotopy equivalence, say mush a donut into a coffee mug or even squish a 4 into a 0, and rest
easy that this does not affect π1. A straightforward demonstration of the significance of this
quality is in the classical example that π1(S1) ∼= Z.

Example 2.20. The fundamental group of the cirvle is isomorphic to Z.
Intuitively, we can imagine looping around the unit circle and counting how many times we

pass the start point. Go around clockwise once, twice, three times and the positive integers
come naturally, then we can go around the counterclockwise and say these loops correspond to
negative integers.
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More precisely, we can define a winding function.

W : π1(S1)→ Z
[σ] 7→ σ̃(1)

where σ̃(s) is the lift from definition 2.26 of

p : R→ S1

s 7→ e2πis

One can then show straightforwardly that W is well-defined, a group homomorphism, and is
surjective and injective.

2.3. Covering spaces. The notion of the covering space will be introduced, to motivate the
covering spaces of graphs occurring in the next seciton. Throughout the rest of this section, all
spaces are assumed to be topological, and all maps are assumed to be continuous.

Definition 2.21. Let X be a space. A covering space over X is another space X̃, together with
a map p : X̃ → X, if and only if for every element x ∈ X there exists an open neighborhood
Ux ⊂ X of x, such that its preimage p−1(Ux) =

⊔
α Vα is a union of disjoint open subsets

Vα ⊂ X̃, and p maps each Vα homeomorphically onto Ux. In this situation, X̃ is said to be the
total space, and X is said to be the base space. (See [Hat02].)

Intuitively speaking, a covering space “covers down”, so to speak, each Ux with a collection
Vα. Also note that any space can act as its own covering space.

Example 2.22. Let

p : R→ S1

x 7→ e2πix

be a map between the real line R and the unit circle S1 in C. It is easy to see that R is a
covering space for S1.

Example 2.23. Let n ∈ Z+ be an arbitary desired winding number, and let

p : W 1 → S1

z 7→ zn

be a map between two identical unit circles in the complex plane (i.e., we treat W 1 as a
seperate identical copy of S1, labeled differently to distinguish domain and range). When W 1

is homeomorphically deformed to a torus-shaped spring with n cycles, it becomes clear that
this presentation of W 1 is a covering space for S1.

Definition 2.24. Let p : X̃ → X be a map from a covering space X̃ to its base space X, and
let x0 ∈ X be an element. The preimage p−1(x0) is said to be the fiber of x0. If the cardinality

of the fiber p−1(x0) = n is finite, we say that X̃ is an n-sheeted cover, or an n-fold cover. (See
[Hat02].)

The term “fiber” comes from the visualization of a bundle of fibers extending out of p−1(x0)
and closing onto x0.

Example 2.25. In Example 2.22, we see that the fiber of z0 = 1 in the unit circle S1 is Z in
R. Similarly, in Example 2.23, the cardinality-n fiber of z0 in S1 is the set of nth-roots of unity
in W 1. Note that W 1 is an n-fold cover.
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Now we are going to examine some lifting lemmas. These will aid significantly in motivating
our discussion of the action of the fundamental group and of the Galois group of a covering
space. Let p : X̃ → X map the covering space X̃ to its base space X, and let x0 ∈ X be an
element. Additionally, let x̃0 ∈ p−1(x0) be an element of the fiber p−1(x0). First, recall the
following:

Definition 2.26. Let f : Y → X be a map between two spaces. Then a lift of f is a map
f̃ : Y → X̃ such that p ◦ f̃ = f .

Lemma 2.27. Let Y be a connected space, with f : Y → X being a map. If f̃1, f̃2 are two
lifts of f such that f̃1(y0) = f̃2(y0) for some y0 ∈ Y , then f̃1 = f̃2.

Proof. See Proposition 1.34 in [Hat02]. �

Lemma 2.28. Let f0, f1 be two maps from spaces Y to X, which are homotopic via
H : Y × I → X. Additionally, let f̃0 : Y → X̃ be a lift of f0. Then there exists a unique
homotopy H̃ : Y × I → X̃ which starts from f̃0 and lifts the given homotopy H.

Proof. See Proposition 1.30 in [Hat02]. �

Lemma 2.29. Let γ be a path in X starting at x0. Given any element x̃0 in the fiber p−1(x0),

there exists a unique path γ̃ in X̃ which starts from x̃0 and lifts γ.

Proof. In Lemma 2.28, let Y be a point. The result immediately follows. �

Lemma 2.30. Suppose that γ, σ are path homotopic paths in X from x0 ∈ X to x1 ∈ X. If
γ̃, σ̃ are lifts of γ, σ respectively sharing the same start point, then they are path homotopic,
and in particular have the same endpoint.

Proof. Apply Lemmas 2.29 and 2.30. �

Now we are going to examine the action of the fundamental group on the fiber. It may be
helpful to recall some of the following group-theoretic definitions (see [DF04] and [Armstrong]):

Definition 2.31. Let G be a group acting on the nonempty set A.

(1) The equivalence class {g · a | g ∈ G} is called the orbit of G containing a, notated as
G(a).

(2) The action of G on A is called transitive if and only if there is only one orbit, i.e., given
any two elements a, b ∈ A there is some g ∈ G such that a = g · b.

(3) The stabilizer of s ∈ A in G is the set Ga = {g ∈ G | g · s = s}.
(4) When the stabilizer for very s ∈ A is the trivial subgroup e in G, then we say that G

is a free action on A.

Proposition 2.32. The following action of π1(X,x0) on the fiber p−1(x0) in X̃ is well-defined:

π1(X,x0)× p−1 → p−1(x0)

([σx0
], x0) 7→ σ̃x̃0

(1)

where we adopt the following notational conventions: σx0
is a loop in X both starting and

ending at x0; the equivalence class [σx0 ] ∈ π1(X,x0) is the set of loops homotopic to σx0 in X;
and σ̃x̃0(1) ∈ p−1(x0) denotes the endpoint of the lifted path σ̃x̃0 , which path σ̃x̃0 starts at x̃0
and is lifted from the loop σx0

in X.

Proof. The uniqueness of path lifting follows from Lemmas 2.29 and 2.30. �

Note that this Proposition 2.32 serves more to define the group action of the fundamental
group π1(X,x0).
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Example 2.33. In Example 2.23, let x0 = 1 in S1 be our basepoint, and let

p−1(x0) = {e0 2πi
n , e1

2πi
n , . . . , e(n−1)

2πi
n }

in W 1 be its fiber. Let σwx0
be a loop in X traversing x0 in w-cycles in the positive-w equals

counterclockwise sense. Then, letting π1(S1, x0) act on p−1(x0), we obtain

σ̃x̃0
(1) =


e0

2πi
n x̃0, w ∈ nZ

e1
2πi
n x̃0, w ∈ nZ + 1

. . .

e(n−1)
2πi
n x̃0, w ∈ nZ + (n− 1)

where nZ +m denotes cosets of Z. Note that this group action is isomorphic to

Z× Z/n → Z/n
(k,m) 7→ m+ k (modn)

where Z/n denotes the set of integers modulo-n.

Proposition 2.34. For any x̃0 ∈ p−1(x0), the group homomorphism P∗ : π1(X̃, x̃0) →
π1(X,x0) is injective.

Proof. Let σ, γ ∈ [σ] be any two path homotopic loops that fall in the same equivalence class
[σ], which class is in the image of P∗. Then, by Lemmas 2.29 and 2.30, their path lifts σ̃, γ̃ are
also path homotopic, implying that they belong to the same equivalence class [σ̃]. Thus, [σ]
has only [σ̃] as its preimage. �

Similar to Proposition 2.32, we’ll use this Proposition 2.34 more as definition for P∗.

Example 2.35. From Examples 2.23 and 2.33, we can define P∗ as

P∗ : π1(W 1)→ π1(S1)

[σ̃wx̃0
] 7→ [σnwx0

]

where the basepoints of each fundamental group can be chosen arbitrarily for such a path-
connected space (as shown in the previous subsection). Note that the loop class [σ̃wx̃0

] in π1(W 1)

gets mapped to the loop class [σnwx0
] in π1(S1), with the latter having n-times the number of

cycles as its preimage.

Propositions 2.36 through 2.40, in addition to Corollary 2.44 and Proposition 2.45, are rather
useful facts concerning the Galois theory of covering spaces.

Proposition 2.36. The path σ̃x̃0 is a loop, if and only if [σ] ∈ π1(X,x0) is in the image of

P∗ : π1(X̃, x̃0)→ π1(X,x0).

Proof. We prove the forward and backward implications:

(⇒) Loops must map to loops.

(⇐) Suppose [σ] = P∗[τ̃ ] for some [τ ] ∈ π1(X̃, x̃0). Then both [τ̃ ] and σ̃x̃0 are lifts of σ
starting at x̃0. So τ̃ = σ̃x̃0

by Lemmas 2.29 and 2.30. �

Also, from now on, let’s assume that the base space in a covering is path-connected.

Proposition 2.37. Suppose that X̃ is also path-connected. For every y0, y1 ∈ p−1(x0), the

groups P∗π1(X̃, y0) and P∗π1(X̃, y1) are conjugate subgroups in π1(X,x0).

Proof. Let γ be a path from y0 to y1 in X̃. Then P∗π1(X̃, y1) = [p · γ]−1P∗π1(X̃, y0)[p · γ]. �
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Proposition 2.38. The covering space X̃ is path connected, if and only if π(X,x0) acts
transitively on p−1(x0).

Proof. We prove the forward and backward implications:

(⇒) Suppose X̃ is path connected, and that y0, y1 ∈ p−1(x0). Let γ be a path in X̃ from y0
to y1. Then p · γ is a loop in X at x0, and ( ˜p · γ)y0 (1) = γ̃(1) = y1. So y0 · [p · γ] = y1.

(⇐) Suppose that the action is transitive, and y, y′ ∈ X̃. Write x, x′ for p(y), p(y′), respec-

tively. Since X is path connected, there exists a path δ from x to x′. Now δ̃y is a path

in X̃ with start point y and endpoint δ̃y(1) = y′′ ∈ p−1(x′). Let [σ] ∈ π1(X,x′) be such

that y′′ · [σ] = y′. (That is, it has start point of y′′ and enpoint of y′.) Now δ̃y · σ̃y′′ is
a path connecting y and y′. �

Proposition 2.39. The stabilizer of y0 ∈ p−1(x0) under the action of π1(X,x0) is exactly

P∗π1(X̃, y0).

Proof. An element [σ] ∈ π1(X,x0) satisfies y0 · [σ] = y0, if and only if σ̃y0 is a loop. However,

by Proposition 2.36, σ̃y0 is a loop if and only if [σ] ∈ π1(X̃, y0). �

Proposition 2.40. Let X̃ be path connected, and let x0 ∈ X and y0 ∈ p−1(x0). Then the

quotient set π1(X,x0)/P∗π1(X̃, y0) and p−1(x0) are bijective.

Proof. We leave this as an exercise to the reader. (Hint: Apply the Orbit-Stabilizer Theorem,
which can be found in Theorem 17.2 in [Armstrong], and utilize some of the past propositions.)

�

Now we can examine the Galois group of a covering space. First, let us define a few terms.
Also, from now on, let’s assume that the base space in a covering is path-connected. Note our
following definitions:

Definition 2.41. A morphism from (X̃1, p1) to (X̃2, p2) is a continuous map h : X̃1 → X̃2

such that p2 ◦ h = p1. The morphism h is called an isomorphism if and only if it is also
a homeomorphism as a map h : X̃1 → X̃2. An automorphism of a covering space X̃ is a
self-isomorphism φ : (X̃, p)→ (X̃, p) of the covering space.

Definition 2.42. The automorphisms of the covering space form a group under composition,
which we call the Galois group, denoted as Gal(X̃/X). We say that such covering space is

regular, if and only if Gal(X̃/X) acts transitively on the fiber p−1(x0) for every x0 ∈ X. A

path connected covering space is normal, if and only if P∗π1(X̃, x̃0) is a normal subgroup of

π1(X,x0), for every x0 ∈ X and every x̃0 ∈ p−1(x0). When the cover X̃ is simply connected,
we say that such cover is universal.

Note also that the morphism h is also a covering map.

Example 2.43. Note that Figure 3 is regular, whereas Figure 4 is not.

Corollary 2.44. The number of sheets equals the index of P∗π1(X̃, y0) in π1(X,x0) for every
x0 ∈ X and every y0 ∈ p−1(x0). If the covering is normal, then the number of sheets is equal to

the size of the quotient group π1(X,x0)/P∗π1(X̃, y0). If the cover is universal, then π1(X,x0)
is isomorphic to p−1(x0) as sets.

Proof. Clear from Proposition 2.40. �

Proposition 2.45. Let (X̃1, p1), (X̃2, p2) be two coverings over X. Let x0 ∈ X, and let

y1 ∈ p−11 (x0), y2 ∈ p−12 (x0). Then there is a covering space isomorphism h : (X̃1, p1)→ (X̃2, p2),

if and only if (P1)∗π1(X̃1, y1) = (P2)∗π1(X̃2, y2).
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Figure 3. Example of a regular graph.

Figure 4. Example of an irregular graph.

Proof. The forward implication is clear: h must admit isomorphic fundamental groups in the
covering space, which map to identical ones in the base space. The backward implication is left
as a good exercise to the reader. (Hint: See the previous lemmas.) �

Now we state an important theorem on the Galois group of a covering space:

Theorem 2.46. Let x0 ∈ X, y0 ∈ p−1(x0), and write G for π1(X,x0), and H for P∗π1(X̃, y0).
Then the following hold:

(1) Gal(X̃/X) is isomorphic to NG(H)/H;

(2) p : X̃ → X is normal if and only if it is regular.

Proof.

(1) Define Φ : Gal(X̃/X)→ NG(H)/H as follows: Given ϕ ∈ Gal(X̃/X), pick a path γ in

X̃ from y0 to y1 := ϕ(y0). Write H ′ for P∗π1(X̃, y1). We have H ′ = [p · γ]−1H[p · γ].
So [p · γ] ∈ NG(H). We define Φ(ϕ) = H[p · γ]. We leave it as an exercise to complete
the rest of the proof (that is, show that Φ is indeed an isomorphism).

(2) We prove the forward and backward implications:

(⇒) Let y0, y1 ∈ p−1(x0). Since the covering is normal, P∗π1(X̃, y0) is a normal sub-

group of π1(X,x0), then P∗π1(X̃, y0) = P∗π1(X̃, y1) implies that there exists a

ϕ ∈ Gal(X̃/X) sending y0 to y1.

(⇐) We need to show that for every x0 ∈ X and every y0 ∈ p−1(x0), P∗π1(X̃, y0)
is normal in π1(X,x0). Let [σ] ∈ π1(X,x0). Write y1 for σ̃y0(1). Given that

p : X̃ → X is regular, there is some ϕ ∈ Gal(X̃/X) such that ϕ(y0) = y1. Now

this implies that P∗π1(X̃, y0) = P∗π1(X̃, y1) (i.e., [σ] normalizes P∗π1(X̃, y0)). �

Corollary 2.47. The following results from Theorem 2.46:

(1) If X̃ → X is normal, then Gal(X̃/X) is isomorphic to π1(X,x0)/P∗π1(X̃, y0).
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(2) If X̃ → X is universal, then Gal(X̃/X) is isomorphic to π1(X,x0).

Armed with the Galois theory of covering spaces, we are prepared to unfold:

3. Graph-theoretic coverings and zeta functions

We first fix a few terms and regarding finite graphs, following the convention of [Ter10]. The
data of a graph X consists of a set VX of vertices and a set EX of edges, and the graph is finite
if both VX and EX are finite sets. The degree of a vertex v is the number of edges connected
to it, which we write as deg(v). The graphs we discuss are allowed to have loops and multiple
edges, but we assume they do not contain degree-one vertices. A graph is directed if each of its
edges is oriented.

Suppose that X is a finite graph with n vertices and m edges. One can (arbitrarily) orient
the edges and label them by e1, · · · , em. We then write em+1 = e−11 , · · · , e2m = e−1m for the
oppositely oriented edges. A path P in a graph X is a sequence {a1, · · · , ak} of edges (that
is, ai ∈ {e1, · · · , e2m} for each i), so that the end vertex of ai is the start vertex of ai+1, for
i = 1, · · · , k−1. In this case we write P = a1a2 · · · ak. Such a path is closed, if the end vertex of
ak is the start vertex of a1. Closed paths are also known as loops. The length of P = a1a2 · · · ak
is k, which we denote by ν(P ).

Definition 3.1. Let P = a1a2 · · · ak be a path in a finite graph X. We say that P is back-
trackless, if ai+1 is not a−1i for every i = 1, · · · , k − 1. Say that P is tailless, if ak is not a−11 .
Paths differ by a cyclic permutation are called equivalent, so that

P = a1a2 · · · ak ∼ a2a3 · · · a1 ∼ · · · ∼ aka1 · · · ak−1.
The equivalence class of P is denoted by [P ]. A path P is primitive, if it is not of the form LN

with N ≥ 2, where L is some loop in the graph and LN denotes repeating L exactly N times.

Definition 3.2. A path P in a finite graph X is called a prime, if it is a backtrackless, tailless,
primitive loop.

We are now in the position of defining the (vertex version of the) Ihara zeta function.

Definition 3.3 (Graph-theoretic zeta function). The Ihara zeta function of a finite graph X
is defined (for u ∈ C with |u| small) as

ζX(u) =
∏
[P ]

(1− uν(P ))−1,

where the product is taken over all equivalence classes of primes in the graph X.

Example 3.4. Suppose that X = Cn is a cyclic graph with n vertices. Then there are exactly
two different primes in X up to equivalence (namely the clockwise loop and the anti-clockwise
one), each of which has length n. It follows that

ζCn(u) = (1− un)−2.

So cyclic graph have quite simple zeta functions. A general non-cyclic graph X (e.g., the
figure-eight graph) would contain infinitely many equivalence classes of primes, making the
defining product of ζX(u) an infinite product. What makes zeta function much more computable
is our main Theorem 1.3, a determinant formula proved independently by Hashimoto [Has89]
and Bass [Bas92], which we repeat here.

Theorem 3.5 (See Theorem 1.3). Let X be a finite graph with rank rX (i.e., rX is the rank
of the fundamental group of X so that rX − 1 = |EX | − |VX | = m− n). Then

ζX(u)−1 = (1− u2)rX−1 det(IX −AXu+QXu
2).
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Some definitions are in order. The matrix IX is the identity matrix of size n = |VX |. The
matrix QX is a diagonal matrix of the same size, whose (i, i)-entry equals deg(vi) − 1, for
i = 1, · · · , n. The matrix AX is known as the adjacency matrix of X defined as follows:

Definition 3.6. Let X be a finite graph with n vertices v1, · · · , vn. Its adjacency matrix AX
is a square matrix of size n, whose (i, j)-entry is

aij =

{
the number of (undirected) edges connecting vi and vj , if i 6= j;

twice the number of loops at vi, if i = j.

We will prove this main theorem in Section 4, but let us present some examples here.

Example 3.7. Consider the tetrahedron graph T pictured below.

Figure 5. The tetrahedron graph T .

The adjacency matrix of the tetrahedron graph is

AT =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ,
and therefore

ζT (u)−1 = (1− u2)2 det


1 + 2u2 −u −u −u
−u 1 + 2u2 −u −u
−u −u 1 + 2u2 −u
−u −u −u 1 + 2u2


= (1− u2)2(1− u)(1− 2u)(1 + u+ 2u2)3.

Example 3.8. Consider the graph Y pictured below.
The adjacency matrix of this graph equals

AY =

2 1 1
1 2 1
1 1 2

 ,
and therefore

ζY (u)−1 = (1− u2)3 det

1− 2u+ 3u2 −u −u
−u 1− 2u+ 3u2 −u
−u −u 1− 2u+ 3u2


= (1− u2)3(1− 4u+ 3u2)(1− u+ 3u2)2.

Finite graphs support a nice theory of fundamental groups and covering spaces. Using
knowledge from Section 2 one proves immediately the following basic results:
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Figure 6. The graph Y .

Proposition 3.9. Every connected graph X contains a maximal tree T , and the fundamental
group π1(X) is a free group with generators correspond exactly to edges not in T .

Proposition 3.10. Every covering space of a graph is again a graph, with vertices and edges
in the covering graph lifting those in the base graph.

Detailed proofs of the above results can be found in [Hat02, Section 1.A]. A remark here
is that these results can be applied to prove that every subgroup of a free group is free – a
celebrated result in group theory that is not so easy to prove directly in algebra.

Since graphs come equipped with the data of vertices and edges, they are slightly more
than their underlying topological spaces. We now spell out the definition of a unramified finite
covering of graphs. Assume that graphs X,Y are finite and connected. We say that the graph
Y is an unramified covering of the graph X, if there is a covering map p : Y → X which
takes adjacent vertices in Y to adjacent vertices in X, such that for every x ∈ X and every
y ∈ p−1(x), points adjacent to y in Y are mapped bijectively onto points adjacent to x in
X. An n-sheeted unramified covering p : Y → X is normal, or Galois, if there are exactly n
automorphisms of Y over X. (That is to say that p : Y → X is a normal covering space in the
usual sense.) The group of automorphisms will be denoted by Gal(Y/X) as usual.

Example 3.11. Below is a two 2-sheeted covering of the tetrahedron graph which is different
from that in Example 1.1.

Figure 7. Another 2-sheeted cover of the figure-eight graph.

The Galois theory of covering spaces can be specialized in the context of coverings of graphs,
so that there is a bijective correspondence between intermediate graphs of a given graph covering
Y → X and subgroups of the automorphism group Gal(Y/X). In fact, we have the following:
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Theorem 3.12 (Fundamental theorem of Galois coverings of graphs). Suppose that Y → X
is an unramified normal covering of finite graphs, with Galois group G = Gal(Y/X). Then:

(1) Given any intermediate graph X̃, the covering Y → X̃ is normal, with Gal(Y/X̃) a
subgroup of G.

(2) Conversely, given any subgroup H of the Galois group G, there is an intermediate graph

X̃ with Gal(Y/X̃) exactly equals H.

(3) Two intermediate graphs X̃ and X̃ ′ are isomorphic precisely when Gal(Y/X̃) equals

Gal(Y/X̃ ′).

(4) Two intermediate graphs X̃, X̃ ′ satisfy that X̃ covers X̃ ′ precisely when Gal(Y/X̃) is

a subgroup of Gal(Y/X̃ ′).

(5) An intermediate graph X̃ is normal over X precisely when Gal(Y/X̃) is a normal

subgroup of Gal(Y/X), in which case Gal(X̃/X) is isomorphic to the quotient group

Gal(Y/X)/Gal(Y/X̃).

A detailed proof of the above theorem, together with more discussions on coverings of graphs,
can be found in [Ter10, Section 14]. For us, the most important feature of finite graph coverings
is the way they interact with zeta functions of graphs. Another main goal of the paper is to
show that a finite graph covering gives rise to a division of the inverse of the zeta functions.

Theorem 3.13 (See Theorem 1.5). Suppose that Y → X is a finite covering of finite connected
graphs (not necessarily normal), then ζY (u)−1 divides ζX(u)−1.

This is our second main result which we will prove in Section 4. An illustrating example has
already been given in Example 1.6. Let us now present a few more examples.

Example 3.14. Let X be the figure-eight space, and let Y be the graph as in Example 3.8.
Then Y covers X as indicated by the following picture.

Figure 8. A 3-sheeted cover of the figure-eight graph.

The zeta function of the figure-eight graph has inverse

ζX(u)−1 = (1− u2)(1− 4u+ 3u2),

while the covering graph Y has

ζY (u)−1 = (1− u2)3(1− 4u+ 3u2)(1− u+ 3u2)2

as computed in Example 3.8. It is clear that ζY (u) is divisible by ζX(u).

Example 3.15. Let Y → X be the following graph covering, with X̃ as an intermediate graph.
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Figure 9. An intermediate graph of a graph covering.

The inverse of the zeta function of the spaces involved are:

ζX(u)−1 = (1− u2)(1− 4u+ 3u2),

ζX̃(u)−1 = (1− u2)2(1 + 3u2)(1− 4u+ 3u2),

ζY (u)−1 = (1− u2)4(1− 4u+ 3u2)(1 + 3u2)(1− 2u+ 3u2).

It is clear that ζX̃(u)−1 divides ζX̃(u)−1, and that ζX̃(u)−1 divides ζY (u)−1.

4. Proof of the main theorems

We now present proofs of our main results, namely Theorem 1.3 and Theorem 1.5.

4.1. Proof of Theorem 1.3. Our main theorem is the determinant formula for the Ihara zeta
function:

ζ(u,X) = (1− u2)rX−1 · det(I − uAX + u2QX)−1,

where rX − 1 = |E| − |V |, AX is the adjacency matrix of the graph X, and QX is the diagonal
matrix whose entries are the degrees of the vertices in X. We follow the proof strategy developed
by Horton, Stark, and Terras.
Strategy. The proof proceeds in two main stages. First, we define the edge zeta function
ζE(W,X) and prove that it equals det(I −W )−1, where W is the non-backtracking edge ma-
trix. This is done by applying the Euler differential operator to the logarithm of the product
expansion.

Second, we specialize the weights in W , and use a matrix factorization involving the flip
matrix J , start matrix S, and end matrix T to relate det(I − uW1) to det(I − uAX + u2QX),
thus recovering the Ihara determinant formula.
Definition: Edge Zeta Function. The edge zeta function ζE(W,X) is defined as

ζE(W,X) =
∏
[P ]

(1−N(P ))
−1
,

where the product runs over equivalence classes of primitive, backtrackless closed cycles [P ] in
the directed edge graph of X. Here, N(P ) is the edge norm of P , defined as the product of
weights we assigned to each directed edge e appearing in the cycle P .

These weights are arranged in the 2|E| × 2|E| non-backtracking edge matrix W , whose rows
and columns are indexed by the directed edges e1, . . . , e2|E|. The entry Wei,ej is wej if the
terminal vertex of ei equals the initial vertex of ej and ej 6= ēi (i.e., no backtracking), and 0
otherwise.
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Specialization to Ihara Zeta Function. When we specialize all nonzero weights we to be a fixed
variable u, the edge norm becomes

N(P ) = u`(P ),

where `(P ) is the length of the cycle P . This is sometimes denoted v(P ) in other sources. Let
W1 be the matrix W with all nonzero entries set to 1. Then, we define the Ihara zeta function
as

ζ(u,X) := ζE(uW1, X).

Intermediate Theorem. With these definitions, our first major step is to prove the following
result:

Edge Zeta Function Determinant Formula

ζE(W,X) = det(I −W )−1.

We now prove this identity by analyzing the logarithm of the product expansion of ζE(W,X).
Step 1: Take logarithms. Taking the natural logarithm of both sides of the Euler product:

ln ζE(W,X) = ln
∏
[P ]

(1−N(P ))
−1
.

By properties of logarithms:

ln ζE(W,X) = −
∑
[P ]

ln (1−N(P )) .

Step 2: Expand using Taylor series. Recall the identity:

ln(1− x) = −
∞∑
k=1

xk

k
, for |x| < 1.

Applying this to each N(P ), we obtain:

ln ζE(W,X) =
∑
[P ]

∞∑
k=1

N(P )k

k
.

Step 2.5: Expand using the Euler differential operator. To re-express this sum more structurally,
we apply the Euler differential operator:

L :=
∑
i,j

wij
∂

∂wij
.

This operator acts on a monomial wi1j1 · · ·witjt by returning its total degree:

L(wi1j1 · · ·witjt) = t · wi1j1 · · ·witjt .

Since each N(P )k is a monomial of degree k · `(P ), applying L gives:

L ln ζE(W,X) =
∑
[P ]

∞∑
k=1

N(P )k =
∑
C

N(C),

where the sum is now over all backtrackless closed walks C, not necessarily primitive. Each
such walk arises uniquely as a k-fold repetition of a primitive cycle.
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Step 3: Interpret as a trace. The quantity
∑
C N(C) equals the sum of traces of powers of the

edge matrix: ∑
C

N(C) =

∞∑
m=1

Tr(Wm),

and so

L ln ζE(W,X) =

∞∑
m=1

Tr(Wm).

Step 4: Apply L to the determinant. We also have:

ln det(I −W )−1 =

∞∑
m=1

1

m
Tr(Wm),

and using the fact that L applied to 1
m Tr(Wm) gives Tr(Wm), we get:

L ln det(I −W )−1 =

∞∑
m=1

Tr(Wm).

Step 5: Conclude the determinant identity. We now conclude:

L ln ζE(W,X) = L ln det(I −W )−1.

Since both sides agree under L, and both vanish when all weights are set to zero, it follows that

ζE(W,X) = det(I −W )−1.

We now complete the proof by specializing the matrix W to recover the Ihara zeta function.
Step 6: Specialize W = uW1 and define the Ihara zeta function. Let W1 denote the unweighted
non-backtracking edge matrix of X, with entries in {0, 1}, so that all nonzero weights are
replaced by 1. Set:

W := uW1.

Then we define the Ihara zeta function as the specialization:

ζ(u,X) := ζE(uW1, X).

By the Edge Zeta Determinate Formula, we have:

ζ(u,X) = det(I − uW1)−1.

Step 7: Return to the main theorem. We can now return to complete the proof of the main
theorem.

Let the number of edges in the graph be m = |E|, so that there are 2m directed edges, and
let the number of vertices be n = |V |.

We now define several matrices that relate directed edges and vertices:

• The flip matrix J ∈ R2m×2m is the permutation matrix that swaps each directed edge
with its reverse:

Je,e′ =

{
1 if e′ = ē,

0 otherwise.

• The start matrix S ∈ Rn×2m records which vertex is the source of a directed edge:

Sv,e =

{
1 if o(e) = v,

0 otherwise.
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• The end matrix T ∈ Rn×2m records which vertex is the target of a directed edge:

Tv,e =

{
1 if t(e) = v,

0 otherwise.

Step 8: Matrix identities. These matrices satisfy the following key identities:

(1) SJ = T and TJ = S,
(2) S>S = T>T = QX + I, where QX is the degree matrix,
(3) T>S = W1 + J , where W1 is the unweighted non-backtracking edge matrix.

These facts allow us to write the determinant of I − uW1 in terms of matrices defined over
the vertex set.
Step 9: Apply the determinate identity. From a matrix factorization identity due to Bass and
refined by Horton, Stark, and Terras, we have:

det(I − uW1) = (1− u2)rX−1 · det(I − uAX + u2QX),

where:

• AX is the adjacency matrix of the graph X,
• QX is the diagonal matrix of vertex degrees,
• rX = m− n+ 1 is the cyclomatic number of X.

Step 10: Conclude. Substituting into our earlier formula:

ζ(u,X) = ζE(uW1, X) = det(I − uW1)−1,

we obtain:

ζ(u,X) =
[
(1− u2)rX−1 · det(I − uAX + u2QX)

]−1
,

and thus:

ζ(u,X) = (1− u2)rX−1 · det(I − uAX + u2QX)−1,

which proves the main theorem. �

4.2. Proof of Theorem 1.5.

Proof. Begin by applying Theorem 1.3 so that ζX(u)−1 = (1− u2)rx−1 det(IX −AXu+QXu
2)

and ζY (u)−1 = (1− u2)ry−1 det(IY −AY u+QY u
2).

It will suffice to show that (1−u2)rx−1 divides (1−u2)ry−1 and that det(IX−AXu+QXu
2)

divides det(IY −AY u+QY u
2).

That (1 − u2)rx−1 divides (1 − u2)ry−1 follows immediately from the fact that p is a finite
covering. Namely, we know then that p is n-sheeted for some n <∞ and so ry − 1 = n(rx − 1)
(since ry − 1 = number of edges - number of vertices).

To show that det(IX − AXu+QXu
2) divides det(IY − AY u+QY u

2), order the vertices of
Y into blocks corresponding to the sheets of of the cover. Now, AY will be made up of blocks
Aij where 1 ≤ i, j ≤ n. ΣjAij = A should be clear from unique path lifting Lemma 2.29.

With the same block ordering of Y , QY will be composed of n copies of QX along the
diagonal and so too will IY be n copies of IX along the diagonal.

Now, the n− 1 block columns of IY −AY u+QY u
2 can be added to the first block column

without changing the determinant. This result is a matrix with n copies of IX −AXu+QXu
2

in the first block column,

(4)


IX −AXu+QXu

2 ...
IX −AXu+QXu

2 ...
... ...

IX −AXu+QXu
2 ...





ZETA FUNCTIONS OF GRAPHS 23

Additionally, the first block row can be subtracted from every other row without changing
the determinant. This results in zeroes in all the rows of the first block column except for top
left block. So, IY −AY u+QY u

2 is row equivalent to,

(5)


IX −AXu+QXu

2 ...
0 ...
... ...
0 ...


Naturally, it follows that det(IX −AXu+QXu

2) divides det(IY −AY u+QY u
2).

�

Appendix A. Solution of the Basel Problem

We will prove that ζ(2) = π2

6 using integral calculus. Let n be an integer with n ≥ 0. We
define, for each such n ≥ 0,

An =

∫ π
2

0

cos2n x dx(6)

Bn =

∫ π
2

0

x2 cos2n x dx.(7)

Proposition A.1. For all n ≥ 1,

(8) nAn =
2n− 1

2
An−1.

Proof. In (6), let u = cos2n−1 x and dv = cosx. After applying integration by parts through
this substitution onto An, we obtain

An = (2n− 1)

[∫ π
2

0

cos2n−2 x dx−
∫ π

2

0

cos2n x dx

]
= (2n− 1) [An−1 −An]

which, after some algebraic manipulation, results in (8). �

Proposition A.2. For all n ≥ 1,

(9) An = 2n

∫ π
2

0

x sinx cos2n−1 x dx.

Proof. Applying integration by parts on (6), we obtain

An = x cos2n(x)|
π
2
0 −

∫ π
2

0

x d(cos2n x)

= 0−
∫ π

2

0

x · 2n · cos2n−1(x)(− sin(x)) dx

= 2n

∫ π
2

0

x sin(x) cos2n−1(x) dx,

as desired. �

Proposition A.3. For all n ≥ 1,

(10)
An
n2

=
2n− 1

n
Bn−1 − 2Bn.
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Proof. It follows from (9) that

An
2n

=

∫ π
2

0

x sinx cos2n−1 x dx.

Applying integration by parts on the above integral, we obtain

An
2n

=

∫ π
2

0

sinx cos2n−1 x d(
1

2
x2)

=
1

2
x2 sin(x) cos2n−1(x)|

π
2
0 −

∫ π
2

0

1

2
x2
[
cos2n(x)− (2n− 1) sin2(x) cos2n−2(x)

]
dx

= −
∫ π

2

0

1

2
x2 cos2n(x) dx+

∫ π
2

0

2n− 1

2
x2
(
1− cos2(x)

)
cos2n−2(x) dx

= −1

2
Bn −

2n− 1

2
Bn +

2n− 1

2
Bn−1

=
2n− 1

2
Bn−1 − nBn,

and (10) follows immediately. �

Proposition A.4. For all n ≥ 1,

(11)
1

n2
= 2(

Bn−1
An−1

− Bn
An

).

Proof. First, we re-write (10) as

1

n2
=

2n− 1

n

Bn−1
An

− 2
Bn
An

.

Next we note that, by (8),
1

An
=

2n

2n− 1
· 1

An−1

It follows that

1

n2
=

2n− 1

n

Bn−1
An

− 2
Bn
An

=
2n− 1

n
Bn−1 ·

2n

2n− 1
· 1

An−1
− 2

Bn
An

= 2
Bn−1
An−1

− 2
Bn
An

.

�

Proposition A.5. For all n ≥ 1,

(12)

n∑
k=1

1

k2
=
π2

6
− 2

Bn
An

.

Proof. Taking n = k in (11) and adding such equations together for k = 1, · · · , n, one obtains
that

n∑
k=1

1

k2
= 2

(
B0

A0
− Bn
An

)
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Since

A0 =

∫ π
2

0

1 · dx =
π

2
, B0 =

∫ π
2

0

x2 dx =
π3

24
,

It follows that
n∑
k=1

1

k2
= 2

(
B0

A0
− Bn
An

)
=
π2

6
− 2

Bn
An

.

�

Proposition A.6. For all n ≥ 0,

(13) Bn ≤
∫ π

2

0

x2
(

1− 4x2

π2

)n
dx.

Proof. We note that

Bn =

∫ π
2

0

x2 cos2n x dx =

∫ π
2

0

x2
(
1− sin2 x

)n
dx.

Using the fact that sin(x) ≥ 2
πx whenever 0 ≤ x ≤ π

2 , we have

Bn =

∫ π
2

0

x2
(
1− sin2 x

)n
dx ≤

∫ π
2

0

x2
(

1− 4x2

π2

)n
dx.

�

Proposition A.7. For all n ≥ 0,

(14)

∫ π
2

0

x2
(

1− 4x2

π2

)n
dx =

π2

8(n+ 1)

∫ π
2

0

(
1− 4x2

π2

)n+1

dx.

Proof. On the left hand side of Equation (14), apply integration by parts using the substitution

u = x and dv = x
(

1− 4x2

π2

)2
. The right hand side of the equation follows. �

Proposition A.8. For all n ≥ 0,

(15) Bn ≤
π3

16(n+ 1)

∫ π
2

0

cos2n+3 t dt ≤ π3

16(n+ 1)
An.

Proof. It follows from Equations (13) and (14) that

(16) Bn ≤
π3

16(n+ 1)

∫ π
2

0

cos2n+3 t dt ≤ π3

16(n+ 1)
An.

Substituting x = π
2 sin t into Equation (16) yields Equation (15). �

Proposition A.9. For every n ≥ 1,

(17)
π2

6
− π3

8(n+ 1)
≤

n∑
k=1

1

k2
<
π2

6
.

Proof. The left-hand side of Equation (17) comes immediately from substituting the upper
bound of Bn

An
obtained in Equation (15) into Equation (12). The right-hand side of Equation

(17) comes from the fact that Bn
An

> 0 (as Equations (6) and (7) must both be positive). �

Theorem A.10. We obtain

(18) ζ(2) = lim
n→∞

n∑
k=1

1

k2
=
π2

6
.
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Proof. In Equation (17), note that
∑n
k=1

1
k2 has π2

6 as both an upper bound and lower bound
as n→∞. Equation (18) results immediately from the squeeze theorem. �
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